An Artificial Intelligent-Based Chatbot for Dosage Prediction of Medicine Using Noval Deep Reinforcement Learning with Natural Language Processing

The aim is to create an artificial conversation entity (chatbot) using Python to predict dosage of medicine for healthcare treatments. Materials and Methods: Two algorithms, deep reinforcement algorithms, are compared with deep learning algorithm sample size taken 28. G power of 80% and sample size...

Full description

Saved in:
Bibliographic Details
Published inECS transactions Vol. 107; no. 1; pp. 14841 - 14853
Main Authors B, Phani Raghava, Ashok Kumar, S.
Format Journal Article
LanguageEnglish
Published The Electrochemical Society, Inc 24.04.2022
Online AccessGet full text
ISSN1938-5862
1938-6737
DOI10.1149/10701.14841ecst

Cover

Abstract The aim is to create an artificial conversation entity (chatbot) using Python to predict dosage of medicine for healthcare treatments. Materials and Methods: Two algorithms, deep reinforcement algorithms, are compared with deep learning algorithm sample size taken 28. G power of 80% and sample size is calculated using G power tool. Results and Discussion: Performances of the score model validated test set accuracy with 95% confidence interval for deep reinforcement algorithm with different sub-samples having different number of intents comparing with deep learning, which has 85% accuracy. Conclusion: From the results, it is concluded that proposed algorithm deep reinforcement will produce better results than the existing algorithm.
AbstractList The aim is to create an artificial conversation entity (chatbot) using Python to predict dosage of medicine for healthcare treatments. Materials and Methods: Two algorithms, deep reinforcement algorithms, are compared with deep learning algorithm sample size taken 28. G power of 80% and sample size is calculated using G power tool. Results and Discussion: Performances of the score model validated test set accuracy with 95% confidence interval for deep reinforcement algorithm with different sub-samples having different number of intents comparing with deep learning, which has 85% accuracy. Conclusion: From the results, it is concluded that proposed algorithm deep reinforcement will produce better results than the existing algorithm.
Author B, Phani Raghava
Ashok Kumar, S.
Author_xml – sequence: 1
  givenname: Phani Raghava
  surname: B
  fullname: B, Phani Raghava
  organization: Saveetha School of Engineering
– sequence: 2
  givenname: S.
  surname: Ashok Kumar
  fullname: Ashok Kumar, S.
  organization: Saveetha School of Engineering
BookMark eNp9kF1PwjAUhhuDiYBee9tLEzNot26jl4hfJIjGyPXSdmdQMlrSFo1_w1_sJsQLY7g6PenzvMl5e6hjrAGELikZUMr4kJKc0AFlI0ZB-XCCupQnoyjLk7xzeKejLD5DPe_XhGSNlHfR19jgsQu60kqLGk9NgLrWSzAhuhEeSjxZiSBtwJV1-NZ6sQT84qDUKmhrsK3wU7toA3jhtVniuX1vcm4BtvgVtGk0BZsmDs9AONMSHzqs8FyEnWvAmTDL3T7UKvBtxDk6rUTt4eIw-2hxf_c2eYxmzw_TyXgWKZqmVRRTJlMmFecxkaUsGZQgR5yIlBGZA41TzpIEUsEzKfKshJwwSsqY5AmnkvGkj4b7XOWs9w6qYuv0RrjPgpKirbT4qbT4rbQx0j-G0kG0RQQndH3Eu9572m6Ltd0509x1hL76h26_WrQ4oMW2rJJv_uqa8Q
CitedBy_id crossref_primary_10_1093_jamia_ocae215
ContentType Journal Article
Copyright 2022 ECS - The Electrochemical Society
Copyright_xml – notice: 2022 ECS - The Electrochemical Society
DBID AAYXX
CITATION
DOI 10.1149/10701.14841ecst
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1938-6737
EndPage 14853
ExternalDocumentID 10_1149_10701_14841ecst
10.1149/10701.14841ecst
GroupedDBID 0R~
29G
AATNI
ABDNZ
ABJNI
ACHIP
ADNWM
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
EBS
EJD
IOP
JGOPE
KOT
MV1
N5L
NFQFE
REC
RHI
RNS
ROL
RPA
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c155f-214b54bc9920bdbd4edeb890a540b7e1259433e5a96ba76de70410d207391b493
IEDL.DBID IOP
ISSN 1938-5862
IngestDate Thu Apr 24 23:06:48 EDT 2025
Tue Jul 01 03:47:18 EDT 2025
Wed May 04 00:50:17 EDT 2022
Wed Aug 21 03:33:27 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c155f-214b54bc9920bdbd4edeb890a540b7e1259433e5a96ba76de70410d207391b493
PageCount 13
ParticipantIDs iop_journals_10_1149_10701_14841ecst
crossref_primary_10_1149_10701_14841ecst
crossref_citationtrail_10_1149_10701_14841ecst
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220424
2022-04-24
PublicationDateYYYYMMDD 2022-04-24
PublicationDate_xml – month: 04
  year: 2022
  text: 20220424
  day: 24
PublicationDecade 2020
PublicationTitle ECS transactions
PublicationTitleAlternate ECS Trans
PublicationYear 2022
Publisher The Electrochemical Society, Inc
Publisher_xml – name: The Electrochemical Society, Inc
SSID ssj0061147
Score 2.269354
Snippet The aim is to create an artificial conversation entity (chatbot) using Python to predict dosage of medicine for healthcare treatments. Materials and Methods:...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 14841
Title An Artificial Intelligent-Based Chatbot for Dosage Prediction of Medicine Using Noval Deep Reinforcement Learning with Natural Language Processing
URI https://iopscience.iop.org/article/10.1149/10701.14841ecst
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1938-6737
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0061147
  issn: 1938-5862
  databaseCode: IOP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKPZRLKX2olLYaJA69eJXYXjs-wlJEESyoKhJSD1HsTKjUarOCcOnP6C9m_NgVVEWqOCVKvjjW-DXyzPeZsZ0kQoKGi6rSXHXCc4vacmG8dB6l9JEefTLVh-fq6GJ8kbMqIxemn-epf0S3SSg4mTAL21q6mqKkEV6pEv31sMKeyor84kDeOz1bzMKaoCZFlAOzSIss6_OPAu6tSCv01zsLzME6-76oWsor-Tm6GdzI__5LtfFxdX_Bnme_E3YTcoM9wdlL9myyOO7tFfuzO4tvk6IEfFlKdQ58j1a6FiY_msH1A5CXC_t9yEeDs6sQ5glNC30HJzlMDzENAaY9dWLYR5zDV4z6rD5uRUKWdL2EsAcM0yYqf8Bx3jiFTF0gwGt2fvD52-SQ5wMbuCe3pOOiVG6snLdWFK51rcIWXWWLhtxCZ5B8KaukxHFjtWuMbtEUqixaEaKFpVNWvmGrs36Gb0PGlRyjQd2JRivCNk6X3lRkP1k2pbObbLRotNpnNfNwqMavOjGtbR1NXS9Nvck-LT-YJyGPh6E71H51HszXD8O278HCs4CpM6aet927_ytqi62JQKsoFBfqPVsdrm7wAzk7g_sYe_UtsRn4pQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokYALb9TyHKQeuHhJHK8dH8suqxbaZYWo1JsVOxOQqDarNr3wM_jFjB-7oohKiFOi5ItjzfgxmsdnxvYSCQlqLupacdkJzw0qw4X2lfNYVT6WRx_P1cGJ_HA6Ps0Ot1gL06_y0j-i20QUnESYiW0NXXVR0gyvZYn-Yni7arstdjPSlIQCvk-L9UqsCK5TVDlUFymRqX3-0siVXWmL_vzbJjO7x-y6eym35PvocnAj_-MP5sb_7_99djfbn7Cf0A_YDVw-ZLcn62PfHrGf-8v4NjFLwOGGsnPg72jHa2HyrRlcPwBZuzDtQ14aLM5DuCeoGPoOjnO4HmI6Asx7GswwRVzBZ4w8rT66JCFTu36F4AuGeRMZQOAoO1AhlzAQ4DE7mb3_Mjng-eAG7sk86bgopRtL540RhWtdK7FFV5uiIfPQaSSbysiqwnFjlGu0alEXsixaEaKGpZOmesK2l_0Sd0LmVTVGjaoTjZKEbZwqva5JhlXZlM7sstFacdZnVvNwuMaZTRXXxkZx2424d9mbzQerROhxPXSPdGjzpL64Hvb6Ciw8CxibMZYU_PTfmnrFbi2mM3t0OP_4jN0RodKikFzI52x7OL_EF2T_DO5lHOS_AH5V_gY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Intelligent-Based+Chatbot+for+Dosage+Prediction+of+Medicine+Using+Noval+Deep+Reinforcement+Learning+with+Natural+Language+Processing&rft.jtitle=ECS+transactions&rft.au=B%2C+Phani+Raghava&rft.au=Ashok+Kumar%2C+S.&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=14841&rft.epage=14853&rft_id=info:doi/10.1149%2F10701.14841ecst&rft.externalDocID=10.1149%2F10701.14841ecst
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon