Atrous Convolution-Based Adaptive 3D-CNN Model for Breast Cancer Diagnosis Using Segmentation in Mammogram Images
A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these...
Saved in:
| Published in | Operations Research Forum Vol. 6; no. 3 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
21.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2662-2556 2662-2556 |
| DOI | 10.1007/s43069-025-00495-0 |
Cover
| Abstract | A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these methods often fail to detect subtle abnormalities, leading to missed diagnoses. Additionally, they are vulnerable to overfitting, lack robustness to noise and artifacts, and require extensive computational resources. To overcome these challenges, a novel deep learning-based framework for breast cancer detection using mammogram images has been introduced. At first, the necessary images are collected from online sources. The mammogram image is subjected to the preprocessing approach via contrast-limited adaptive histogram equalization (CLAHE) and histogram equalization (HE) to obtain a high-contrast image with reduced noise. Consequently, the pre-processed image is fed to the hybridization of Improved UNet-FCN for segmenting the image over cancer-occurred regions. The parameters within the segmentation are optimized by the farmland fertility snow leopard optimization (FFSLO). After, the segmented image is given to the breast cancer detection stage. Here, the atrous convolution-based adaptive 3D-convolutional neural network (AC-A3DCNN) is utilized to detect breast cancer. Here, the variable tuning is carried out with the FFSLO to boost the demonstrated approach’s detection accuracy rate. While validating the statistical test, the designed model shows 2.61%, 2.05%, 4.86%, and 0.68% elevated than CHOA, CMO, FFOA, and SNOA for best metrics. Hence, the offered approach’s efficacy is revealed through the comparative evaluation of the diverse baseline models concerning the standard performance measures. |
|---|---|
| AbstractList | A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these methods often fail to detect subtle abnormalities, leading to missed diagnoses. Additionally, they are vulnerable to overfitting, lack robustness to noise and artifacts, and require extensive computational resources. To overcome these challenges, a novel deep learning-based framework for breast cancer detection using mammogram images has been introduced. At first, the necessary images are collected from online sources. The mammogram image is subjected to the preprocessing approach via contrast-limited adaptive histogram equalization (CLAHE) and histogram equalization (HE) to obtain a high-contrast image with reduced noise. Consequently, the pre-processed image is fed to the hybridization of Improved UNet-FCN for segmenting the image over cancer-occurred regions. The parameters within the segmentation are optimized by the farmland fertility snow leopard optimization (FFSLO). After, the segmented image is given to the breast cancer detection stage. Here, the atrous convolution-based adaptive 3D-convolutional neural network (AC-A3DCNN) is utilized to detect breast cancer. Here, the variable tuning is carried out with the FFSLO to boost the demonstrated approach’s detection accuracy rate. While validating the statistical test, the designed model shows 2.61%, 2.05%, 4.86%, and 0.68% elevated than CHOA, CMO, FFOA, and SNOA for best metrics. Hence, the offered approach’s efficacy is revealed through the comparative evaluation of the diverse baseline models concerning the standard performance measures. |
