On optimal controls in coefficients for ill-posed elliptic Neumann boundary value problem with anisotropic p-Laplace operator

We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unb...

Full description

Saved in:
Bibliographic Details
Published inNonlinear differential equations and applications Vol. 32; no. 3
Main Authors Kogut, Peter, Kupenko, Olha
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.05.2025
Subjects
Online AccessGet full text
ISSN1021-9722
1420-9004
DOI10.1007/s00030-025-01044-8

Cover

Abstract We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unbounded skew-symmetric matrix Askew∈Lq(Ω;SskewN). We show that, in spite of unboundedness of the differential operator, the considered Neumann problem admits at least one weak solution and the corresponding OCP is well-possed and solvable.
AbstractList We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unbounded skew-symmetric matrix Askew∈Lq(Ω;SskewN). We show that, in spite of unboundedness of the differential operator, the considered Neumann problem admits at least one weak solution and the corresponding OCP is well-possed and solvable.
ArticleNumber 46
Author Kogut, Peter
Kupenko, Olha
Author_xml – sequence: 1
  givenname: Peter
  surname: Kogut
  fullname: Kogut, Peter
– sequence: 2
  givenname: Olha
  surname: Kupenko
  fullname: Kupenko, Olha
BookMark eNotkDtPxDAQhC0EEnDwB6gsURvWjzxcIsRLOnEN1JbjbEROPjvYCYiC_47hqHaK2Znd75QchhiQkAsOVxyguc4AIIGBqBhwUIq1B-SEKwFMA6jDokFwphshjslpzlsA3tRSn5DvTaBxmsed9dTFMKfoMx1D0TgMoxsxzJkOMdHRezbFjD1F78ey4egzLjsbAu3iEnqbvuiH9QvSKcXO445-jvMbtWHMsaROxT-xtZ28dVgaMdk5pjNyNFif8fx_rsjr_d3L7SNbbx6ebm_WzPGqnlkHGsH12HeVc72sbefsAL0QVTWUP5RE3VS91krXXPFW1UMtse1Q9LKthJByRS73ueW29wXzbLZxSaFUGsnbSjdSq1-X2LtcijknHMyUCpj0ZTiYX8xmj9kUzOYPs2nlD-w8dDc
Cites_doi 10.1007/978-3-642-87722-3
10.4171/zaa/1447
10.1007/BF02465783
10.1007/s11587-014-0202-z
10.1016/0021-8928(64)90165-0
10.1023/B:FAIA.0000042802.86050.5e
10.1016/j.crma.2009.05.008
10.1007/s10957-011-9840-4
10.3934/dcds.2014.34.2105
10.1007/978-0-8176-8149-4
10.3934/mcrf.2015.5.73
10.1007/s13163-010-0030-y
10.1007/978-3-0348-0513-1
10.1093/oso/9780198502456.001.0001
10.1006/jfan.1999.3556
10.1007/BF02505902
10.1016/j.anihpc.2009.04.005
10.1515/9783110668520
10.1137/100815761
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s00030-025-01044-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9004
ExternalDocumentID 10_1007_s00030_025_01044_8
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c156t-b09e0cdedb5ccd36abcaf0d2255f17643e975d99496141846f63e8be2d3852233
ISSN 1021-9722
IngestDate Thu Sep 25 00:43:00 EDT 2025
Sun Jul 06 05:10:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c156t-b09e0cdedb5ccd36abcaf0d2255f17643e975d99496141846f63e8be2d3852233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3185973943
PQPubID 2044004
ParticipantIDs proquest_journals_3185973943
crossref_primary_10_1007_s00030_025_01044_8
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Nonlinear differential equations and applications
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References M Chicco (1044_CR4) 2000; 178
JL Vazquez (1044_CR28) 2000; 173
1044_CR11
PI Kogut (1044_CR14) 2012; 31
VV Zhikov (1044_CR27) 2004; 38
P Kogut (1044_CR10) 2022; 30
L Ambrosio (1044_CR1) 2000
C D’Apice (1044_CR5) 2012; 50
T Radice (1044_CR22) 2014; 63
T Roubíček (1044_CR25) 2013
G Alessandrini (1044_CR2) 2001; 21
PI Kogut (1044_CR9) 2014; 34
T Horsin (1044_CR7) 2015; 5
G Buttazzo (1044_CR3) 2011; 24
1044_CR12
T Jin (1044_CR17) 2009; 347
F Punzo (1044_CR20) 2009; 26
T Horsin (1044_CR8) 2016; 98
F Murat (1044_CR18) 1971; 273
VV Zhikov (1044_CR26) 1997; 31
J Serrin (1044_CR24) 1964; 3
KA Lurie (1044_CR16) 1964; 28
T Radice (1044_CR21) 2010; 23
O Pironneau (1044_CR19) 1984
C D’Apice (1044_CR6) 2019; 48
J-L Lions (1044_CR15) 1969
MV Safonov (1044_CR23) 2010; 229
PI Kogut (1044_CR13) 2011; 150
References_xml – volume-title: Optimal Shape Design for Elliptic Systems
  year: 1984
  ident: 1044_CR19
  doi: 10.1007/978-3-642-87722-3
– volume: 31
  start-page: 31
  issue: 1
  year: 2012
  ident: 1044_CR14
  publication-title: Zeitschrift für Analysis und ihre Anwendungen
  doi: 10.4171/zaa/1447
– volume-title: Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaire
  year: 1969
  ident: 1044_CR15
– volume: 31
  start-page: 156
  issue: 3
  year: 1997
  ident: 1044_CR26
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF02465783
– volume: 21
  start-page: 249
  year: 2001
  ident: 1044_CR2
  publication-title: Annal. Acad. Scient. Fen. Mat.
– volume: 98
  start-page: 155
  year: 2016
  ident: 1044_CR8
  publication-title: Asymptot. Anal.
– volume: 63
  start-page: 355
  year: 2014
  ident: 1044_CR22
  publication-title: Ricerche Mat.
  doi: 10.1007/s11587-014-0202-z
– volume: 28
  start-page: 316
  year: 1964
  ident: 1044_CR16
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(64)90165-0
– volume: 38
  start-page: 173
  issue: 3
  year: 2004
  ident: 1044_CR27
  publication-title: Funct. Anal. Appl.
  doi: 10.1023/B:FAIA.0000042802.86050.5e
– volume: 347
  start-page: 773
  issue: 13–14
  year: 2009
  ident: 1044_CR17
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2009.05.008
– volume: 150
  start-page: 205
  issue: 2
  year: 2011
  ident: 1044_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9840-4
– volume: 30
  start-page: 42
  issue: 1
  year: 2022
  ident: 1044_CR10
  publication-title: J. Optim. Differ. Equ. Appl. (JODEA)
– volume: 229
  start-page: 211
  issue: 2
  year: 2010
  ident: 1044_CR23
  publication-title: Nonlinear Partial Diff. Equa. Relat. Topics
– volume: 34
  start-page: 2105
  issue: 5
  year: 2014
  ident: 1044_CR9
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2014.34.2105
– ident: 1044_CR12
  doi: 10.1007/978-0-8176-8149-4
– volume: 5
  start-page: 73
  issue: 1
  year: 2015
  ident: 1044_CR7
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2015.5.73
– volume: 48
  start-page: 31
  issue: 1
  year: 2019
  ident: 1044_CR6
  publication-title: Control. Cybern.
– volume: 273
  start-page: 708
  year: 1971
  ident: 1044_CR18
  publication-title: C. R. Math. Acad. Sci. Paris Sér. A
– volume: 24
  start-page: 83
  year: 2011
  ident: 1044_CR3
  publication-title: Revista Matematica Complutense
  doi: 10.1007/s13163-010-0030-y
– volume-title: Nonlinear Partial Differential Equations with Applications
  year: 2013
  ident: 1044_CR25
  doi: 10.1007/978-3-0348-0513-1
– volume-title: Functions of Bounded Variation and Free Discontinuity Problems
  year: 2000
  ident: 1044_CR1
  doi: 10.1093/oso/9780198502456.001.0001
– volume: 173
  start-page: 103
  year: 2000
  ident: 1044_CR28
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1999.3556
– volume: 178
  start-page: 325
  year: 2000
  ident: 1044_CR4
  publication-title: Annali di Matematica
  doi: 10.1007/BF02505902
– volume: 23
  start-page: 989
  issue: 9–10
  year: 2010
  ident: 1044_CR21
  publication-title: Diff. Integr. Equa.
– volume: 3
  start-page: 385
  issue: 18
  year: 1964
  ident: 1044_CR24
  publication-title: Ann. Scuola Norm. Sup. Pisa
– volume: 26
  start-page: 2001
  year: 2009
  ident: 1044_CR20
  publication-title: Ann. I.H. Poincaré
  doi: 10.1016/j.anihpc.2009.04.005
– ident: 1044_CR11
  doi: 10.1515/9783110668520
– volume: 50
  start-page: 1174
  issue: 3
  year: 2012
  ident: 1044_CR5
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/100815761
SSID ssj0017639
Score 2.3588111
Snippet We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Boundary conditions
Boundary value problems
Differential equations
Laplace equation
Laplace transforms
Neumann problem
Operators (mathematics)
Optimal control
Title On optimal controls in coefficients for ill-posed elliptic Neumann boundary value problem with anisotropic p-Laplace operator
URI https://www.proquest.com/docview/3185973943
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFuQDt8qrUOfl4wqBVsC2l620tyh-QUVJsk162BX8d8YTO81SkFguURVVk9bzZfyNPfOZkDcitrnJbcpKkxsWl5YzEZmIqZkSVhirtHbNyWfz9HQZf7xILiaTH-Pukk4eq-s_9pX8j1fhHvjVdcnewrODUbgBn8G_cAUPw_WffLwArgev_HfU-MCSc6xuVbVBYQhsXnNlhKv1mjV1C9zSyW82TqN1btzqfTWVeKzS5mrqVL9d0xSeLxNa3lZtDVYb-H7DPpdYvwVPNLg1P6a1815wo9wMB650biXeXG59pR1Kwo72yoc4X3_Z7tcJf9o2pvqGi7iL9ddyvDIxS3Z1gD6YYvlH1vcdH5v-Xgzpqoj6I4dDBN6tcIYEfS-w97UcLaZwDJ8FeWTM8t00Frbuf5vdhprDQZ8ZbRRgo0AbRX6H3J1lwLwgGi5nJ8MeFERegXvl_l_4litsvNz7HTdpzc1ZHanK-UPywOcY9KQHzCMyMdVjcv9sEOhtn5Cfi4p66NAAHbqq6Bg6FKBDB-jQAB3qoUMDdChCh3roUAcdOoIOHaBDA3SekuWH9-fvTpk_iYMpyO87JiNhIqWNlolSmqelVKWNNMwFiYVxirkRWaKFiAWwvbdAaW3KTS7NTPMcCD7nz8hBVVfmOaFCR5xLy0stgUDJSHKh8qyMY52Z1HJ-SKZhIIumF1wp_u66Q3IUxrrwL2ZbOEEAkXER8xe3MvaS3NvB-IgcdJuteQWUs5OvERm_AMMuhRE
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+optimal+controls+in+coefficients+for+ill-posed+elliptic+Neumann+boundary+value+problem+with+anisotropic+p-Laplace+operator&rft.jtitle=Nonlinear+differential+equations+and+applications&rft.au=Kogut%2C+Peter&rft.au=Kupenko%2C+Olha&rft.date=2025-05-01&rft.issn=1021-9722&rft.eissn=1420-9004&rft.volume=32&rft.issue=3&rft_id=info:doi/10.1007%2Fs00030-025-01044-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00030_025_01044_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1021-9722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1021-9722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1021-9722&client=summon