Extracting Problem Structure with LLMs for Optimized SAT Local Search

Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in sever...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Symposium on Combinatorial Search Vol. 18; pp. 236 - 240
Main Authors Schidler, André, Szeider, Stefan
Format Journal Article
LanguageEnglish
Published 19.07.2025
Online AccessGet full text
ISSN2832-9171
2832-9163
2832-9163
DOI10.1609/socs.v18i1.35999

Cover

Abstract Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in several modern SAT solvers. However, existing preprocessing methods employ generic strategies that fail to exploit the structural patterns inherent in problem encodings. This position paper proposes a novel paradigm wherein Large Language Models (LLMs) analyze problem encoding implementations to synthesize specialized preprocessing algorithms. The LLMs examine Python-based code to identify structural patterns, enabling the automatic generation of encoding-specific local search procedures. These procedures operate across all instances sharing the same encoding scheme rather than requiring instance-specific customization. Our preliminary empirical evaluation demonstrates effective automated algorithm synthesis for structure-aware SAT preprocessing, serving as a foundation for similar approaches across multiple domains of combinatorial optimization.
AbstractList Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in several modern SAT solvers. However, existing preprocessing methods employ generic strategies that fail to exploit the structural patterns inherent in problem encodings. This position paper proposes a novel paradigm wherein Large Language Models (LLMs) analyze problem encoding implementations to synthesize specialized preprocessing algorithms. The LLMs examine Python-based code to identify structural patterns, enabling the automatic generation of encoding-specific local search procedures. These procedures operate across all instances sharing the same encoding scheme rather than requiring instance-specific customization. Our preliminary empirical evaluation demonstrates effective automated algorithm synthesis for structure-aware SAT preprocessing, serving as a foundation for similar approaches across multiple domains of combinatorial optimization.
Author Szeider, Stefan
Schidler, André
Author_xml – sequence: 1
  givenname: André
  surname: Schidler
  fullname: Schidler, André
– sequence: 2
  givenname: Stefan
  surname: Szeider
  fullname: Szeider, Stefan
BookMark eNqFkMtOwzAURC1UJErpnqV_IMWO7TheVlV4SEFFallbN7ZDLaVJZSeU8vX0gdiymtmckebcolHbtQ6he0pmNCPqIXYmzj5p7umMCaXUFRqnOUsTRTM2-uuS3qBpjL4igkgmCZFjVBRffQDT-_YDv4WuatwWr_owmH4IDu99v8Fl-Rpx3QW83PV-67-dxav5GpedgQavHASzuUPXNTTRTX9zgt4fi_XiOSmXTy-LeZkYKoRKuLLArMjynDuVphXPLaeWEyGBOedMxokCe3wAltZSHJsjNdS5oRUwJTmbIHrZHdodHPbQNHoX_BbCQVOiTyr0SYU-q9BnFUeGXBgTuhiDq_9HfgBqn2UT
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1609/socs.v18i1.35999
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2832-9163
EndPage 240
ExternalDocumentID 10.1609/socs.v18i1.35999
10_1609_socs_v18i1_35999
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c1559-49da3d56884e922b48d41d4057a3eeec6409ad359ad1f75d35e0faf8c1ba39743
IEDL.DBID UNPAY
ISSN 2832-9171
2832-9163
IngestDate Sun Aug 24 08:55:27 EDT 2025
Wed Oct 01 05:46:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1559-49da3d56884e922b48d41d4057a3eeec6409ad359ad1f75d35e0faf8c1ba39743
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ojs.aaai.org/index.php/SOCS/article/download/35999/38154
PageCount 5
ParticipantIDs unpaywall_primary_10_1609_socs_v18i1_35999
crossref_primary_10_1609_socs_v18i1_35999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-19
PublicationDateYYYYMMDD 2025-07-19
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-19
  day: 19
PublicationDecade 2020
PublicationTitle Proceedings of the International Symposium on Combinatorial Search
PublicationYear 2025
SSID ssib050737007
Score 1.9264419
Snippet Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search....
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 236
Title Extracting Problem Structure with LLMs for Optimized SAT Local Search
URI https://ojs.aaai.org/index.php/SOCS/article/download/35999/38154
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2832-9163
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050737007
  issn: 2832-9163
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHPTiI2rEB9mDF03aUna33R4JKSGGVwIkeGq23a1BsRABHxz87c62xaAXY7ztYdLszkw733R2vkHoihCP2KHkBvhSZFCmXCN0pWMoBbGbupxIV_cOtztOc0hvR2y00cU_fZibQoisiJ8SBmqWCKvfrfetXJeW1DTyUyEtwgDeWBBzGN1GRYcBGi-g4rDTq93pmXLgrPAup8PU8rVr55VKp-JZcPq5-WLzsW2mD_oWmXaWyUy8v4rJZCPcNPaRWG80u2XyaC4XoRmtfnA4_uckB2gvx6K4lokdoi2VHCHff1uknVPJPe5l02ZwPyWZXT4rrH_b4larPccAdnEXvjdP45WSuF8b4JYOizi7v3yMhg1_UG8a-awFI9KFSYN6UhDJHM6p8qrVkHJJbanRnCBKqciBPFBI2KaQduwyWKlKLGIe2aEASEPJCSok00SdIsyVYILGKmaQfEoCOR0kYSz2lEM1Wx0poeu1noNZRqkR6FQEbBJomwSpTYJUJSV082WIX4XP_iJ8jnarepSv5sj0LlABFKkuAV8swjLabn_45dyRPgGvT89E
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHPTiI2rEV_bgRZO2lN3t40gIhBheCZDgqdl2pwbFQgR88OudbYtBL8Z428Ok2Z2Zdr7p7HxDyDVjPrND5RnoS5HBBbhG6CrHAMDYzV2PKVf3Drc7TnPI70ZitNHFP32cm1LKrIifEgZqlgir3631rVyXltI08lOpLCYQ3lgYcwTfJkVHIBovkOKw06ve65ly6Kz4LqfD1PK1a-eVSqfsW3j6uflqe2PbTB_0LTLtLJOZ_HiTk8lGuGnsE7neaHbL5MlcLkIzWv3gcPzPSQ7IXo5FaTUTOyRbkByRev19kXZOJQ-0l02bof2UZHb5AlT_tqWtVntOEezSLn5vnscrULRfHdCWDos0u798TIaN-qDWNPJZC0akC5MG95VkSjiex8GvVELuKW4rjeYkA4DIwTxQKtymVHbsClxBOZaxF9mhREjD2QkpJNMETgn1QArJY4gFJp-KYU6HSZiIfXC4ZqtjJXKz1nMwyyg1Ap2KoE0CbZMgtUmQqqREbr8M8avw2V-Ez8luRY_y1RyZ_gUpoCLhEvHFIrzKXegT2ELOEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+Problem+Structure+with+LLMs+for+Optimized+SAT+Local+Search&rft.jtitle=Proceedings+of+the+International+Symposium+on+Combinatorial+Search&rft.au=Schidler%2C+Andr%C3%A9&rft.au=Szeider%2C+Stefan&rft.date=2025-07-19&rft.issn=2832-9171&rft.eissn=2832-9163&rft.volume=18&rft.spage=236&rft.epage=240&rft_id=info:doi/10.1609%2Fsocs.v18i1.35999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_socs_v18i1_35999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-9171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-9171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-9171&client=summon