| ArticleNumber | 96 |
| Author | Patil, Rajashekhargouda C. Pawar, Rashmi V Patil, Rajeshwari S. Jadhav, Ambaji S. |
| Author_xml | – sequence: 1 givenname: Rashmi V surname: Pawar fullname: Pawar, Rashmi V email: rashmi.ajadhav@gmail.com organization: Department of Electrical and Electronics, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology – sequence: 2 givenname: Rajashekhargouda C. surname: Patil fullname: Patil, Rajashekhargouda C. organization: Department of Electronics and Communication Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, Jain College of Engineering – sequence: 3 givenname: Rajeshwari S. surname: Patil fullname: Patil, Rajeshwari S. organization: Department of Electronics and Communication Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology – sequence: 4 givenname: Ambaji S. surname: Jadhav fullname: Jadhav, Ambaji S. organization: Department of Electrical and Electronics, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology |
| BookMark | eNp9kMtOwzAQRS1UJErpD7DyDwTGjzy8bFMeldqygK4tx3aiVI1d7LQSf09KWbBiMzOLe65G5xaNnHcWoXsCDwQgf4ycQSYSoGkCwMUwr9CYZhlNaJpmoz_3DZrGuAMARlnOGRujz1kf_DHi0ruT3x_71rtkrqI1eGbUoW9PFrNFUm42eO2N3ePaBzwPVsUel8ppG_CiVY3zsY14G1vX4HfbdNb16lyFW4fXqut8E1SHl51qbLxD17XaRzv93RO0fX76KF-T1dvLspytEk1SAQkRBQetTV7pwmTWgMgFYZprI2paF1xkhNscjMmgEproIqe1sIpXBQNFeMUmiF56dfAxBlvLQ2g7Fb4kAXn2Ji_e5OBN_niTMEDsAsUh7Bob5M4fgxv-_I_6Bmpccn4 |
| Cites_doi | 10.1109/ACCESS.2023.3335604 10.1109/TMI.2005.855435 10.1109/TAI.2021.3136146 10.1109/ACCESS.2021.3089077 10.1109/ACCESS.2023.3313977 10.1007/s11042-022-13932-7 10.1109/TMI.2021.3066896 10.1016/j.eswa.2019.112855 10.1109/TMI.2021.3108949 10.1007/s00034-023-02564-3 10.1007/s11063-022-10856-z 10.3390/app12020931 10.1109/ACCESS.2022.3151830 10.4015/S101623722450008X 10.3389/fpls.2023.1139666 10.1109/ACCESS.2021.3071297 10.1016/j.matpr.2020.11.931 10.1007/s11042-024-20108-y 10.1109/ACCESS.2021.3079204 10.1109/ACCESS.2020.3021343 10.1016/j.bspc.2024.106721 10.32604/csse.2023.030697 10.1109/TMI.2021.3102622 10.1016/j.eswa.2022.118833 10.1109/ACCESS.2021.3058773 10.1109/TNS.2006.878003 10.1016/j.procs.2020.01.009 10.1016/j.asoc.2018.07.033 10.1109/TBME.2021.3054248 10.1371/journal.pone.0263126 10.1109/ISBI.2002.1029228 10.1109/ACCESS.2022.3174484 10.1109/ICIC63915.2024.11116136 10.1109/LSP.2019.2963151 10.1109/TMI.2020.2968397 10.1007/s11042-022-11932-1 10.1109/ACCESS.2017.2777888 10.1371/journal.pone.0253202 10.1007/s11760-022-02470-2 10.1109/TITB.2004.837851 10.1016/j.dsp.2022.103532 10.3390/math9212832 10.1016/j.cmpb.2022.106903 10.1109/ICISS49785.2020.9315894 10.1109/ACCESS.2020.2986546 10.1109/JBHI.2020.2974425 10.1109/RBME.2012.2232289 10.1155/2022/6841334 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s43069-025-00495-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2662-2556 |
| ExternalDocumentID | 10_1007_s43069_025_00495_0 |
| GroupedDBID | 0R~ 2JN 406 AACDK AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABFSG ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACPIV ACSTC ACZOJ AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW ATHPR AYFIA EBLON FIGPU GGCAI IKXTQ IWAJR JZLTJ LLZTM NPVJJ PT4 ROL RSV SJYHP SNE SOJ AAYXX CITATION |
| ID | FETCH-LOGICAL-c1590-19840ccd7bc8d6ed097913c4cd9f2f849614e70dd60b9c1c872f9ea4b830a14b3 |
| ISSN | 2662-2556 |
