LMI-based robust composite position control of a knee rehabilitation exoskeleton robot subject to motion constraints
This paper presents a robust control strategy for the position control of a knee rehabilitation exoskeleton. The proposed approach combines a linear state-feedback controller with a nonlinear control law to address the system’s nonlinear dynamics, including challenges like parameter uncertainties, e...
Saved in:
| Published in | International journal of dynamics and control Vol. 13; no. 3; p. 115 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Springer Nature B.V
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2195-268X 2195-2698 |
| DOI | 10.1007/s40435-025-01623-8 |
Cover
| Abstract | This paper presents a robust control strategy for the position control of a knee rehabilitation exoskeleton. The proposed approach combines a linear state-feedback controller with a nonlinear control law to address the system’s nonlinear dynamics, including challenges like parameter uncertainties, external disturbances, friction, and motion constraints. A quadratic Lyapunov function is used to derive linear matrix inequality (LMI) conditions for calculating the controller’s feedback gain. These conditions are established using advanced mathematical tools such as the matrix inversion lemma, Schur complement, and the S-procedure. The LMI-based design assumes that nonlinear functions are bounded by linear constraints. The effectiveness and robustness of the controller are demonstrated through numerical simulations, which show stable knee-joint position control, even under disturbances and uncertainties. A comparative analysis with an existing control method highlights the advantages of the proposed approach in achieving robust stabilization of the knee rehabilitation exoskeleton. |
|---|---|
| AbstractList | This paper presents a robust control strategy for the position control of a knee rehabilitation exoskeleton. The proposed approach combines a linear state-feedback controller with a nonlinear control law to address the system’s nonlinear dynamics, including challenges like parameter uncertainties, external disturbances, friction, and motion constraints. A quadratic Lyapunov function is used to derive linear matrix inequality (LMI) conditions for calculating the controller’s feedback gain. These conditions are established using advanced mathematical tools such as the matrix inversion lemma, Schur complement, and the S-procedure. The LMI-based design assumes that nonlinear functions are bounded by linear constraints. The effectiveness and robustness of the controller are demonstrated through numerical simulations, which show stable knee-joint position control, even under disturbances and uncertainties. A comparative analysis with an existing control method highlights the advantages of the proposed approach in achieving robust stabilization of the knee rehabilitation exoskeleton. |
| ArticleNumber | 115 |
| Author | Narayan, Jyotindra Gritli, Hassène Jenhani, Sahar |
| Author_xml | – sequence: 1 givenname: Sahar orcidid: 0000-0002-7803-9955 surname: Jenhani fullname: Jenhani, Sahar – sequence: 2 givenname: Hassène orcidid: 0000-0002-5643-134X surname: Gritli fullname: Gritli, Hassène – sequence: 3 givenname: Jyotindra orcidid: 0000-0002-2499-6039 surname: Narayan fullname: Narayan, Jyotindra |
| BookMark | eNo9kN1LwzAUxYNMcM79Az4FfK7efLXJoww_BhVfFHwLaZpit66ZSQr63xs3Fe7lHC6Hc-F3jmajHx1ClwSuCUB1EzlwJgqgeUlJWSFP0JwSJQpaKjn79_LtDC1j3AAAJRwoV3OU6qd10ZjoWhx8M8WErd_tfeyTwwfp_ZhPYwp-wL7DBm9H53Bw76bphz6ZQ8B9-rh1g0vZ5xqfcJyajbMJJ493_q8kpmD6McULdNqZIbrlry7Q6_3dy-qxqJ8f1qvburBElKkQHSOkEkzxPLTkUCrLpSvLlhurWMM7xStWdVBZC41sVctEa4mRhjveALAFujr27oP_mFxMeuOnMOaXmlEhSCUVkJyix5QNPsbgOr0P_c6EL01A_wDWR8A6A9YHwFqybyF5cVQ |
| Cites_doi | 10.3390/app12083973 10.1177/1729881417743554 10.1177/20552076221132099 10.1108/IR-09-2018-0198 10.3390/machines11070732 10.3390/machines11070764 10.1186/s12984-021-00906-3 10.3390/s23115054 10.1080/01691864.2020.1774414 10.1016/j.mechatronics.2018.07.010 10.1137/1.9781611970777 10.1016/j.asoc.2021.107226 10.1016/j.asoc.2015.04.034 10.3390/app15010404 10.1109/SSD58187.2023.10411251 10.3390/app14010301 10.1186/s10033-019-0389-8 10.1007/s12369-020-00662-9 10.1063/1.5046300 10.1109/ACCESS.2021.3139041 10.1109/TFUZZ.2020.2999739 10.1002/rnc.5381 10.1007/978-3-031-51224-7_6 10.1016/j.robot.2014.09.032 10.1016/S0959-1524(99)00056-6 10.1109/ICSC58660.2023.10449815 10.3389/fnbot.2017.00015 10.1177/16878140211011862 10.1080/17483107.2020.1817988 10.1109/TNSRE.2016.2521160 10.1177/0954411921994940 10.1109/ACCESS.2020.2985910 10.1016/j.mechatronics.2013.09.007 10.3390/diagnostics10121047 10.1177/00202940241236295 10.1016/j.jfranklin.2017.01.035 10.1080/03772063.2020.1838346 10.1109/TNSRE.2023.3287867 10.1007/978-3-030-45009-0_4 10.3390/machines10010021 10.3390/act11030078 10.3390/biomimetics8020156 10.1109/CoDIT62066.2024.10708186 10.1016/j.mechatronics.2015.10.012 10.1002/asjc.1950 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40435-025-01623-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-2698 |
| ExternalDocumentID | 10_1007_s40435_025_01623_8 |
| GroupedDBID | 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BGNMA CITATION DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR |
| ID | FETCH-LOGICAL-c156t-5f31175394394264069c48e66d4ac93b4f94737f07cc0b8d9d35dc1a8a4e4b003 |
| ISSN | 2195-268X |
| IngestDate | Mon Sep 29 04:23:00 EDT 2025 Wed Oct 01 06:34:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c156t-5f31175394394264069c48e66d4ac93b4f94737f07cc0b8d9d35dc1a8a4e4b003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7803-9955 0000-0002-5643-134X 0000-0002-2499-6039 |
| PQID | 3255178901 |
| PQPubID | 2043900 |
| ParticipantIDs | proquest_journals_3255178901 crossref_primary_10_1007_s40435_025_01623_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | International journal of dynamics and control |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | M Khamar (1623_CR29) 2018; 54 RS Baragash (1623_CR4) 2022; 8 Y Heo (1623_CR20) 2023; 14 J Narayan (1623_CR9) 2023; 11 Y Li (1623_CR46) 2020; 8 J Narayan (1623_CR11) 2021; 235 R Baud (1623_CR10) 2021; 18 J Zhou (1623_CR13) 2021; 13 Y Li (1623_CR36) 2021; 31 R Sharma (1623_CR39) 2021; 105 J Liu (1623_CR43) 2021; 10 R Bkekri (1623_CR16) 2019; 46 1623_CR41 T Madani (1623_CR25) 2016; 33 JG VanAntwerp (1623_CR45) 2000; 10 J Jiang (1623_CR21) 2023; 8 S Arof (1623_CR8) 2023; 11 1623_CR44 B Kalita (1623_CR12) 2021; 3 AS Aljuboury (1623_CR17) 2022; 11 AJ Young (1623_CR6) 2016; 25 1623_CR28 ME Daachi (1623_CR24) 2015; 34 F Qin (1623_CR35) 2020; 34 J Narayan (1623_CR38) 2023; 69 S Mefoued (1623_CR26) 2019; 21 S Jenhani (1623_CR31) 2024; 57 D Shi (1623_CR14) 2019; 32 M Jakovljevic (1623_CR1) 2021 BS Rupal (1623_CR19) 2017; 14 K Ali (1623_CR23) 2022; 10 S Jenhani (1623_CR27) 2025; 15 H Rifaï (1623_CR34) 2013; 23 N Touati (1623_CR42) 2024; 7 1623_CR30 MT Saeed (1623_CR22) 2022; 12 1623_CR32 V Ruiz Garate (1623_CR47) 2017; 11 T Yan (1623_CR18) 2015; 64 J Han (1623_CR37) 2020; 29 1623_CR7 R Fareh (1623_CR5) 2023; 23 Z Wang (1623_CR15) 2023; 31 1623_CR33 L Shore (1623_CR3) 2022; 17 H Gritli (1623_CR40) 2018; 355 S Dalise (1623_CR2) 2020; 10 |
| References_xml | – volume: 12 start-page: 3973 issue: 8 year: 2022 ident: 1623_CR22 publication-title: Appl Sci doi: 10.3390/app12083973 – volume: 14 start-page: 172988141774355 issue: 6 year: 2017 ident: 1623_CR19 publication-title: Int J Adv Robot Syst doi: 10.1177/1729881417743554 – volume: 8 start-page: 205520762211320 year: 2022 ident: 1623_CR4 publication-title: Digit Health doi: 10.1177/20552076221132099 – volume: 46 start-page: 481 issue: 4 year: 2019 ident: 1623_CR16 publication-title: Ind Robot doi: 10.1108/IR-09-2018-0198 – volume: 11 start-page: 732 issue: 7 year: 2023 ident: 1623_CR8 publication-title: Machines doi: 10.3390/machines11070732 – volume: 11 start-page: 764 issue: 7 year: 2023 ident: 1623_CR9 publication-title: Machines doi: 10.3390/machines11070764 – volume: 18 start-page: 119 issue: 1 year: 2021 ident: 1623_CR10 publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-021-00906-3 – volume: 23 start-page: 5054 issue: 11 year: 2023 ident: 1623_CR5 publication-title: Sensors doi: 10.3390/s23115054 – volume: 34 start-page: 1012 issue: 15 year: 2020 ident: 1623_CR35 publication-title: Adv Robot doi: 10.1080/01691864.2020.1774414 – volume: 54 start-page: 121 year: 2018 ident: 1623_CR29 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.07.010 – ident: 1623_CR44 doi: 10.1137/1.9781611970777 – volume: 105 start-page: 107226 year: 2021 ident: 1623_CR39 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107226 – volume: 34 start-page: 324 year: 2015 ident: 1623_CR24 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.034 – volume: 15 start-page: 404 issue: 1 year: 2025 ident: 1623_CR27 publication-title: Appl Sci doi: 10.3390/app15010404 – ident: 1623_CR7 – ident: 1623_CR32 doi: 10.1109/SSD58187.2023.10411251 – volume: 14 start-page: 301 issue: 1 year: 2023 ident: 1623_CR20 publication-title: Appl Sci doi: 10.3390/app14010301 – volume: 32 start-page: 1 issue: 1 year: 2019 ident: 1623_CR14 publication-title: Chin J Mech Eng doi: 10.1186/s10033-019-0389-8 – volume: 3 start-page: 775 issue: 4 year: 2021 ident: 1623_CR12 publication-title: Int J Soc Robot doi: 10.1007/s12369-020-00662-9 – ident: 1623_CR41 doi: 10.1063/1.5046300 – volume: 10 start-page: 3378 year: 2022 ident: 1623_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3139041 – volume: 29 start-page: 2373 issue: 8 year: 2020 ident: 1623_CR37 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2999739 – volume: 31 start-page: 2186 issue: 6 year: 2021 ident: 1623_CR36 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.5381 – ident: 1623_CR28 doi: 10.1007/978-3-031-51224-7_6 – volume: 64 start-page: 120 year: 2015 ident: 1623_CR18 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2014.09.032 – volume: 10 start-page: 363 issue: 4 year: 2000 ident: 1623_CR45 publication-title: J Process Control doi: 10.1016/S0959-1524(99)00056-6 – ident: 1623_CR30 doi: 10.1109/ICSC58660.2023.10449815 – volume: 11 start-page: 15 year: 2017 ident: 1623_CR47 publication-title: Front Neurorobot doi: 10.3389/fnbot.2017.00015 – volume: 13 start-page: 168781402110118 issue: 4 year: 2021 ident: 1623_CR13 publication-title: Adv Mech Eng doi: 10.1177/16878140211011862 – volume: 17 start-page: 782 issue: 7 year: 2022 ident: 1623_CR3 publication-title: Disabil Rehabil Assist Technol doi: 10.1080/17483107.2020.1817988 – volume: 25 start-page: 171 issue: 2 year: 2016 ident: 1623_CR6 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2521160 – volume: 235 start-page: 530 issue: 5 year: 2021 ident: 1623_CR11 publication-title: Proc Instit Mech Eng Part H J Eng Med doi: 10.1177/0954411921994940 – volume: 8 start-page: 66338 year: 2020 ident: 1623_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985910 – volume: 7 start-page: 8 year: 2024 ident: 1623_CR42 publication-title: Prz Elektrotech – volume: 23 start-page: 1141 issue: 8 year: 2013 ident: 1623_CR34 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2013.09.007 – volume: 10 start-page: 1047 issue: 12 year: 2020 ident: 1623_CR2 publication-title: Diagnostics doi: 10.3390/diagnostics10121047 – volume: 57 start-page: 1326 issue: 9 year: 2024 ident: 1623_CR31 publication-title: Meas. Control doi: 10.1177/00202940241236295 – volume: 