On optimal controls in coefficients for ill-posed elliptic Neumann boundary value problem with anisotropic p-Laplace operator
We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unb...
Saved in:
Published in | Nonlinear differential equations and applications Vol. 32; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1021-9722 1420-9004 |
DOI | 10.1007/s00030-025-01044-8 |
Cover
Abstract | We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unbounded skew-symmetric matrix Askew∈Lq(Ω;SskewN). We show that, in spite of unboundedness of the differential operator, the considered Neumann problem admits at least one weak solution and the corresponding OCP is well-possed and solvable. |
---|---|
AbstractList | We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The matrix-valued coefficients Asym∈L∞(Ω;SsymN) we take as controls and in the linear part of differential operator we consider coefficients to be unbounded skew-symmetric matrix Askew∈Lq(Ω;SskewN). We show that, in spite of unboundedness of the differential operator, the considered Neumann problem admits at least one weak solution and the corresponding OCP is well-possed and solvable. |
ArticleNumber | 46 |
Author | Kogut, Peter Kupenko, Olha |
Author_xml | – sequence: 1 givenname: Peter surname: Kogut fullname: Kogut, Peter – sequence: 2 givenname: Olha surname: Kupenko fullname: Kupenko, Olha |
BookMark | eNotkDtPxDAQhC0EEnDwB6gsURvWjzxcIsRLOnEN1JbjbEROPjvYCYiC_47hqHaK2Znd75QchhiQkAsOVxyguc4AIIGBqBhwUIq1B-SEKwFMA6jDokFwphshjslpzlsA3tRSn5DvTaBxmsed9dTFMKfoMx1D0TgMoxsxzJkOMdHRezbFjD1F78ey4egzLjsbAu3iEnqbvuiH9QvSKcXO445-jvMbtWHMsaROxT-xtZ28dVgaMdk5pjNyNFif8fx_rsjr_d3L7SNbbx6ebm_WzPGqnlkHGsH12HeVc72sbefsAL0QVTWUP5RE3VS91krXXPFW1UMtse1Q9LKthJByRS73ueW29wXzbLZxSaFUGsnbSjdSq1-X2LtcijknHMyUCpj0ZTiYX8xmj9kUzOYPs2nlD-w8dDc |
Cites_doi | 10.1007/978-3-642-87722-3 10.4171/zaa/1447 10.1007/BF02465783 10.1007/s11587-014-0202-z 10.1016/0021-8928(64)90165-0 10.1023/B:FAIA.0000042802.86050.5e 10.1016/j.crma.2009.05.008 10.1007/s10957-011-9840-4 10.3934/dcds.2014.34.2105 10.1007/978-0-8176-8149-4 10.3934/mcrf.2015.5.73 10.1007/s13163-010-0030-y 10.1007/978-3-0348-0513-1 10.1093/oso/9780198502456.001.0001 10.1006/jfan.1999.3556 10.1007/BF02505902 10.1016/j.anihpc.2009.04.005 10.1515/9783110668520 10.1137/100815761 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00030-025-01044-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-9004 |
ExternalDocumentID | 10_1007_s00030_025_01044_8 |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c156t-b09e0cdedb5ccd36abcaf0d2255f17643e975d99496141846f63e8be2d3852233 |
ISSN | 1021-9722 |
IngestDate | Thu Sep 25 00:43:00 EDT 2025 Sun Jul 06 05:10:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c156t-b09e0cdedb5ccd36abcaf0d2255f17643e975d99496141846f63e8be2d3852233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3185973943 |
PQPubID | 2044004 |