| IngestDate | Wed Oct 01 05:33:03 EDT 2025 Wed Jul 23 01:13:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Farmland fertility snow leopard optimization Breast cancer detection UNet and fully convolutional network Atrous convolution-based adaptive 3D-convolutional neural network Contrast limited adaptive histogram equalization Histogram equalization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1590-19840ccd7bc8d6ed097913c4cd9f2f849614e70dd60b9c1c872f9ea4b830a14b3 |
| ParticipantIDs | crossref_primary_10_1007_s43069_025_00495_0 springer_journals_10_1007_s43069_025_00495_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250721 |
| PublicationDateYYYYMMDD | 2025-07-21 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250721 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Operations Research Forum |
| PublicationTitleAbbrev | Oper. Res. Forum |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Q Liu (495_CR52) 2023; 14 495_CR47 495_CR46 R Song (495_CR15) 2020; 8 GT Vasu (495_CR36) 2023; 17 F Azour (495_CR2) 2022; 10 R Patil (495_CR18) 2022; 81 495_CR50 495_CR11 495_CR10 495_CR53 K Ganesan (495_CR8) 2013; 6 T Mahmood (495_CR30) 2021; 10 ZA Madlool (495_CR43) 2024; 16 A Kumar (495_CR41) 2024; 11 W Liu (495_CR14) 2022; 3 B Xia (495_CR44) 2024; 14 495_CR58 AM GabA (495_CR49) 2023; 213 D Keerthana (495_CR57) 2023; 5 X Shu (495_CR6) 2020; 39 D Hao (495_CR16) 2020; 24 T Mahmood (495_CR32) 2024; 249 DN Venu (495_CR35) 2023; 12 M Punitha (495_CR26) 2019; 165 495_CR20 D Zhou (495_CR55) 2018; 6 L Wei (495_CR13) 2005; 24 A Keshk (495_CR21) 2021; 9 H Li (495_CR4) 2022; 41 M Sunaryo (495_CR38) 2016; 7 T Mahmood (495_CR27) 2024; 97 495_CR25 PK Balasubramanian (495_CR48) 2023; 15 495_CR29 R Moharam (495_CR54) 2022; 10 495_CR33 495_CR31 J Lee (495_CR1) 2022; 41 S Singh (495_CR17) 2005; 9 K PandeyS (495_CR34) 2023; 16 M Gao (495_CR3) 2021; 40 495_CR37 495_CR40 Y Su (495_CR19) 2022; 221 D Cascio (495_CR22) 2006; 53 T Shen (495_CR23) 2020; 27 495_CR42 G Nallasivan (495_CR51) 2023; 45 MasoodT ArshadW (495_CR28) 2023; 11 D Poonguzhali Elangovan (495_CR56) 2024; 43 VK Singh (495_CR24) 2020; 139 D Vijayalakshmi (495_CR39) 2022; 127 AR Beeravolu (495_CR5) 2021; 9 G Toz (495_CR7) 2021; 9 H Shayanfar (495_CR45) 2018; 71 M Heidari (495_CR9) 2021; 68 SJ Malebary (495_CR12) 2021; 9 |
| References_xml | – volume: 11 start-page: 133804 year: 2023 ident: 495_CR28 publication-title: Access doi: 10.1109/ACCESS.2023.3335604 – volume: 24 start-page: 1278 year: 2005 ident: 495_CR13 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2005.855435 – volume: 3 start-page: 485 year: 2022 ident: 495_CR14 publication-title: IEEE IEEE Trans Artif Intell doi: 10.1109/TAI.2021.3136146 – volume: 12 start-page: 928 year: 2023 ident: 495_CR35 publication-title: IJFANS International Journal of Food and Nutritional Sciences – volume: 9 start-page: 85377 year: 2021 ident: 495_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3089077 – ident: 495_CR29 doi: 10.1109/ACCESS.2023.3313977 – ident: 495_CR37 doi: 10.1007/s11042-022-13932-7 – volume: 40 start-page: 1805 year: 2021 ident: 495_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3066896 – volume: 139 start-page: 112855 year: 2020 ident: 495_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112855 – volume: 16 start-page: 300 year: 2024 ident: 495_CR43 publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics – volume: 41 start-page: 225 year: 2022 ident: 495_CR1 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3108949 – volume: 11 start-page: 2450008 year: 2024 ident: 495_CR41 publication-title: SinghJ, KhanAA, MainiS, Hybrid machine learning techniques based on genetic algorithm for heart disease detection, Innovation and Emerging Technologies – volume: 43 start-page: 2385 year: 2024 ident: 495_CR56 publication-title: Circuits Systems Signal Process doi: 10.1007/s00034-023-02564-3 – volume: 249 start-page: 123747 year: 2024 ident: 495_CR32 publication-title: RehmanA, AlamriF S, Harnessing the power of radiomics and deep learning for improved breast cancer diagnosis with multiparametric breast mammography, Expert Syst, Appl – ident: 495_CR25 doi: 10.1007/s11063-022-10856-z – ident: 495_CR53 doi: 10.3390/app12020931 – volume: 16 start-page: 80 year: 2023 ident: 495_CR34 publication-title: BhatiaS, GadekalluT R, KumarA, MashatA, ShahM A, JanghelR R, Detection of arrhythmia heartbeats from ECG signal using wavelet transform-based CNN model, International Journal of Computational Intelligence Systems – volume: 10 start-page: 21701 year: 2022 ident: 495_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151830 – ident: 495_CR58 doi: 10.4015/S101623722450008X – volume: 14 start-page: 1139666 year: 2023 ident: 495_CR52 publication-title: Front Plant Sci doi: 10.3389/fpls.2023.1139666 – volume: 9 start-page: 55312 year: 2021 ident: 495_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071297 – ident: 495_CR20 doi: 10.1016/j.matpr.2020.11.931 – ident: 495_CR42 doi: 10.1007/s11042-024-20108-y – volume: 9 start-page: 71194 year: 2021 ident: 495_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079204 – ident: 495_CR33 doi: 10.1109/ACCESS.2020.3021343 – volume: 97 start-page: 106721 year: 2024 ident: 495_CR27 publication-title: Biomed Signal Proces Control doi: 10.1016/j.bspc.2024.106721 – volume: 45 start-page: 1655 year: 2023 ident: 495_CR51 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2023.030697 – volume: 41 start-page: 3 year: 2022 ident: 495_CR4 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3102622 – volume: 213 start-page: 118833 year: 2023 ident: 495_CR49 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118833 – volume: 9 start-page: 33438 year: 2021 ident: 495_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058773 – volume: 53 start-page: 2827 year: 2006 ident: 495_CR22 publication-title: IEEE Trans Nucl Sci doi: 10.1109/TNS.2006.878003 – volume: 165 start-page: 478 year: 2019 ident: 495_CR26 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.01.009 – volume: 71 start-page: 728 year: 2018 ident: 495_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.033 – volume: 15 start-page: 330 issue: 2 year: 2023 ident: 495_CR48 publication-title: SengG H, SelvarajJ, Apestnet with mask r-cnn for liver tumor segmentation and classification, Cancers – volume: 5 start-page: 100069 year: 2023 ident: 495_CR57 publication-title: Eng Adv – volume: 68 start-page: 2764 year: 2021 ident: 495_CR9 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2021.3054248 – volume: 10 start-page: 859 issue: 9 year: 2021 ident: 495_CR30 publication-title: An automated in-depth feature learning algorithm for breast abnormality prognosis and robust characterization from mammography images using deep transfer learning, Biology – ident: 495_CR31 doi: 10.1371/journal.pone.0263126 – ident: 495_CR10 doi: 10.1109/ISBI.2002.1029228 – volume: 10 start-page: 52126 year: 2022 ident: 495_CR54 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3174484 – ident: 495_CR50 doi: 10.1109/ICIC63915.2024.11116136 – volume: 27 start-page: 196 year: 2020 ident: 495_CR23 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2963151 – volume: 39 start-page: 2246 year: 2020 ident: 495_CR6 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2968397 – volume: 81 start-page: 7783 year: 2022 ident: 495_CR18 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-11932-1 – volume: 14 start-page: 21777 year: 2024 ident: 495_CR44 publication-title: KandasamyV, AhmadianA, FerraraM, Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization, Scientific Reports – volume: 6 start-page: 19465 year: 2018 ident: 495_CR55 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2777888 – ident: 495_CR47 doi: 10.1371/journal.pone.0253202 – volume: 17 start-page: 2531 year: 2023 ident: 495_CR36 publication-title: Sig Imag Video Process doi: 10.1007/s11760-022-02470-2 – volume: 9 start-page: 109 year: 2005 ident: 495_CR17 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2004.837851 – volume: 7 start-page: 1723 year: 2016 ident: 495_CR38 publication-title: International Journal of Computer Science and Information Technologies – volume: 127 start-page: 103532 year: 2022 ident: 495_CR39 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2022.103532 – ident: 495_CR46 doi: 10.3390/math9212832 – volume: 221 start-page: 106903 year: 2022 ident: 495_CR19 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106903 – ident: 495_CR11 doi: 10.1109/ICISS49785.2020.9315894 – volume: 8 start-page: 75011 year: 2020 ident: 495_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986546 – volume: 24 start-page: 2701 year: 2020 ident: 495_CR16 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2020.2974425 – volume: 6 start-page: 77 year: 2013 ident: 495_CR8 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2012.2232289 – ident: 495_CR40 doi: 10.1155/2022/6841334 |
| SSID | ssj0003237433 |
| Score | 2.3003433 |
| Snippet | A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| SubjectTerms | Applications of Mathematics Business and Management Math Applications in Computer Science Mathematical and Computational Engineering Operations Research/Decision Theory Optimization |
| Title | Atrous Convolution-Based Adaptive 3D-CNN Model for Breast Cancer Diagnosis Using Segmentation in Mammogram Images |
| URI | https://link.springer.com/article/10.1007/s43069-025-00495-0 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2662-2556 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003237433 issn: 2662-2556 databaseCode: AFBBN dateStart: 20200205 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK98IFgQCxvOQDt5BV4jhpfGwD1bISBWl3pb1FfoV2l6alaReJX8NPZWI7j2ULYrlYVTx51PNlPJ58M0bojWSqrpcT-7A2qFNyhPKZVMznTMSMEyGprfY5S47P6clFfDEY_OyxlnZbcSR_7M0r-R-twjHQa50lewfNtheFA_Ab9AstaBjaf9LxeLupGazZqrx29_EnMCspb6z42nCCond-NpuZHc9MoiLost6sx8tqZW_A4Bmi3aLyLHXgVH9ZumQkw4D8yOHP1Pwt78MSDE_Vd2U_rfXG8ega-p43bUs7mK9S3x17m1fz5aKj036G077ajkvo0ld1tabVTnEvO9ono6s5XGnhnba9J1zN-bWxa0vBL9suF74gcR0XJV34oglf_hYA7WJwdp4yBhF8CeLXJdP61jvpgTTaOydYGkhFYXHEfPMEsCqCtpsBW15iW8PZCOcgnBvhPLiHDgjMG8EQHYynk8msjeNFJAInLHL5WCYr89adbvo8Nz-4Gz_m7CF64BYgeGzR9AgNdPkYfbNIwreQhBskYYskbJCEAUnYIglbJOEWSdggCfeRhBclbpGELZKeoPPp-7Ps2HebcfgSPN7AD1lKAynVSMhUJVoFbMTCSFJ4sQtSpJSBn6dHgVJJIJgMZToiBdOcijQKeEhF9BQNy1WpnyEsRUwkkWHBCzgngkU11TQB6yAJ5zCYh8hrhitf25or-Z81c4jeNiOau3ez-ov487uJv0D3O9S-RMPtZqdfgRu6Fa8dEn4B-CyIgg |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrous+Convolution-Based+Adaptive+3D-CNN+Model+for+Breast+Cancer+Diagnosis+Using+Segmentation+in+Mammogram+Images&rft.jtitle=Operations+Research+Forum&rft.au=Pawar%2C+Rashmi+V&rft.au=Patil%2C+Rajashekhargouda+C.&rft.au=Patil%2C+Rajeshwari+S.&rft.au=Jadhav%2C+Ambaji+S.&rft.date=2025-07-21&rft.pub=Springer+International+Publishing&rft.eissn=2662-2556&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1007%2Fs43069-025-00495-0&rft.externalDocID=10_1007_s43069_025_00495_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon |