Artificial Neural Network-Salp-Swarm Algorithm for Stock Price Prediction
Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hyb...
Saved in:
| Published in | Iraqi journal of science pp. 7207 - 7219 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
30.12.2024
|
| Online Access | Get full text |
| ISSN | 0067-2904 2312-1637 2312-1637 |
| DOI | 10.24996/ijs.2024.65.12.34 |
Cover
| Abstract | Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hybrid prediction model that combines the salp-swarm algorithm and the artificial neural network (SSA-ANN). The SSA is used to optimize the weights and biases in the ANN, resulting in more reliable and accurate predictions. Before training, the dataset is normalized using the min-max normalization technique to reduce the influence of noise. The effectiveness of the SSA-ANN model is evaluated using the Yahoo stock price dataset. The results show that the SSA-ANN model outperforms other models when applied to normalized data. Additionally, the SSA-ANN model is compared with other two hybrid models: the ANN optimized by the Whale Optimization Algorithm (WOA-ANN) and Moth-Flame Optimizer (MOA-ANN), as well as a single model, namely the Autoregressive Integrated Moving Average (ARIMA). The study’s findings indicate that the SSA-ANN model performs better in predicting the dataset based on the evaluation criteria used. |
|---|---|
| AbstractList | Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex patterns and high volatility, making the generation of accurate predictions difficult. To address these challenges, this study proposes a hybrid prediction model that combines the salp-swarm algorithm and the artificial neural network (SSA-ANN). The SSA is used to optimize the weights and biases in the ANN, resulting in more reliable and accurate predictions. Before training, the dataset is normalized using the min-max normalization technique to reduce the influence of noise. The effectiveness of the SSA-ANN model is evaluated using the Yahoo stock price dataset. The results show that the SSA-ANN model outperforms other models when applied to normalized data. Additionally, the SSA-ANN model is compared with other two hybrid models: the ANN optimized by the Whale Optimization Algorithm (WOA-ANN) and Moth-Flame Optimizer (MOA-ANN), as well as a single model, namely the Autoregressive Integrated Moving Average (ARIMA). The study’s findings indicate that the SSA-ANN model performs better in predicting the dataset based on the evaluation criteria used. |
| Author | Sulaiman, Mohd Herwan Aziz, Azlan Abdul Mustaffa, Zuriani |
| Author_xml | – sequence: 1 givenname: Zuriani surname: Mustaffa fullname: Mustaffa, Zuriani – sequence: 2 givenname: Mohd Herwan orcidid: 0000-0003-2590-3807 surname: Sulaiman fullname: Sulaiman, Mohd Herwan – sequence: 3 givenname: Azlan Abdul orcidid: 0000-0003-4760-8796 surname: Aziz fullname: Aziz, Azlan Abdul |
| BookMark | eNqNkEtOwzAYhC1UJErpBVjlAg5-xvGyqnhUqgCpsLYcxz-4TePKSRX19oSWAzCLmdU3i-8WTdrYeoTuKcmZ0Lp4CNsuZ4SJvJA5ZTkXV2jKOGWYFlxN0JSQQmGmibhB867bkjElIUKqKVotUh8guGCb7NUf03n6IaYd3tjmgDeDTfts0XzFFPrvfQYxZZs-ul32noLzY_s6uD7E9g5dg206P__bGfp8evxYvuD12_NquVhjR6US2IGTtS4dsdozXVVQuFI6yZmtRCUV50rXqgQuGFWgLJSMQl1yAEsIVMLyGeKX32N7sKfBNo05pLC36WQoMWchZhRifoWYQhrKDBcjxS6US7Hrkof_QD-wA2b3 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.24996/ijs.2024.65.12.34 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2312-1637 |
| EndPage | 7219 |
| ExternalDocumentID | 10.24996/ijs.2024.65.12.34 10_24996_ijs_2024_65_12_34 |
| GroupedDBID | .K5 AAYXX ABCQX ABDBF ACUHS AFWDF ALMA_UNASSIGNED_HOLDINGS CITATION L7B OK1 ~02 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1574-cfc5d98c0a9e29bbf6c85c532ab4b573379d78f34217f7af821fd83ffa00fb4a3 |
| IEDL.DBID | UNPAY |
| ISSN | 0067-2904 2312-1637 |
| IngestDate | Tue Aug 19 22:22:37 EDT 2025 Tue Jul 01 01:48:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1574-cfc5d98c0a9e29bbf6c85c532ab4b573379d78f34217f7af821fd83ffa00fb4a3 |
| ORCID | 0000-0003-2590-3807 0000-0003-4760-8796 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/8641/6479 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_24996_ijs_2024_65_12_34 crossref_primary_10_24996_ijs_2024_65_12_34 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-30 |
| PublicationDateYYYYMMDD | 2024-12-30 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Iraqi journal of science |
| PublicationYear | 2024 |
| SSID | ssj0000800457 |
| Score | 2.2809649 |
| Snippet | Predicting stock prices is a challenging task due to the numerous factors that impact them. The dataset used for analyzing stock prices often displays complex... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 7207 |
| Title | Artificial Neural Network-Salp-Swarm Algorithm for Stock Price Prediction |
| URI | https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/8641/6479 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2312-1637 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800457 issn: 0067-2904 databaseCode: ABDBF dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BcoALhVJEoEU-9NAKNnbsffkYoBGtVFQpjURP1j68gTYvgiPU_vrOrg2iPRX1YsvySF7vjGe-We98A_A2UVZ6ZEG4MRlBL6lJbiwjQhqrMx8USl-c_PmSX4zopyt2tQaDx1qY73fdFVry-Nqqutz85jYOxIGeLSIu8X7czGlsPZ38XNlYctqLORX5OrQ5Q0zegvbo8kv_W3DD6AnSPPQRRCyTEgQgoq6ewcwj5-GJKQ6qy5lfGMzoHxFqYzVbqJ_3ajJ5EnYGL2D8MOB6t8mP7qrSXfPrLy7H_3-jbdhqkGnUr4V2YK2cvYSd5tu_i941BNXvd-Gjl6mZJyJP7hFOYTc5GarJggzv1XIa9Sfj-fKmup5GiIujYYWONwpN5vHo_w55i3gFo8GHr2cXpGnJQEyPCUqMM8zm0iQqL9Nca8eNZIZlqdJUe2pFkVshXUYx03FCOZn2nJWZcypJnKYq24PWbD4r9yGSjAtfB6tN6dteW1WmhgqJKZWyTKukA8cPaigWNfNGgRlLUFqBk1Z4pRWcFb20yGgHTh419Q_iB88TP4RNfx0IHpPX0KqWq_INgpFKH0G7f3p-OjhqLO43_aTe0Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGgvtFAQr1Y-9ACiGzv2vnyMUCNAAlUKkejJ2oc3AUISgiNUfj2za4NoTyAutiyP5PXOeOab9c43AD8SZaVHFoQbkxH0kprkxjIipLE680Gh9MXJp2f8aEBPLtjFEvSea2Gu7toLtOThyKq63PzyNg7EgZ4tIi7xftzMaWw9nfxU2Vhy2ok5FfkHWOYMMXkLlgdnv7t_ghtGT5DmoY8gYpmUIAARdfUMZh45D09McVBtzvzCYEb_iVAfF5OZ-nuvxuMXYaf3GYZPA653m1y3F5Vum4f_uBzf_0ZfYKVBplG3FlqFpXKyBqvNt38X7TUE1ftf4djL1MwTkSf3CKewm5z01XhG-vdqfhN1x8Pp_LIa3USIi6N-hY43Ck3m8ej_DnmLWIdB79f54RFpWjIQ02GCEuMMs7k0icrLNNfacSOZYVmqNNWeWlHkVkiXUcx0nFBOph1nZeacShKnqco2oDWZTspNiCTjwtfBalP6ttdWlamhQmJKpSzTKtmCgyc1FLOaeaPAjCUorcBJK7zSCs6KTlpkdAt-PmvqFeLbbxPfgU_-OhA8JrvQquaL8huCkUp_byztEQ9R3V8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Salp-Swarm+Algorithm+for+Stock+Price+Prediction&rft.jtitle=Iraqi+journal+of+science&rft.au=Mustaffa%2C+Zuriani&rft.au=Sulaiman%2C+Mohd+Herwan&rft.au=Aziz%2C+Azlan+Abdul&rft.date=2024-12-30&rft.issn=0067-2904&rft.eissn=2312-1637&rft.spage=7207&rft.epage=7219&rft_id=info:doi/10.24996%2Fijs.2024.65.12.34&rft.externalDBID=n%2Fa&rft.externalDocID=10_24996_ijs_2024_65_12_34 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-2904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-2904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-2904&client=summon |