Artificial Neural Network-Salp-Swarm Algorithm for Stock Price Prediction

Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hyb...

Full description

Saved in:
Bibliographic Details
Published inIraqi journal of science pp. 7207 - 7219
Main Authors Mustaffa, Zuriani, Sulaiman, Mohd Herwan, Aziz, Azlan Abdul
Format Journal Article
LanguageEnglish
Published 30.12.2024
Online AccessGet full text
ISSN0067-2904
2312-1637
2312-1637
DOI10.24996/ijs.2024.65.12.34

Cover

Abstract Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hybrid prediction model that combines the salp-swarm algorithm and the artificial neural network (SSA-ANN). The SSA is used to optimize the weights and biases in the ANN, resulting in more reliable and accurate predictions. Before training, the dataset is normalized using the min-max normalization technique to reduce the influence of noise. The effectiveness of the SSA-ANN model is evaluated using the Yahoo stock price dataset. The results show that the SSA-ANN model outperforms other models when applied to normalized data. Additionally, the SSA-ANN model is compared with other two hybrid models: the ANN optimized by the Whale Optimization Algorithm (WOA-ANN) and Moth-Flame Optimizer (MOA-ANN), as well as a single model, namely the Autoregressive Integrated Moving Average (ARIMA). The study’s findings indicate that the SSA-ANN model performs better in predicting the dataset based on the evaluation criteria used.
AbstractList Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hybrid prediction model that combines the salp-swarm algorithm and the artificial neural network (SSA-ANN). The SSA is used to optimize the weights and biases in the ANN, resulting in more reliable and accurate predictions. Before training, the dataset is normalized using the min-max normalization technique to reduce the influence of noise. The effectiveness of the SSA-ANN model is evaluated using the Yahoo stock price dataset. The results show that the SSA-ANN model outperforms other models when applied to normalized data. Additionally, the SSA-ANN model is compared with other two hybrid models: the ANN optimized by the Whale Optimization Algorithm (WOA-ANN) and Moth-Flame Optimizer (MOA-ANN), as well as a single model, namely the Autoregressive Integrated Moving Average (ARIMA). The study’s findings indicate that the SSA-ANN model performs better in predicting the dataset based on the evaluation criteria used.
Author Sulaiman, Mohd Herwan
Aziz, Azlan Abdul
Mustaffa, Zuriani
Author_xml – sequence: 1
  givenname: Zuriani
  surname: Mustaffa
  fullname: Mustaffa, Zuriani
– sequence: 2
  givenname: Mohd Herwan
  orcidid: 0000-0003-2590-3807
  surname: Sulaiman
  fullname: Sulaiman, Mohd Herwan
– sequence: 3
  givenname: Azlan Abdul
  orcidid: 0000-0003-4760-8796
  surname: Aziz
  fullname: Aziz, Azlan Abdul
BookMark eNqNkEtOwzAYhC1UJErpBVjlAg5-xvGyqnhUqgCpsLYcxz-4TePKSRX19oSWAzCLmdU3i-8WTdrYeoTuKcmZ0Lp4CNsuZ4SJvJA5ZTkXV2jKOGWYFlxN0JSQQmGmibhB867bkjElIUKqKVotUh8guGCb7NUf03n6IaYd3tjmgDeDTfts0XzFFPrvfQYxZZs-ul32noLzY_s6uD7E9g5dg206P__bGfp8evxYvuD12_NquVhjR6US2IGTtS4dsdozXVVQuFI6yZmtRCUV50rXqgQuGFWgLJSMQl1yAEsIVMLyGeKX32N7sKfBNo05pLC36WQoMWchZhRifoWYQhrKDBcjxS6US7Hrkof_QD-wA2b3
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.24996/ijs.2024.65.12.34
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2312-1637
EndPage 7219
ExternalDocumentID 10.24996/ijs.2024.65.12.34
10_24996_ijs_2024_65_12_34
GroupedDBID .K5
AAYXX
ABCQX
ABDBF
ACUHS
AFWDF
ALMA_UNASSIGNED_HOLDINGS
CITATION
L7B
OK1
~02
ADTOC
UNPAY
ID FETCH-LOGICAL-c1574-cfc5d98c0a9e29bbf6c85c532ab4b573379d78f34217f7af821fd83ffa00fb4a3
IEDL.DBID UNPAY
ISSN 0067-2904
2312-1637
IngestDate Tue Aug 19 22:22:37 EDT 2025
Tue Jul 01 01:48:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1574-cfc5d98c0a9e29bbf6c85c532ab4b573379d78f34217f7af821fd83ffa00fb4a3
ORCID 0000-0003-2590-3807
0000-0003-4760-8796
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/8641/6479
PageCount 13
ParticipantIDs unpaywall_primary_10_24996_ijs_2024_65_12_34
crossref_primary_10_24996_ijs_2024_65_12_34
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-30
PublicationDateYYYYMMDD 2024-12-30
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-30
  day: 30
PublicationDecade 2020
PublicationTitle Iraqi journal of science
PublicationYear 2024
SSID ssj0000800457
Score 2.2809649
Snippet Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 7207
Title Artificial Neural Network-Salp-Swarm Algorithm for Stock Price Prediction
URI https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/8641/6479
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2312-1637
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800457
  issn: 0067-2904
  databaseCode: ABDBF
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BcoALhVJEoEU-9NAKNnbsffkYoBGtVFQpjURP1j68gTYvgiPU_vrOrg2iPRX1YsvySF7vjGe-We98A_A2UVZ6ZEG4MRlBL6lJbiwjQhqrMx8USl-c_PmSX4zopyt2tQaDx1qY73fdFVry-Nqqutz85jYOxIGeLSIu8X7czGlsPZ38XNlYctqLORX5OrQ5Q0zegvbo8kv_W3DD6AnSPPQRRCyTEgQgoq6ewcwj5-GJKQ6qy5lfGMzoHxFqYzVbqJ_3ajJ5EnYGL2D8MOB6t8mP7qrSXfPrLy7H_3-jbdhqkGnUr4V2YK2cvYSd5tu_i941BNXvd-Gjl6mZJyJP7hFOYTc5GarJggzv1XIa9Sfj-fKmup5GiIujYYWONwpN5vHo_w55i3gFo8GHr2cXpGnJQEyPCUqMM8zm0iQqL9Nca8eNZIZlqdJUe2pFkVshXUYx03FCOZn2nJWZcypJnKYq24PWbD4r9yGSjAtfB6tN6dteW1WmhgqJKZWyTKukA8cPaigWNfNGgRlLUFqBk1Z4pRWcFb20yGgHTh419Q_iB88TP4RNfx0IHpPX0KqWq_INgpFKH0G7f3p-OjhqLO43_aTe0Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGgvtFAQr1Y-9ACiGzv2vnyMUCNAAlUKkejJ2oc3AUISgiNUfj2za4NoTyAutiyP5PXOeOab9c43AD8SZaVHFoQbkxH0kprkxjIipLE680Gh9MXJp2f8aEBPLtjFEvSea2Gu7toLtOThyKq63PzyNg7EgZ4tIi7xftzMaWw9nfxU2Vhy2ok5FfkHWOYMMXkLlgdnv7t_ghtGT5DmoY8gYpmUIAARdfUMZh45D09McVBtzvzCYEb_iVAfF5OZ-nuvxuMXYaf3GYZPA653m1y3F5Vum4f_uBzf_0ZfYKVBplG3FlqFpXKyBqvNt38X7TUE1ftf4djL1MwTkSf3CKewm5z01XhG-vdqfhN1x8Pp_LIa3USIi6N-hY43Ck3m8ej_DnmLWIdB79f54RFpWjIQ02GCEuMMs7k0icrLNNfacSOZYVmqNNWeWlHkVkiXUcx0nFBOph1nZeacShKnqco2oDWZTspNiCTjwtfBalP6ttdWlamhQmJKpSzTKtmCgyc1FLOaeaPAjCUorcBJK7zSCs6KTlpkdAt-PmvqFeLbbxPfgU_-OhA8JrvQquaL8huCkUp_byztEQ9R3V8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Salp-Swarm+Algorithm+for+Stock+Price+Prediction&rft.jtitle=Iraqi+journal+of+science&rft.au=Mustaffa%2C+Zuriani&rft.au=Sulaiman%2C+Mohd+Herwan&rft.au=Aziz%2C+Azlan+Abdul&rft.date=2024-12-30&rft.issn=0067-2904&rft.eissn=2312-1637&rft.spage=7207&rft.epage=7219&rft_id=info:doi/10.24996%2Fijs.2024.65.12.34&rft.externalDBID=n%2Fa&rft.externalDocID=10_24996_ijs_2024_65_12_34
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-2904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-2904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-2904&client=summon