355 start-page: 9150 issue: 18 year: 2018 ident: 1623_CR40 publication-title: J Frankl Instit doi: 10.1016/j.jfranklin.2017.01.035 – volume: 69 start-page: 778 issue: 2 year: 2023 ident: 1623_CR38 publication-title: IETE J Res doi: 10.1080/03772063.2020.1838346 – volume: 31 start-page: 2800 year: 2023 ident: 1623_CR15 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2023.3287867 – start-page: 73 volume-title: Aging and global health. Handbook of global health year: 2021 ident: 1623_CR1 doi: 10.1007/978-3-030-45009-0_4 – volume: 10 start-page: 21 issue: 1 year: 2021 ident: 1623_CR43 publication-title: Machines doi: 10.3390/machines10010021 – volume: 11 start-page: 78 issue: 3 year: 2022 ident: 1623_CR17 publication-title: Actuators doi: 10.3390/act11030078 – volume: 8 start-page: 156 issue: 2 year: 2023 ident: 1623_CR21 publication-title: Biomimetics doi: 10.3390/biomimetics8020156 – ident: 1623_CR33 doi: 10.1109/CoDIT62066.2024.10708186 – volume: 33 start-page: 136 year: 2016 ident: 1623_CR25 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.10.012 – volume: 21 start-page: 439 issue: 1 year: 2019 ident: 1623_CR26 publication-title: Asian J Control doi: 10.1002/asjc.1950 |
| SSID | ssj0002140249 ssib031263557 |
| Score | 2.3003752 |
| Snippet | This paper presents a robust control strategy for the position control of a knee rehabilitation exoskeleton. The proposed approach combines a linear... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 115 |
| SubjectTerms | Anthropomorphism Comparative analysis Constraints Control methods Control systems Control theory Controllers Design Disturbances Dynamical systems Exoskeletons Feedback Feedback control Friction Inequality Injuries Knee Liapunov functions Linear matrix inequalities Nonlinear control Nonlinear dynamics Parameter uncertainty Performance evaluation Quality of life Rehabilitation Robot dynamics Robotics Robots Robust control Robust stabilization Simulation State feedback |
| Title | LMI-based robust composite position control of a knee rehabilitation exoskeleton robot subject to motion constraints |
| URI | https://www.proquest.com/docview/3255178901 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2195-2698 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: AFBBN dateStart: 20130301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2195-2698 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140249 issn: 2195-268X databaseCode: AGYKE dateStart: 20130101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYG8gHxCUKamLn13FC3cboyoFWKqfIsR1NmpSMJpXY_iX-Sd6znTTREAIuUZVKluv31e_5-X3vI-Sd4lJkicz8oEylzzVDNUClsIVoHDFwmNzwuC-X8fmaX2yizWTyc1C1tGuLD_Lut7yS_7EqvAO7Ikv2HyzbDwov4DPYF55gYXj-lY0Xl598dEPK29bFrmlNgThWYWmvK8bqa9END_K60iiTMmzO7ekfdXMNzgf7a8Awdes1uwKzMxiWWpEfHKQxYhK271MXzY7TiYMmFMrq3DeONWdm0Nfq6OrKCkl5X8WV6IuDz7BKwWpoQ0BvLvDT_Z3_UmzFrU3WXtzCpCq1FcOMRRjtS7ZGGUssx8ZLkp5Rg5teiNqRYWzkhsE_Dd9Ztep-12YDdLLBFhxYeug912CrQRrsJoScdCxZhNDPT_eOsLv8X37JT9eLRb6ab1bvb777KFGGpnN6LQ_IQQguZDYlBydn3z7Pu-2LBdjYx10iYyAQwuE1NAew_lc52pYhb96byTg0GkcGJtxZPSGP3TmFnljQPSUTXT0jjwbdK5-TtocftfCjPfxoBz_qjE_rkgqK8KNj-NEB_KiBH3Xwo21NLfzoAH4vyPp0vvp47jsRD18GUdz6UclMN9gMKdgQfc_iTPJUx7HiQmas4GXGE5aUs0TKWZGqTLFIyUCkgmuOPuclmVZ1pV8RWsqi5KwMZiKOOMSxWVZozAckiVYhU_yQeN365Te2V0ved-U2q53DaudmtfP0kBx3S5y7P0iTMzhhB8gND17_-esj8nAP7WMybbc7_QbC07Z462DxC0a-lF8 |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMI-based+robust+composite+position+control+of+a+knee+rehabilitation+exoskeleton+robot+subject+to+motion+constraints&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Jenhani%2C+Sahar&rft.au=Gritli%2C+Hass%C3%A8ne&rft.au=Narayan%2C+Jyotindra&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=13&rft.issue=3&rft.spage=115&rft_id=info:doi/10.1007%2Fs40435-025-01623-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |