MCRNET-RS: Multi-Class Retinal Disease Classification using Deep Learning-based Residual Network-Rescaled

Retinal diseases are a major cause of vision impairment, leading to partial or complete blindness if undiagnosed. Early detection and accurate classification of these conditions are crucial for effective treatment and vision preservation. However, Conventional diagnostic techniques are time-consumin...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronics, electromedical engineering, and medical informatics Vol. 7; no. 4; pp. 1130 - 1143
Main Authors N, Mohana Suganthi, M, Arun
Format Journal Article
LanguageEnglish
Published 01.10.2025
Online AccessGet full text
ISSN2656-8632
2656-8632
DOI10.35882/jeeemi.v7i4.925

Cover

More Information
Summary:Retinal diseases are a major cause of vision impairment, leading to partial or complete blindness if undiagnosed. Early detection and accurate classification of these conditions are crucial for effective treatment and vision preservation. However, Conventional diagnostic techniques are time-consuming and require professional assistance. Additionally, existing deep-learning models struggle with feature extraction and classification accuracy because of differences in image quality and disease severity. To overcome these challenges, a novel deep learning (DL)-based MCRNET-RS approach is proposed for multi-class retinal disease classification using fundus images. The gathered fundus images are pre-processed using the Savitzky-Golay Filter (SGF) to enhance and preserve essential structural details. The DL-based Residual Network-Rescaled (ResNet-RS) is used to extract hierarchical feature extraction for accurate retinal disease classification. Multi-layer perceptron (MLP) is used to classify  retinal diseases such as Diabetic Neuropathy (DN), Branch Retinal Vein Occlusion (BRVO), Diabetic Retinopathy (DR), Healthy, Macular Hole (MH), Myopia (MYA), Optic Disc Cupping (ODC), Age-Related Macular Degeneration (ARMD), Optic Disc Pit (ODP), and Tilted Superior Lateral Nerve (TSLN). The effectiveness of the proposed MCRNET-RS method was assessed using precision, recall, specificity, F1 score, and accuracy. The proposed MCRNET-RS approach achieves an overall accuracy of 98.17%, F1 score of 95.99% for Retinal disease classification. The proposed approach improved the total accuracy by 3.27%, 4.48%, and 4.28% compared to EyeDeep-Net, Two I/P VGG16, and IDL-MRDD, respectively. These results confirm that the proposed MCRNET-RS framework provides a strong, scalable, and highly accurate solution for automated retinal disease classification, thereby supporting early diagnosis and effective clinical decision-making.
ISSN:2656-8632
2656-8632
DOI:10.35882/jeeemi.v7i4.925