ParticipantIDs | proquest_journals_3185973943 crossref_primary_10_1007_s00030_025_01044_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Nonlinear differential equations and applications |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | M Chicco (1044_CR4) 2000; 178 JL Vazquez (1044_CR28) 2000; 173 1044_CR11 PI Kogut (1044_CR14) 2012; 31 VV Zhikov (1044_CR27) 2004; 38 P Kogut (1044_CR10) 2022; 30 L Ambrosio (1044_CR1) 2000 C D’Apice (1044_CR5) 2012; 50 T Radice (1044_CR22) 2014; 63 T Roubíček (1044_CR25) 2013 G Alessandrini (1044_CR2) 2001; 21 PI Kogut (1044_CR9) 2014; 34 T Horsin (1044_CR7) 2015; 5 G Buttazzo (1044_CR3) 2011; 24 1044_CR12 T Jin (1044_CR17) 2009; 347 F Punzo (1044_CR20) 2009; 26 T Horsin (1044_CR8) 2016; 98 F Murat (1044_CR18) 1971; 273 VV Zhikov (1044_CR26) 1997; 31 J Serrin (1044_CR24) 1964; 3 KA Lurie (1044_CR16) 1964; 28 T Radice (1044_CR21) 2010; 23 O Pironneau (1044_CR19) 1984 C D’Apice (1044_CR6) 2019; 48 J-L Lions (1044_CR15) 1969 MV Safonov (1044_CR23) 2010; 229 PI Kogut (1044_CR13) 2011; 150 |
References_xml | – volume-title: Optimal Shape Design for Elliptic Systems year: 1984 ident: 1044_CR19 doi: 10.1007/978-3-642-87722-3 – volume: 31 start-page: 31 issue: 1 year: 2012 ident: 1044_CR14 publication-title: Zeitschrift für Analysis und ihre Anwendungen doi: 10.4171/zaa/1447 – volume-title: Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaire year: 1969 ident: 1044_CR15 – volume: 31 start-page: 156 issue: 3 year: 1997 ident: 1044_CR26 publication-title: Funct. Anal. Appl. doi: 10.1007/BF02465783 – volume: 21 start-page: 249 year: 2001 ident: 1044_CR2 publication-title: Annal. Acad. Scient. Fen. Mat. – volume: 98 start-page: 155 year: 2016 ident: 1044_CR8 publication-title: Asymptot. Anal. – volume: 63 start-page: 355 year: 2014 ident: 1044_CR22 publication-title: Ricerche Mat. doi: 10.1007/s11587-014-0202-z – volume: 28 start-page: 316 year: 1964 ident: 1044_CR16 publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(64)90165-0 – volume: 38 start-page: 173 issue: 3 year: 2004 ident: 1044_CR27 publication-title: Funct. Anal. Appl. doi: 10.1023/B:FAIA.0000042802.86050.5e – volume: 347 start-page: 773 issue: 13–14 year: 2009 ident: 1044_CR17 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2009.05.008 – volume: 150 start-page: 205 issue: 2 year: 2011 ident: 1044_CR13 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9840-4 – volume: 30 start-page: 42 issue: 1 year: 2022 ident: 1044_CR10 publication-title: J. Optim. Differ. Equ. Appl. (JODEA) – volume: 229 start-page: 211 issue: 2 year: 2010 ident: 1044_CR23 publication-title: Nonlinear Partial Diff. Equa. Relat. Topics – volume: 34 start-page: 2105 issue: 5 year: 2014 ident: 1044_CR9 publication-title: Discrete Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2014.34.2105 – ident: 1044_CR12 doi: 10.1007/978-0-8176-8149-4 – volume: 5 start-page: 73 issue: 1 year: 2015 ident: 1044_CR7 publication-title: Math. Control Relat. Fields doi: 10.3934/mcrf.2015.5.73 – volume: 48 start-page: 31 issue: 1 year: 2019 ident: 1044_CR6 publication-title: Control. Cybern. – volume: 273 start-page: 708 year: 1971 ident: 1044_CR18 publication-title: C. R. Math. Acad. Sci. Paris Sér. A – volume: 24 start-page: 83 year: 2011 ident: 1044_CR3 publication-title: Revista Matematica Complutense doi: 10.1007/s13163-010-0030-y – volume-title: Nonlinear Partial Differential Equations with Applications year: 2013 ident: 1044_CR25 doi: 10.1007/978-3-0348-0513-1 – volume-title: Functions of Bounded Variation and Free Discontinuity Problems year: 2000 ident: 1044_CR1 doi: 10.1093/oso/9780198502456.001.0001 – volume: 173 start-page: 103 year: 2000 ident: 1044_CR28 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1999.3556 – volume: 178 start-page: 325 year: 2000 ident: 1044_CR4 publication-title: Annali di Matematica doi: 10.1007/BF02505902 – volume: 23 start-page: 989 issue: 9–10 year: 2010 ident: 1044_CR21 publication-title: Diff. Integr. Equa. – volume: 3 start-page: 385 issue: 18 year: 1964 ident: 1044_CR24 publication-title: Ann. Scuola Norm. Sup. Pisa – volume: 26 start-page: 2001 year: 2009 ident: 1044_CR20 publication-title: Ann. I.H. Poincaré doi: 10.1016/j.anihpc.2009.04.005 – ident: 1044_CR11 doi: 10.1515/9783110668520 – volume: 50 start-page: 1174 issue: 3 year: 2012 ident: 1044_CR5 publication-title: SIAM J. Control Optim. doi: 10.1137/100815761 |
SSID | ssj0017639 |
Score | 2.3588111 |
Snippet | We study an optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control constraints and Neumann boundary conditions. The... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Boundary conditions Boundary value problems Differential equations Laplace equation Laplace transforms Neumann problem Operators (mathematics) Optimal control |
Title | On optimal controls in coefficients for ill-posed elliptic Neumann boundary value problem with anisotropic p-Laplace operator |
URI | https://www.proquest.com/docview/3185973943 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFuQDt8qrUOfl4wqBVsC2l620tyh-QUVJsk162BX8d8YTO81SkFguURVVk9bzZfyNPfOZkDcitrnJbcpKkxsWl5YzEZmIqZkSVhirtHbNyWfz9HQZf7xILiaTH-Pukk4eq-s_9pX8j1fhHvjVdcnewrODUbgBn8G_cAUPw_WffLwArgev_HfU-MCSc6xuVbVBYQhsXnNlhKv1mjV1C9zSyW82TqN1btzqfTWVeKzS5mrqVL9d0xSeLxNa3lZtDVYb-H7DPpdYvwVPNLg1P6a1815wo9wMB650biXeXG59pR1Kwo72yoc4X3_Z7tcJf9o2pvqGi7iL9ddyvDIxS3Z1gD6YYvlH1vcdH5v-Xgzpqoj6I4dDBN6tcIYEfS-w97UcLaZwDJ8FeWTM8t00Frbuf5vdhprDQZ8ZbRRgo0AbRX6H3J1lwLwgGi5nJ8MeFERegXvl_l_4litsvNz7HTdpzc1ZHanK-UPywOcY9KQHzCMyMdVjcv9sEOhtn5Cfi4p66NAAHbqq6Bg6FKBDB-jQAB3qoUMDdChCh3roUAcdOoIOHaBDA3SekuWH9-fvTpk_iYMpyO87JiNhIqWNlolSmqelVKWNNMwFiYVxirkRWaKFiAWwvbdAaW3KTS7NTPMcCD7nz8hBVVfmOaFCR5xLy0stgUDJSHKh8qyMY52Z1HJ-SKZhIIumF1wp_u66Q3IUxrrwL2ZbOEEAkXER8xe3MvaS3NvB-IgcdJuteQWUs5OvERm_AMMuhRE |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+optimal+controls+in+coefficients+for+ill-posed+elliptic+Neumann+boundary+value+problem+with+anisotropic+p-Laplace+operator&rft.jtitle=Nonlinear+differential+equations+and+applications&rft.au=Kogut%2C+Peter&rft.au=Kupenko%2C+Olha&rft.date=2025-05-01&rft.issn=1021-9722&rft.eissn=1420-9004&rft.volume=32&rft.issue=3&rft_id=info:doi/10.1007%2Fs00030-025-01044-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00030_025_01044_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1021-9722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1021-9722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1021-9722&client=summon |