Extracting Problem Structure with LLMs for Optimized SAT Local Search
Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in sever...
Saved in:
| Published in | Proceedings of the International Symposium on Combinatorial Search Vol. 18; pp. 236 - 240 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
19.07.2025
|
| Online Access | Get full text |
| ISSN | 2832-9171 2832-9163 2832-9163 |
| DOI | 10.1609/socs.v18i1.35999 |
Cover
| Abstract | Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in several modern SAT solvers. However, existing preprocessing methods employ generic strategies that fail to exploit the structural patterns inherent in problem encodings. This position paper proposes a novel paradigm wherein Large Language Models (LLMs) analyze problem encoding implementations to synthesize specialized preprocessing algorithms. The LLMs examine Python-based code to identify structural patterns, enabling the automatic generation of encoding-specific local search procedures. These procedures operate across all instances sharing the same encoding scheme rather than requiring instance-specific customization. Our preliminary empirical evaluation demonstrates effective automated algorithm synthesis for structure-aware SAT preprocessing, serving as a foundation for similar approaches across multiple domains of combinatorial optimization. |
|---|---|
| AbstractList | Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search. Local search preprocessing accelerates the SAT solver's search by providing high-quality starting points, a technique implemented in several modern SAT solvers. However, existing preprocessing methods employ generic strategies that fail to exploit the structural patterns inherent in problem encodings. This position paper proposes a novel paradigm wherein Large Language Models (LLMs) analyze problem encoding implementations to synthesize specialized preprocessing algorithms. The LLMs examine Python-based code to identify structural patterns, enabling the automatic generation of encoding-specific local search procedures. These procedures operate across all instances sharing the same encoding scheme rather than requiring instance-specific customization. Our preliminary empirical evaluation demonstrates effective automated algorithm synthesis for structure-aware SAT preprocessing, serving as a foundation for similar approaches across multiple domains of combinatorial optimization. |
| Author | Szeider, Stefan Schidler, André |
| Author_xml | – sequence: 1 givenname: André surname: Schidler fullname: Schidler, André – sequence: 2 givenname: Stefan surname: Szeider fullname: Szeider, Stefan |
| BookMark | eNqFkMtOwzAURC1UJErpnqV_IMWO7TheVlV4SEFFallbN7ZDLaVJZSeU8vX0gdiymtmckebcolHbtQ6he0pmNCPqIXYmzj5p7umMCaXUFRqnOUsTRTM2-uuS3qBpjL4igkgmCZFjVBRffQDT-_YDv4WuatwWr_owmH4IDu99v8Fl-Rpx3QW83PV-67-dxav5GpedgQavHASzuUPXNTTRTX9zgt4fi_XiOSmXTy-LeZkYKoRKuLLArMjynDuVphXPLaeWEyGBOedMxokCe3wAltZSHJsjNdS5oRUwJTmbIHrZHdodHPbQNHoX_BbCQVOiTyr0SYU-q9BnFUeGXBgTuhiDq_9HfgBqn2UT |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1609/socs.v18i1.35999 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2832-9163 |
| EndPage | 240 |
| ExternalDocumentID | 10.1609/socs.v18i1.35999 10_1609_socs_v18i1_35999 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1559-49da3d56884e922b48d41d4057a3eeec6409ad359ad1f75d35e0faf8c1ba39743 |
| IEDL.DBID | UNPAY |
| ISSN | 2832-9171 2832-9163 |
| IngestDate | Sun Aug 24 08:55:27 EDT 2025 Wed Oct 01 05:46:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1559-49da3d56884e922b48d41d4057a3eeec6409ad359ad1f75d35e0faf8c1ba39743 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ojs.aaai.org/index.php/SOCS/article/download/35999/38154 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_1609_socs_v18i1_35999 crossref_primary_10_1609_socs_v18i1_35999 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-19 |
| PublicationDateYYYYMMDD | 2025-07-19 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International Symposium on Combinatorial Search |
| PublicationYear | 2025 |
| SSID | ssib050737007 |
| Score | 1.9264419 |
| Snippet | Encoding combinatorial problems in terms of propositional satisfiability (SAT) enables utilization of highly efficient SAT solvers for combinatorial search.... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 236 |
| Title | Extracting Problem Structure with LLMs for Optimized SAT Local Search |
| URI | https://ojs.aaai.org/index.php/SOCS/article/download/35999/38154 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2832-9163 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050737007 issn: 2832-9163 databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHPTiI2rEB9mDF03aUna33R4JKSGGVwIkeGq23a1BsRABHxz87c62xaAXY7ztYdLszkw733R2vkHoihCP2KHkBvhSZFCmXCN0pWMoBbGbupxIV_cOtztOc0hvR2y00cU_fZibQoisiJ8SBmqWCKvfrfetXJeW1DTyUyEtwgDeWBBzGN1GRYcBGi-g4rDTq93pmXLgrPAup8PU8rVr55VKp-JZcPq5-WLzsW2mD_oWmXaWyUy8v4rJZCPcNPaRWG80u2XyaC4XoRmtfnA4_uckB2gvx6K4lokdoi2VHCHff1uknVPJPe5l02ZwPyWZXT4rrH_b4larPccAdnEXvjdP45WSuF8b4JYOizi7v3yMhg1_UG8a-awFI9KFSYN6UhDJHM6p8qrVkHJJbanRnCBKqciBPFBI2KaQduwyWKlKLGIe2aEASEPJCSok00SdIsyVYILGKmaQfEoCOR0kYSz2lEM1Wx0poeu1noNZRqkR6FQEbBJomwSpTYJUJSV082WIX4XP_iJ8jnarepSv5sj0LlABFKkuAV8swjLabn_45dyRPgGvT89E |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHPTiI2rEV_bgRZO2lN3t40gIhBheCZDgqdl2pwbFQgR88OudbYtBL8Z428Ok2Z2Zdr7p7HxDyDVjPrND5RnoS5HBBbhG6CrHAMDYzV2PKVf3Drc7TnPI70ZitNHFP32cm1LKrIifEgZqlgir3631rVyXltI08lOpLCYQ3lgYcwTfJkVHIBovkOKw06ve65ly6Kz4LqfD1PK1a-eVSqfsW3j6uflqe2PbTB_0LTLtLJOZ_HiTk8lGuGnsE7neaHbL5MlcLkIzWv3gcPzPSQ7IXo5FaTUTOyRbkByRev19kXZOJQ-0l02bof2UZHb5AlT_tqWtVntOEezSLn5vnscrULRfHdCWDos0u798TIaN-qDWNPJZC0akC5MG95VkSjiex8GvVELuKW4rjeYkA4DIwTxQKtymVHbsClxBOZaxF9mhREjD2QkpJNMETgn1QArJY4gFJp-KYU6HSZiIfXC4ZqtjJXKz1nMwyyg1Ap2KoE0CbZMgtUmQqqREbr8M8avw2V-Ez8luRY_y1RyZ_gUpoCLhEvHFIrzKXegT2ELOEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+Problem+Structure+with+LLMs+for+Optimized+SAT+Local+Search&rft.jtitle=Proceedings+of+the+International+Symposium+on+Combinatorial+Search&rft.au=Schidler%2C+Andr%C3%A9&rft.au=Szeider%2C+Stefan&rft.date=2025-07-19&rft.issn=2832-9171&rft.eissn=2832-9163&rft.volume=18&rft.spage=236&rft.epage=240&rft_id=info:doi/10.1609%2Fsocs.v18i1.35999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_socs_v18i1_35999 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-9171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-9171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-9171&client=summon |