Atrous Convolution-Based Adaptive 3D-CNN Model for Breast Cancer Diagnosis Using Segmentation in Mammogram Images

A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these...

Full description

Saved in:
Bibliographic Details
Published inOperations Research Forum Vol. 6; no. 3
Main Authors Pawar, Rashmi V, Patil, Rajashekhargouda C., Patil, Rajeshwari S., Jadhav, Ambaji S.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 21.07.2025
Subjects
Online AccessGet full text
ISSN2662-2556
2662-2556
DOI10.1007/s43069-025-00495-0

Cover

Abstract A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these methods often fail to detect subtle abnormalities, leading to missed diagnoses. Additionally, they are vulnerable to overfitting, lack robustness to noise and artifacts, and require extensive computational resources. To overcome these challenges, a novel deep learning-based framework for breast cancer detection using mammogram images has been introduced. At first, the necessary images are collected from online sources. The mammogram image is subjected to the preprocessing approach via contrast-limited adaptive histogram equalization (CLAHE) and histogram equalization (HE) to obtain a high-contrast image with reduced noise. Consequently, the pre-processed image is fed to the hybridization of Improved UNet-FCN for segmenting the image over cancer-occurred regions. The parameters within the segmentation are optimized by the farmland fertility snow leopard optimization (FFSLO). After, the segmented image is given to the breast cancer detection stage. Here, the atrous convolution-based adaptive 3D-convolutional neural network (AC-A3DCNN) is utilized to detect breast cancer. Here, the variable tuning is carried out with the FFSLO to boost the demonstrated approach’s detection accuracy rate. While validating the statistical test, the designed model shows 2.61%, 2.05%, 4.86%, and 0.68% elevated than CHOA, CMO, FFOA, and SNOA for best metrics. Hence, the offered approach’s efficacy is revealed through the comparative evaluation of the diverse baseline models concerning the standard performance measures.
AbstractList A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on manual segmentation, which consumes more time and is ineffective for handling variations in breast tissue density and texture. Moreover, these methods often fail to detect subtle abnormalities, leading to missed diagnoses. Additionally, they are vulnerable to overfitting, lack robustness to noise and artifacts, and require extensive computational resources. To overcome these challenges, a novel deep learning-based framework for breast cancer detection using mammogram images has been introduced. At first, the necessary images are collected from online sources. The mammogram image is subjected to the preprocessing approach via contrast-limited adaptive histogram equalization (CLAHE) and histogram equalization (HE) to obtain a high-contrast image with reduced noise. Consequently, the pre-processed image is fed to the hybridization of Improved UNet-FCN for segmenting the image over cancer-occurred regions. The parameters within the segmentation are optimized by the farmland fertility snow leopard optimization (FFSLO). After, the segmented image is given to the breast cancer detection stage. Here, the atrous convolution-based adaptive 3D-convolutional neural network (AC-A3DCNN) is utilized to detect breast cancer. Here, the variable tuning is carried out with the FFSLO to boost the demonstrated approach’s detection accuracy rate. While validating the statistical test, the designed model shows 2.61%, 2.05%, 4.86%, and 0.68% elevated than CHOA, CMO, FFOA, and SNOA for best metrics. Hence, the offered approach’s efficacy is revealed through the comparative evaluation of the diverse baseline models concerning the standard performance measures.
ArticleNumber 96
Author Patil, Rajashekhargouda C.
Pawar, Rashmi V
Patil, Rajeshwari S.
Jadhav, Ambaji S.
Author_xml – sequence: 1
  givenname: Rashmi V
  surname: Pawar
  fullname: Pawar, Rashmi V
  email: rashmi.ajadhav@gmail.com
  organization: Department of Electrical and Electronics, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology
– sequence: 2
  givenname: Rajashekhargouda C.
  surname: Patil
  fullname: Patil, Rajashekhargouda C.
  organization: Department of Electronics and Communication Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, Jain College of Engineering
– sequence: 3
  givenname: Rajeshwari S.
  surname: Patil
  fullname: Patil, Rajeshwari S.
  organization: Department of Electronics and Communication Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology
– sequence: 4
  givenname: Ambaji S.
  surname: Jadhav
  fullname: Jadhav, Ambaji S.
  organization: Department of Electrical and Electronics, Affiliated to Visvesvaraya Technological University Belagavi, Karnataka, India, BLDEA’s V.P. Dr. P.G. Halakatti College of Engineering and Technology
BookMark eNp9kMtOwzAQRS1UJErpD7DyDwTGjzy8bFMeldqygK4tx3aiVI1d7LQSf09KWbBiMzOLe65G5xaNnHcWoXsCDwQgf4ycQSYSoGkCwMUwr9CYZhlNaJpmoz_3DZrGuAMARlnOGRujz1kf_DHi0ruT3x_71rtkrqI1eGbUoW9PFrNFUm42eO2N3ePaBzwPVsUel8ppG_CiVY3zsY14G1vX4HfbdNb16lyFW4fXqut8E1SHl51qbLxD17XaRzv93RO0fX76KF-T1dvLspytEk1SAQkRBQetTV7pwmTWgMgFYZprI2paF1xkhNscjMmgEproIqe1sIpXBQNFeMUmiF56dfAxBlvLQ2g7Fb4kAXn2Ji_e5OBN_niTMEDsAsUh7Bob5M4fgxv-_I_6Bmpccn4
Cites_doi 10.1109/ACCESS.2023.3335604
10.1109/TMI.2005.855435
10.1109/TAI.2021.3136146
10.1109/ACCESS.2021.3089077
10.1109/ACCESS.2023.3313977
10.1007/s11042-022-13932-7
10.1109/TMI.2021.3066896
10.1016/j.eswa.2019.112855
10.1109/TMI.2021.3108949
10.1007/s00034-023-02564-3
10.1007/s11063-022-10856-z
10.3390/app12020931
10.1109/ACCESS.2022.3151830
10.4015/S101623722450008X
10.3389/fpls.2023.1139666
10.1109/ACCESS.2021.3071297
10.1016/j.matpr.2020.11.931
10.1007/s11042-024-20108-y
10.1109/ACCESS.2021.3079204
10.1109/ACCESS.2020.3021343
10.1016/j.bspc.2024.106721
10.32604/csse.2023.030697
10.1109/TMI.2021.3102622
10.1016/j.eswa.2022.118833
10.1109/ACCESS.2021.3058773
10.1109/TNS.2006.878003
10.1016/j.procs.2020.01.009
10.1016/j.asoc.2018.07.033
10.1109/TBME.2021.3054248
10.1371/journal.pone.0263126
10.1109/ISBI.2002.1029228
10.1109/ACCESS.2022.3174484
10.1109/ICIC63915.2024.11116136
10.1109/LSP.2019.2963151
10.1109/TMI.2020.2968397
10.1007/s11042-022-11932-1
10.1109/ACCESS.2017.2777888
10.1371/journal.pone.0253202
10.1007/s11760-022-02470-2
10.1109/TITB.2004.837851
10.1016/j.dsp.2022.103532
10.3390/math9212832
10.1016/j.cmpb.2022.106903
10.1109/ICISS49785.2020.9315894
10.1109/ACCESS.2020.2986546
10.1109/JBHI.2020.2974425
10.1109/RBME.2012.2232289
10.1155/2022/6841334
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s43069-025-00495-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2662-2556
ExternalDocumentID 10_1007_s43069_025_00495_0
GroupedDBID 0R~
2JN
406
AACDK
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABFSG
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACPIV
ACSTC
ACZOJ
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
ATHPR
AYFIA
EBLON
FIGPU
GGCAI
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
PT4
ROL
RSV
SJYHP
SNE
SOJ
AAYXX
CITATION
ID FETCH-LOGICAL-c1590-19840ccd7bc8d6ed097913c4cd9f2f849614e70dd60b9c1c872f9ea4b830a14b3
ISSN 2662-2556
IngestDate Wed Oct 01 05:33:03 EDT 2025
Wed Jul 23 01:13:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Farmland fertility snow leopard optimization
Breast cancer detection
UNet and fully convolutional network
Atrous convolution-based adaptive 3D-convolutional neural network
Contrast limited adaptive histogram equalization
Histogram equalization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1590-19840ccd7bc8d6ed097913c4cd9f2f849614e70dd60b9c1c872f9ea4b830a14b3
ParticipantIDs crossref_primary_10_1007_s43069_025_00495_0
springer_journals_10_1007_s43069_025_00495_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250721
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 7
  year: 2025
  text: 20250721
  day: 21
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Operations Research Forum
PublicationTitleAbbrev Oper. Res. Forum
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Q Liu (495_CR52) 2023; 14
495_CR47
495_CR46
R Song (495_CR15) 2020; 8
GT Vasu (495_CR36) 2023; 17
F Azour (495_CR2) 2022; 10
R Patil (495_CR18) 2022; 81
495_CR50
495_CR11
495_CR10
495_CR53
K Ganesan (495_CR8) 2013; 6
T Mahmood (495_CR30) 2021; 10
ZA Madlool (495_CR43) 2024; 16
A Kumar (495_CR41) 2024; 11
W Liu (495_CR14) 2022; 3
B Xia (495_CR44) 2024; 14
495_CR58
AM GabA (495_CR49) 2023; 213
D Keerthana (495_CR57) 2023; 5
X Shu (495_CR6) 2020; 39
D Hao (495_CR16) 2020; 24
T Mahmood (495_CR32) 2024; 249
DN Venu (495_CR35) 2023; 12
M Punitha (495_CR26) 2019; 165
495_CR20
D Zhou (495_CR55) 2018; 6
L Wei (495_CR13) 2005; 24
A Keshk (495_CR21) 2021; 9
H Li (495_CR4) 2022; 41
M Sunaryo (495_CR38) 2016; 7
T Mahmood (495_CR27) 2024; 97
495_CR25
PK Balasubramanian (495_CR48) 2023; 15
495_CR29
R Moharam (495_CR54) 2022; 10
495_CR33
495_CR31
J Lee (495_CR1) 2022; 41
S Singh (495_CR17) 2005; 9
K PandeyS (495_CR34) 2023; 16
M Gao (495_CR3) 2021; 40
495_CR37
495_CR40
Y Su (495_CR19) 2022; 221
D Cascio (495_CR22) 2006; 53
T Shen (495_CR23) 2020; 27
495_CR42
G Nallasivan (495_CR51) 2023; 45
MasoodT ArshadW (495_CR28) 2023; 11
D Poonguzhali Elangovan (495_CR56) 2024; 43
VK Singh (495_CR24) 2020; 139
D Vijayalakshmi (495_CR39) 2022; 127
AR Beeravolu (495_CR5) 2021; 9
G Toz (495_CR7) 2021; 9
H Shayanfar (495_CR45) 2018; 71
M Heidari (495_CR9) 2021; 68
SJ Malebary (495_CR12) 2021; 9
References_xml – volume: 11
  start-page: 133804
  year: 2023
  ident: 495_CR28
  publication-title: Access
  doi: 10.1109/ACCESS.2023.3335604
– volume: 24
  start-page: 1278
  year: 2005
  ident: 495_CR13
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.855435
– volume: 3
  start-page: 485
  year: 2022
  ident: 495_CR14
  publication-title: IEEE IEEE Trans Artif Intell
  doi: 10.1109/TAI.2021.3136146
– volume: 12
  start-page: 928
  year: 2023
  ident: 495_CR35
  publication-title: IJFANS International Journal of Food and Nutritional Sciences
– volume: 9
  start-page: 85377
  year: 2021
  ident: 495_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3089077
– ident: 495_CR29
  doi: 10.1109/ACCESS.2023.3313977
– ident: 495_CR37
  doi: 10.1007/s11042-022-13932-7
– volume: 40
  start-page: 1805
  year: 2021
  ident: 495_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3066896
– volume: 139
  start-page: 112855
  year: 2020
  ident: 495_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112855
– volume: 16
  start-page: 300
  year: 2024
  ident: 495_CR43
  publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics
– volume: 41
  start-page: 225
  year: 2022
  ident: 495_CR1
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3108949
– volume: 11
  start-page: 2450008
  year: 2024
  ident: 495_CR41
  publication-title: SinghJ, KhanAA, MainiS, Hybrid machine learning techniques based on genetic algorithm for heart disease detection, Innovation and Emerging Technologies
– volume: 43
  start-page: 2385
  year: 2024
  ident: 495_CR56
  publication-title: Circuits Systems Signal Process
  doi: 10.1007/s00034-023-02564-3
– volume: 249
  start-page: 123747
  year: 2024
  ident: 495_CR32
  publication-title: RehmanA, AlamriF S, Harnessing the power of radiomics and deep learning for improved breast cancer diagnosis with multiparametric breast mammography, Expert Syst, Appl
– ident: 495_CR25
  doi: 10.1007/s11063-022-10856-z
– ident: 495_CR53
  doi: 10.3390/app12020931
– volume: 16
  start-page: 80
  year: 2023
  ident: 495_CR34
  publication-title: BhatiaS, GadekalluT R, KumarA, MashatA, ShahM A, JanghelR R, Detection of arrhythmia heartbeats from ECG signal using wavelet transform-based CNN model, International Journal of Computational Intelligence Systems
– volume: 10
  start-page: 21701
  year: 2022
  ident: 495_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151830
– ident: 495_CR58
  doi: 10.4015/S101623722450008X
– volume: 14
  start-page: 1139666
  year: 2023
  ident: 495_CR52
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2023.1139666
– volume: 9
  start-page: 55312
  year: 2021
  ident: 495_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071297
– ident: 495_CR20
  doi: 10.1016/j.matpr.2020.11.931
– ident: 495_CR42
  doi: 10.1007/s11042-024-20108-y
– volume: 9
  start-page: 71194
  year: 2021
  ident: 495_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079204
– ident: 495_CR33
  doi: 10.1109/ACCESS.2020.3021343
– volume: 97
  start-page: 106721
  year: 2024
  ident: 495_CR27
  publication-title: Biomed Signal Proces Control
  doi: 10.1016/j.bspc.2024.106721
– volume: 45
  start-page: 1655
  year: 2023
  ident: 495_CR51
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2023.030697
– volume: 41
  start-page: 3
  year: 2022
  ident: 495_CR4
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3102622
– volume: 213
  start-page: 118833
  year: 2023
  ident: 495_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118833
– volume: 9
  start-page: 33438
  year: 2021
  ident: 495_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058773
– volume: 53
  start-page: 2827
  year: 2006
  ident: 495_CR22
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2006.878003
– volume: 165
  start-page: 478
  year: 2019
  ident: 495_CR26
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.01.009
– volume: 71
  start-page: 728
  year: 2018
  ident: 495_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.033
– volume: 15
  start-page: 330
  issue: 2
  year: 2023
  ident: 495_CR48
  publication-title: SengG H, SelvarajJ, Apestnet with mask r-cnn for liver tumor segmentation and classification, Cancers
– volume: 5
  start-page: 100069
  year: 2023
  ident: 495_CR57
  publication-title: Eng Adv
– volume: 68
  start-page: 2764
  year: 2021
  ident: 495_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3054248
– volume: 10
  start-page: 859
  issue: 9
  year: 2021
  ident: 495_CR30
  publication-title: An automated in-depth feature learning algorithm for breast abnormality prognosis and robust characterization from mammography images using deep transfer learning, Biology
– ident: 495_CR31
  doi: 10.1371/journal.pone.0263126
– ident: 495_CR10
  doi: 10.1109/ISBI.2002.1029228
– volume: 10
  start-page: 52126
  year: 2022
  ident: 495_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174484
– ident: 495_CR50
  doi: 10.1109/ICIC63915.2024.11116136
– volume: 27
  start-page: 196
  year: 2020
  ident: 495_CR23
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2963151
– volume: 39
  start-page: 2246
  year: 2020
  ident: 495_CR6
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2968397
– volume: 81
  start-page: 7783
  year: 2022
  ident: 495_CR18
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-11932-1
– volume: 14
  start-page: 21777
  year: 2024
  ident: 495_CR44
  publication-title: KandasamyV, AhmadianA, FerraraM, Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization, Scientific Reports
– volume: 6
  start-page: 19465
  year: 2018
  ident: 495_CR55
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2777888
– ident: 495_CR47
  doi: 10.1371/journal.pone.0253202
– volume: 17
  start-page: 2531
  year: 2023
  ident: 495_CR36
  publication-title: Sig Imag Video Process
  doi: 10.1007/s11760-022-02470-2
– volume: 9
  start-page: 109
  year: 2005
  ident: 495_CR17
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2004.837851
– volume: 7
  start-page: 1723
  year: 2016
  ident: 495_CR38
  publication-title: International Journal of Computer Science and Information Technologies
– volume: 127
  start-page: 103532
  year: 2022
  ident: 495_CR39
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2022.103532
– ident: 495_CR46
  doi: 10.3390/math9212832
– volume: 221
  start-page: 106903
  year: 2022
  ident: 495_CR19
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106903
– ident: 495_CR11
  doi: 10.1109/ICISS49785.2020.9315894
– volume: 8
  start-page: 75011
  year: 2020
  ident: 495_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986546
– volume: 24
  start-page: 2701
  year: 2020
  ident: 495_CR16
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2020.2974425
– volume: 6
  start-page: 77
  year: 2013
  ident: 495_CR8
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2012.2232289
– ident: 495_CR40
  doi: 10.1155/2022/6841334
SSID ssj0003237433
Score 2.3003433
Snippet A commonly affected disease for women is breast cancer, caused by abnormal growth of the breast tissues. Existing breast cancer detection approaches rely on...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Applications of Mathematics
Business and Management
Math Applications in Computer Science
Mathematical and Computational Engineering
Operations Research/Decision Theory
Optimization
Title Atrous Convolution-Based Adaptive 3D-CNN Model for Breast Cancer Diagnosis Using Segmentation in Mammogram Images
URI https://link.springer.com/article/10.1007/s43069-025-00495-0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2662-2556
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003237433
  issn: 2662-2556
  databaseCode: AFBBN
  dateStart: 20200205
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK98IFgQCxvOQDt5BV4jhpfGwD1bISBWl3pb1FfoV2l6alaReJX8NPZWI7j2ULYrlYVTx51PNlPJ58M0bojWSqrpcT-7A2qFNyhPKZVMznTMSMEyGprfY5S47P6clFfDEY_OyxlnZbcSR_7M0r-R-twjHQa50lewfNtheFA_Ab9AstaBjaf9LxeLupGazZqrx29_EnMCspb6z42nCCond-NpuZHc9MoiLost6sx8tqZW_A4Bmi3aLyLHXgVH9ZumQkw4D8yOHP1Pwt78MSDE_Vd2U_rfXG8ega-p43bUs7mK9S3x17m1fz5aKj036G077ajkvo0ld1tabVTnEvO9ono6s5XGnhnba9J1zN-bWxa0vBL9suF74gcR0XJV34oglf_hYA7WJwdp4yBhF8CeLXJdP61jvpgTTaOydYGkhFYXHEfPMEsCqCtpsBW15iW8PZCOcgnBvhPLiHDgjMG8EQHYynk8msjeNFJAInLHL5WCYr89adbvo8Nz-4Gz_m7CF64BYgeGzR9AgNdPkYfbNIwreQhBskYYskbJCEAUnYIglbJOEWSdggCfeRhBclbpGELZKeoPPp-7Ps2HebcfgSPN7AD1lKAynVSMhUJVoFbMTCSFJ4sQtSpJSBn6dHgVJJIJgMZToiBdOcijQKeEhF9BQNy1WpnyEsRUwkkWHBCzgngkU11TQB6yAJ5zCYh8hrhitf25or-Z81c4jeNiOau3ez-ov487uJv0D3O9S-RMPtZqdfgRu6Fa8dEn4B-CyIgg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrous+Convolution-Based+Adaptive+3D-CNN+Model+for+Breast+Cancer+Diagnosis+Using+Segmentation+in+Mammogram+Images&rft.jtitle=Operations+Research+Forum&rft.au=Pawar%2C+Rashmi+V&rft.au=Patil%2C+Rajashekhargouda+C.&rft.au=Patil%2C+Rajeshwari+S.&rft.au=Jadhav%2C+Ambaji+S.&rft.date=2025-07-21&rft.pub=Springer+International+Publishing&rft.eissn=2662-2556&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1007%2Fs43069-025-00495-0&rft.externalDocID=10_1007_s43069_025_00495_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon