Analyzing the Relationship Between Meteorological Parameters and Electric Energy Consumption Using Support Vector Machine and Cooling Degree Days Algorithm

Nowadays, electricity is increasing rapidly. This increase is caused by several factors, one of which is meteorological factors. Meteorological parameters have various types, but this research uses three types in the form of temperature, humidity, and wind speed. The selection of these three types i...

Full description

Saved in:
Bibliographic Details
Published inJournal of information systems and informatics (Palembang.Online) Vol. 6; no. 2; pp. 729 - 750
Main Authors Azizah, Nabila Wafiqotul, Puspaningrum, Eva Yulia, Mas Diyasa, I Gede Susrama Susrama
Format Journal Article
LanguageEnglish
Published Informatics Department, Faculty of Computer Science Bina Darma University 13.06.2024
Subjects
Online AccessGet full text
ISSN2656-5935
2656-4882
2656-4882
DOI10.51519/journalisi.v6i2.719

Cover

Abstract Nowadays, electricity is increasing rapidly. This increase is caused by several factors, one of which is meteorological factors. Meteorological parameters have various types, but this research uses three types in the form of temperature, humidity, and wind speed. The selection of these three types is due to the fact that they have a very close relationship with human life. In line with that, this research uses datasets obtained from the official websites of BMKG (Meteorology, Climatology and Geophysics Agency) and PLN (State Electricity Company). On this occasion, researchers used several methods, namely Cross-Industry Standard Process for Data Mining (CRISP-DM), Cooling Degree Days (CDD), and Support Vector Machine (SVM).  The CRISP-DM method is useful for describing the data mining cycle so that the process can be more organized. The SVM algorithm is useful for predicting electricity consumption based on meteorological parameters in January to April 2024, while the CDD method is useful for knowing the correlation of meteorological parameters to electricity consumption in winter. In line with this, this research produces predictions of electricity consumption based on meteorological parameters in January 2024 to April 2024 with an average range of 20.9 Watts per day. In addition, trends and predictions during model evaluation obtained a precision value of 0.796, recall of 0.793, F1 score of 0.793, MAPE of 17.2%, RMSE of 0.41, MAE of 0.167 and accurate of 0.98. These values indicate that the performance of the accuracy model is very high.
AbstractList Nowadays, electricity is increasing rapidly. This increase is caused by several factors, one of which is meteorological factors. Meteorological parameters have various types, but this research uses three types in the form of temperature, humidity, and wind speed. The selection of these three types is due to the fact that they have a very close relationship with human life. In line with that, this research uses datasets obtained from the official websites of BMKG (Meteorology, Climatology and Geophysics Agency) and PLN (State Electricity Company). On this occasion, researchers used several methods, namely Cross-Industry Standard Process for Data Mining (CRISP-DM), Cooling Degree Days (CDD), and Support Vector Machine (SVM).  The CRISP-DM method is useful for describing the data mining cycle so that the process can be more organized. The SVM algorithm is useful for predicting electricity consumption based on meteorological parameters in January to April 2024, while the CDD method is useful for knowing the correlation of meteorological parameters to electricity consumption in winter. In line with this, this research produces predictions of electricity consumption based on meteorological parameters in January 2024 to April 2024 with an average range of 20.9 Watts per day. In addition, trends and predictions during model evaluation obtained a precision value of 0.796, recall of 0.793, F1 score of 0.793, MAPE of 17.2%, RMSE of 0.41, MAE of 0.167 and accurate of 0.98. These values indicate that the performance of the accuracy model is very high.
Author Puspaningrum, Eva Yulia
Azizah, Nabila Wafiqotul
Mas Diyasa, I Gede Susrama Susrama
Author_xml – sequence: 1
  givenname: Nabila Wafiqotul
  surname: Azizah
  fullname: Azizah, Nabila Wafiqotul
– sequence: 2
  givenname: Eva Yulia
  surname: Puspaningrum
  fullname: Puspaningrum, Eva Yulia
– sequence: 3
  givenname: I Gede Susrama Susrama
  surname: Mas Diyasa
  fullname: Mas Diyasa, I Gede Susrama Susrama
BookMark eNqNkUFu2zAQRYUiBZqmuUEXvIBdkiJFcek6bhMgQYsm6VYYUWOZBk0KpNxAuUouG9oO2m1XMxj892bxPxZnPngsis-MziWTTH_Zhn304Gyy8z-V5XPF9LvinFeymom65mdvu9Sl_FBcprSllHIuKiH0efGyyOj0bH1Pxg2SX-hgtMGnjR3IVxyfED25wxFDDC701oAjPyHCLp9iIuA7snJoxmgNWXmM_USWmd7vhoOFPKaD-H4_DCGO5HcOhkjuwGysxyO8DMEdIlfYR0RyBVMiC9eHaMfN7lPxfg0u4eXbvCgev60eltez2x_fb5aL25lhUumZNmuh1orWoFEwwWUlu66sSyUFKom1roEqSjvAVrWsFAJyrAIpZd1xLWh5UdycvF2AbTNEu4M4NQFsczyE2DcQR2scNowrCVppjl0lWiHyl7aSMttaVVMD2SVPrr0fYHoC5_4KGW2OhTX_CmsOhTW5sMyJE2diSCni-v-wV-ino3Y
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.51519/journalisi.v6i2.719
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2656-4882
EndPage 750
ExternalDocumentID oai_doaj_org_article_1275a9792ed64b44837b6556a5b780ca
10.51519/journalisi.v6i2.719
10_51519_journalisi_v6i2_719
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c1579-9cf47f708a9e4142565dd383754e75e898a0700daeb7b1344ae416a5558d29403
IEDL.DBID DOA
ISSN 2656-5935
2656-4882
IngestDate Fri Oct 03 12:45:17 EDT 2025
Sun Sep 07 11:01:31 EDT 2025
Tue Jul 01 01:00:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1579-9cf47f708a9e4142565dd383754e75e898a0700daeb7b1344ae416a5558d29403
OpenAccessLink https://doaj.org/article/1275a9792ed64b44837b6556a5b780ca
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_1275a9792ed64b44837b6556a5b780ca
unpaywall_primary_10_51519_journalisi_v6i2_719
crossref_primary_10_51519_journalisi_v6i2_719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-13
PublicationDateYYYYMMDD 2024-06-13
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-13
  day: 13
PublicationDecade 2020
PublicationTitle Journal of information systems and informatics (Palembang.Online)
PublicationYear 2024
Publisher Informatics Department, Faculty of Computer Science Bina Darma University
Publisher_xml – name: Informatics Department, Faculty of Computer Science Bina Darma University
SSID ssj0002246449
ssib051604907
Score 2.2614088
Snippet Nowadays, electricity is increasing rapidly. This increase is caused by several factors, one of which is meteorological factors. Meteorological parameters have...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 729
SubjectTerms cdd
electricity
meteorological parameters
svm crisp-dm
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBbFObQ59F3qtA1z6HW3-9BjdXQchxBwyKEu6WkZreTExF0bx25I_kr-bEbateNSCulhQSzSrhiNRt-gmW8Y-yqkSsc84-Tk2CLiFe10IzwRcmIt2rQw6Hzu8PBUHo_4ybk4f-TZ3rq-p4M21d9aiZIPH_-WkyxWnuJzRwoC3h22Mzo96_305eMIlUSkitm6LXQumkS5f37mj4Mo8PXvsuereo63Nzidbh0yR6-a7O3rwE3oY0uu4tXSxNXd38yNT5n_a_ayBZvQa7TjDXvm6rdsd4uC8B27D6wkd9QGgoKwiY27nMzhoInhgiEB69libSXhDH1Al2flBKwtDEIhnUkFg5BGCP2Q1BksEYSABPCVQwnlw49wQwDDEL_pwuD-zBcNuoBDR36_g0O8vYbe9GK2mCwvf71no6PB9_5x1BZsiKpUKB3paszVWCUFasdTsgZSWOtdYMGdEq7QBZKFSSw6o0yac47UTaKnHLOZ5kn-gXXqWe0-MkhpBHlbuaCHa5TIJRkjX2O1QrRy3GXRevXKecPLUZI_E4RePgq99EIvSehdduCXeNPXs2qHF7RaZbtJS092j1rpzFnJDfdk-0YKQTM0qkgq7LJ4oyBP-uve_w74xF5khJp8LFqaf2ad5WLlvhDqWZr9VtsfACu4A3w
  priority: 102
  providerName: Unpaywall
Title Analyzing the Relationship Between Meteorological Parameters and Electric Energy Consumption Using Support Vector Machine and Cooling Degree Days Algorithm
URI http://doi.org/10.51519/journalisi.v6i2.719
https://doaj.org/article/1275a9792ed64b44837b6556a5b780ca
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2656-4882
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002246449
  issn: 2656-4882
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2656-4882
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051604907
  issn: 2656-5935
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKdGgzFH2i7iO4oascUeJDHB3HQVDAQYa6SCfhJNKJAEc2HCdB-lf6Z3tHOa62duggQBBISOB3JL-j7r4T4os2Vs5VpsjJ8UWiaprplWYh5NR79LKoMHDu8PTMnM7U1wt90Sv1xTFhnTxwN3CHLECOzroseKMqxQLoldHaoK5skdaRGqWF6zlTZElaGv6jZXenLSybpiIXzojAJNrlusujo-1cusMtbs1NM7wzTTa0LLzT26einP--eHbbrvDhHheL3h508lK82JJHGHUf_Uo8Ce1rsd-TFHwjfkWVkZ90D0TtYBfrdtWs4KiLyYIpEeXl-nHVg3PkAC1W2QRsPUxiYZymhklMC4RxTNKMKwvEAAPgSqDE2uF7PPGHaYzHDLHzeMlFgC7hOJAfH-AYH25gtLhcrpvN1fVbMTuZfBufJtsCDEkttXWJq-fKzm1aoAtK0uw22nt2abUKVofCFUgrRuoxVLaSuVJIzQgZrQufOZXm78Reu2zDewGSepD3lGu6lEODytDiwjVTa0Rv5gORPA53uep0NkryTyI85R94SoanJHgG4ogx2bVllez4gGyn3NpO-TfbGYjhDtF_euuH__HWj-J5RsyI481k_knsbda34TMxm011EI34QDydnZ2PfvwGD3331A
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBbFObQ59F3qtA1z6HW3-9BjdXQchxBwyKEu6WkZreTExF0bx25I_kr-bEbateNSCulhQSzSrhiNRt-gmW8Y-yqkSsc84-Tk2CLiFe10IzwRcmIt2rQw6Hzu8PBUHo_4ybk4f-TZ3rq-p4M21d9aiZIPH_-WkyxWnuJzRwoC3h22Mzo96_305eMIlUSkitm6LXQumkS5f37mj4Mo8PXvsuereo63Nzidbh0yR6-a7O3rwE3oY0uu4tXSxNXd38yNT5n_a_ayBZvQa7TjDXvm6rdsd4uC8B27D6wkd9QGgoKwiY27nMzhoInhgiEB69libSXhDH1Al2flBKwtDEIhnUkFg5BGCP2Q1BksEYSABPCVQwnlw49wQwDDEL_pwuD-zBcNuoBDR36_g0O8vYbe9GK2mCwvf71no6PB9_5x1BZsiKpUKB3paszVWCUFasdTsgZSWOtdYMGdEq7QBZKFSSw6o0yac47UTaKnHLOZ5kn-gXXqWe0-MkhpBHlbuaCHa5TIJRkjX2O1QrRy3GXRevXKecPLUZI_E4RePgq99EIvSehdduCXeNPXs2qHF7RaZbtJS092j1rpzFnJDfdk-0YKQTM0qkgq7LJ4oyBP-uve_w74xF5khJp8LFqaf2ad5WLlvhDqWZr9VtsfACu4A3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+Relationship+Between+Meteorological+Parameters+and+Electric+Energy+Consumption+Using+Support+Vector+Machine+and+Cooling+Degree+Days+Algorithm&rft.jtitle=Journal+of+information+systems+and+informatics+%28Palembang.Online%29&rft.au=Azizah%2C+Nabila+Wafiqotul&rft.au=Puspaningrum%2C+Eva+Yulia&rft.au=Mas+Diyasa%2C+I+Gede+Susrama+Susrama&rft.date=2024-06-13&rft.issn=2656-5935&rft.eissn=2656-4882&rft.volume=6&rft.issue=2&rft.spage=729&rft.epage=750&rft_id=info:doi/10.51519%2Fjournalisi.v6i2.719&rft.externalDBID=n%2Fa&rft.externalDocID=10_51519_journalisi_v6i2_719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2656-5935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2656-5935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2656-5935&client=summon