Machine learning performance in EEG-based mental workload classification across task types: a systematic review
The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult,...
Saved in:
Published in | Frontiers in neuroergonomics Vol. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
15.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-6195 2673-6195 |
DOI | 10.3389/fnrgo.2025.1621309 |
Cover
Abstract | The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult, as their performance is significantly dependent on these factors. In this paper, we present the first comprehensive examination of ML models' performance in EEG-based MWL classification across task types. To achieve this, we categorized ML studies based on the task type used in their experiments and compared models' performances across these categories. Notably, a significant drop in MWL classification accuracy was observed among the best-performing models in multitasking studies where MWL was rated based on quantitative task load, compared to those in single-tasking studies and studies where MWL was subjectively rated. This points to the inherent challenges associated with estimating MWL in more complex tasks such as multitasking. This is particularly relevant for practical applications, as real-world tasks typically involve some degree of multitasking. By comparing ML models' performances across task types, this review provides valuable insights into the state-of-the-art of EEG-based MWL estimation, highlights existing gaps in the field, and points to open questions for further research. |
---|---|
AbstractList | The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult, as their performance is significantly dependent on these factors. In this paper, we present the first comprehensive examination of ML models' performance in EEG-based MWL classification across task types. To achieve this, we categorized ML studies based on the task type used in their experiments and compared models' performances across these categories. Notably, a significant drop in MWL classification accuracy was observed among the best-performing models in multitasking studies where MWL was rated based on quantitative task load, compared to those in single-tasking studies and studies where MWL was subjectively rated. This points to the inherent challenges associated with estimating MWL in more complex tasks such as multitasking. This is particularly relevant for practical applications, as real-world tasks typically involve some degree of multitasking. By comparing ML models' performances across task types, this review provides valuable insights into the state-of-the-art of EEG-based MWL estimation, highlights existing gaps in the field, and points to open questions for further research. |
Author | Leva, Maria Chiara Pušica, Miloš Mijović, Bogdan Gligorijević, Ivan |
Author_xml | – sequence: 1 givenname: Miloš surname: Pušica fullname: Pušica, Miloš – sequence: 2 givenname: Bogdan surname: Mijović fullname: Mijović, Bogdan – sequence: 3 givenname: Maria Chiara surname: Leva fullname: Leva, Maria Chiara – sequence: 4 givenname: Ivan surname: Gligorijević fullname: Gligorijević, Ivan |
BookMark | eNpNkdtKBDEMQIsoeP0Bn_oDs_Yy7Ux9E1kvoPiizyXTpmt1tl3aQdm_d1xFfAgJIRySnGOyn3JCQs45W0jZm4uQyiovBBNqwbXgkpk9ciR0JxvNjdr_Vx-Ss1rfGGOi61vB5BHJj-BeY0I6IpQU04pusIRc1pAc0pjocnnbDFDR0zWmCUb6mcv7mMFTN0KtMUQHU8yJgiu5VjpBfafTdoP1kgKt2zrheh5wtOBHxM9TchBgrHj2m0_Iy83y-fqueXi6vb--emgcV9I0rQngUbWDFK0yPKheA2MKQg_aGdCa-w4xuN53IQxiMEphEAa91_MbPJcn5P6H6zO82U2JayhbmyHaXSOXlYUyrzWilbzDXvMwR9uGfgAPrZc9a9EIFrows8QPa3dhwfDH48x-G7A7A_bbgP01IL8ADA9-XA |
Cites_doi | 10.1007/978-3-030-91408-0 10.1145/1166253.1166268 10.1109/ACII.2013.164 10.3389/fnins.2021.703139 10.1109/ACCESS.2021.3058271 10.23947/2334-8496-2015-3-1-35-41 10.3389/fnins.2022.744737 10.1109/CVPR.2009.5206848 10.1093/cercor/10.9.829 10.3390/s18051339 10.3390/bioengineering10091027 10.3389/frai.2022.992732 10.3390/app14062282 10.1177/0018720812470842 10.1109/TIM.2023.3265114 10.3389/fnins.2022.869522 10.1007/s41870-021-00807-7 10.1007/978-3-030-32423-0_2 10.3389/fnhum.2019.00191 10.1177/001316446002000104 10.1016/S0926-6410(99)00029-4 10.1109/EMBC46164.2021.9630107 10.1007/s10439-014-1143-0 10.1109/EMBC.2015.7318985 10.1037/cep0000104 10.3389/fninf.2022.861967 10.1109/TIM.2024.3369143 10.1016/j.bspc.2020.101989 10.3390/app12052298 10.1109/IJCNN.2004.1381116 10.1109/TBME.2017.2693157 10.3390/brainsci14020149 10.1518/001872098779480578 10.1177/1071181312561367 10.1109/TIM.2024.3373070 10.1109/LSP.2020.2989663 10.1088/1741-2552/accbed 10.3389/fnhum.2017.00389 10.1109/TIM.2020.3019849 10.1109/TBME.2021.3092206 10.1109/TNSRE.2004.838443 10.3390/machines11110995 10.1109/JBHI.2021.3085131 10.3390/brainsci14101009 10.3390/bioengineering10030361 10.3390/s20205881 10.3390/app9245340 10.1109/AINIT61980.2024.10581666 10.1088/1741-2560/9/4/045008 10.1109/TNSRE.2017.2701002 10.1016/j.bspc.2021.103032 10.1109/ICASSP.2015.7178964 10.1016/S1364-6613(03)00028-7 10.1088/1741-2560/13/2/026019 10.3390/s20185122 10.3389/fnhum.2017.00359 10.1109/TIM.2024.3395312 10.1371/journal.pone.0174949 10.1109/TCDS.2021.3090217 10.1002/hbm.20309 10.3389/fnins.2014.00322 10.1007/s11760-021-01992-5 10.1016/j.tics.2014.04.012 10.1109/ACCESS.2022.3192514 10.1177/1071181312561016 10.3390/s22197623 10.1016/j.ijpsycho.2015.10.004 10.3390/s24144577 10.1109/TNSRE.2018.2872924 10.1109/SECON.2001.923101 10.1109/IROS47612.2022.9981424 10.1109/TNSRE.2023.3277867 10.1109/THMS.2023.3235003 10.1109/TNSRE.2018.2884641 10.1016/j.neuroimage.2019.04.005 10.1016/j.bspc.2024.106046 10.1016/j.neuroimage.2011.07.047 10.3850/978-981-18-8071-1_P667-cd 10.1109/TCDS.2023.3319305 10.1109/TAFFC.2017.2775616 10.1111/j.1460-9568.2005.04482.x 10.1007/s11858-015-0754-8 10.3390/s21155205 10.1109/TENCONSpring.2014.6863035 10.3389/fnrgo.2024.1346794 10.3390/s21206710 10.1109/TCDS.2016.2628702 10.3390/s19061324 10.1088/1741-2560/12/4/046020 10.1016/j.bspc.2024.106379 10.3390/app10093036 10.1016/j.bspc.2016.11.013 10.3390/biomedinformatics4010048 10.1016/j.bspc.2023.105662 10.1088/1741-2552/ad0f3d 10.1109/EMBC.2019.8857164 10.1109/DASC58513.2023.10311163 10.1109/JBHI.2023.3281793 10.3389/fnins.2014.00114 10.1007/978-981-99-1642-9_20 10.1016/j.patcog.2017.12.002 10.1016/j.biopsycho.2019.107726 10.1016/j.compbiomed.2019.04.034 10.1108/IJPPM-04-2019-0191 10.3389/fnins.2024.1373515 10.1518/hfes.45.4.635.27088 10.1007/s11571-024-10160-7 10.1016/j.bspc.2021.102819 10.1109/ACCESS.2020.2966834 10.1016/j.bspc.2019.101745 10.1007/s00521-020-05408-2 10.55730/1300-0632.4017 10.1109/MetroXRAINE62247.2024.10795942 10.1016/j.ijsu.2010.02.007 10.14569/IJACSA.2024.0150515 10.3390/math10111875 10.3390/sym11070944 10.1002/hbm.26552 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fnrgo.2025.1621309 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2673-6195 |
ExternalDocumentID | oai_doaj_org_article_317e861f86144f8bada4d3804e920f7f 10_3389_fnrgo_2025_1621309 |
GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM |
ID | FETCH-LOGICAL-c1539-49fade54b324591f586a005af8a6c9a661d7eefc8d7ffb2b955ef29edd6025d13 |
IEDL.DBID | DOA |
ISSN | 2673-6195 |
IngestDate | Mon Sep 22 19:24:00 EDT 2025 Thu Sep 18 00:20:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1539-49fade54b324591f586a005af8a6c9a661d7eefc8d7ffb2b955ef29edd6025d13 |
OpenAccessLink | https://doaj.org/article/317e861f86144f8bada4d3804e920f7f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_317e861f86144f8bada4d3804e920f7f crossref_primary_10_3389_fnrgo_2025_1621309 |
PublicationCentury | 2000 |
PublicationDate | 2025-9-15 |
PublicationDateYYYYMMDD | 2025-09-15 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-9-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in neuroergonomics |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cabañero Gómez (B13) 2021; 70 Demirezen (B27) 2024; 5 Ma (B69) 2015 Zhou (B124) 2023; 72 B24 Panayotov (B78) 2015 Pušica (B85); 14 Zhou (B123) 2022; 14 Jiao (B46) 2018; 76 Gevins (B36) 1998; 40 Mazher (B71) 2022; 34 Becerra-Sánchez (B6) 2020; 20 Yoo (B119) 2023; 10 Kartali (B50) 2019 Yu (B120) 2015; 12 Qu (B87) 2020; 10 Chen (B19) 2024 Moral (B75) 2022; 10 Crews (B23) 2020; 69 Yin (B117) 2024; 73 Shao (B100) 2024; 28 Ladekar (B56) 2021; 68 Sauseng (B99) 2005; 22 Plechawska-Wójcik (B82) 2019; 9 Friedman (B34) 2019; 13 Kwak (B55) 2020; 8 Wang (B110) 2024; 73 Jin (B48) 2024; 89 Sharma (B101) 2021; 13 Hogervorst (B45) 2014; 8 Hernández-Sabaté (B44) 2022; 12 Yang (B114) 2019; 109 Blanco (B9) 2018; 10 So (B102) 2017; 12 Ke (B53) 2023; 20 Li (B60) 2024; 18 Cao (B15) 2022; 22 Ke (B52) 2015; 98 Sahin Sadik (B93) 2022; 16 Walter (B108) 2013 Das Chakladar (B25) 2020; 60 Liu (B66) 2023; 53 Lagomarsino (B57) 2022 Kutafina (B54) 2021; 21 Salvan (B95) 2023 Wilson (B111) 2003; 45 Qu (B88) 2022; 10 Sarailoo (B98) 2022; 16 Beiramvand (B7) 2024; 73 Pei (B79) 2021; 70 Pušica (B83) 2023 Deng (B28) 2009 Liu (B65) 2017; 11 Longo (B67) 2021 B106 Li (B59) 2024; 24 Dehais (B26) 2019; 19 Aghajani (B1) 2017; 11 Yin (B116) 2024 Ling (B63) 2001 Zanetti (B121) 2022; 69 Havugimana (B41) 2024; 16 Hefron (B42) 2018; 18 Caiazzo (B14) 2023; 11 Chandra (B17) 2015; 3 Xiong (B112) 2020; 20 Gevins (B35) 2000; 10 Yedukondalu (B115) 2023; 31 Pušica (B84) Wang (B109) 2024; 92 Fan (B33) 2018; 65 Ke (B51) 2021; 15 Penaranda (B80) 2012; 56 Salaken (B94) 2020 Mühl (B77) 2014; 8 Monsell (B74) 2003; 7 Bratfisch (B10) 2019 Ramaswamy (B89) 2021 Strayer (B104) 2017; 71 Grissmann (B37) 2020; 11 Kakkos (B49) 2021; 25 Valizadeh (B107) 2019; 197 Qiao (B86) 2020; 57 Liu (B64) 2023; 10 Zhang (B122) 2019; 27 Brookshire (B11) 2024; 18 Brouwer (B12) 2012; 9 Gupta (B39) 2021; 21 Morgan (B76) 2013; 55 Cavanagh (B16) 2014; 18 Yan (B113) 2023; 72 Chen (B18) 2024; 45 Pergher (B81) 2019; 146 Lin (B62) 2008 Coffey (B21) 2012; 56 Awais (B4) 2014 Yin (B118) 2017; 33 Dove (B31) 2000; 9 Lee (B58) 2006 Lu (B68) 2024 Gysels (B40) 2004; 12 Tao (B105) 2019; 11 Samima (B96) 2019 Zhu (B125) 2021; 9 Fan (B32) 2022; 16 Dimitriadis (B30) 2015; 43 Millan (B72) 2004 Baldwin (B5) 2012; 59 Bjegojević (B8) 2024; 14 Guan (B38) 2023; 31 Moher (B73) 2010; 8 Maarouf (B70) 2024 Hemakom (B43) 2024; 95 Aksu (B2) 2024; 14 Raufi (B90) 2022; 16 Dimitrakopoulos (B29) 2017; 25 Raufi (B91) 2024; 4 Roy (B92) 2016; 13 Cohen (B22) 1960; 20 Spüler (B103) 2016; 48 Jiménez-Guarneros (B47) 2020; 27 Albuquerque (B3) 2022; 5 Chiang (B20) 2023; 20 Lim (B61) 2018; 26 Sammer (B97) 2007; 28 |
References_xml | – start-page: 24 year: 2021 ident: B67 doi: 10.1007/978-3-030-91408-0 – volume-title: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology year: 2006 ident: B58 article-title: “Using a low-cost electroencephalograph for task classification in HCI research,” doi: 10.1145/1166253.1166268 – start-page: 876 volume-title: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction year: 2013 ident: B108 article-title: “Using cross-task classification for classifying workload levels in complex learning tasks,” doi: 10.1109/ACII.2013.164 – volume: 15 start-page: 3139 year: 2021 ident: B51 article-title: Cross-task consistency of electroencephalography-based mental workload indicators: comparisons between power spectral density and task-irrelevant auditory event-related potentials publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.703139 – volume: 9 start-page: 33102 year: 2021 ident: B125 article-title: Cognitive load during multitasking can be accurately assessed based on single channel electroencephalography using graph methods publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058271 – volume: 3 start-page: 35 year: 2015 ident: B17 article-title: EEG based cognitive workload classification during NASA MATB-II multitasking publication-title: Int. J. Cogn. Res. Sci. Eng. Educ. doi: 10.23947/2334-8496-2015-3-1-35-41 – volume: 16 start-page: 4737 year: 2022 ident: B98 article-title: Assessment of instantaneous cognitive load imposed by educational multimedia using electroencephalography signals publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.744737 – start-page: 248 year: 2009 ident: B28 doi: 10.1109/CVPR.2009.5206848 – volume: 10 start-page: 829 year: 2000 ident: B35 article-title: Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style publication-title: Cereb. Cortex doi: 10.1093/cercor/10.9.829 – volume: 18 start-page: 1339 year: 2018 ident: B42 article-title: Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks publication-title: Sensors doi: 10.3390/s18051339 – volume: 10 start-page: 1027 year: 2023 ident: B64 article-title: Research on mental workload of deep-sea oceanauts driving operation tasks from EEG Data publication-title: Bioengineering doi: 10.3390/bioengineering10091027 – volume: 5 start-page: 2732 year: 2022 ident: B3 article-title: Estimating distribution shifts for predicting cross-subject generalization in electroencephalography-based mental workload assessment publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.992732 – volume: 14 start-page: 2282 year: 2024 ident: B2 article-title: Mental workload assessment using machine learning techniques based on EEG and eye tracking data publication-title: Appl. Sci. doi: 10.3390/app14062282 – start-page: 1 volume-title: 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) ident: B84 article-title: “Towards practical deployment: subject-independent EEG-based mental workload classification on assembly lines,” – volume: 55 start-page: 776 year: 2013 ident: B76 article-title: Individual differences in multitasking ability and adaptability publication-title: Hum. Factors doi: 10.1177/0018720812470842 – ident: B106 – volume: 72 start-page: 1 year: 2023 ident: B113 article-title: Topological EEG-based functional connectivity analysis for mental workload state recognition publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3265114 – volume: 16 start-page: 9522 year: 2022 ident: B32 article-title: EEG-TNet: an end-to-end brain computer interface framework for mental workload estimation publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.869522 – volume: 13 start-page: 2363 year: 2021 ident: B101 article-title: Mental arithmetic task load recognition using EEG signal and Bayesian optimized K-nearest neighbor publication-title: Int. J. Inf. Tecnol. doi: 10.1007/s41870-021-00807-7 – start-page: 20 year: 2019 ident: B50 article-title: “Real-Time mental workload estimation using EEG,” publication-title: Human Mental Workload: Models and Applications doi: 10.1007/978-3-030-32423-0_2 – volume: 13 start-page: 0191 year: 2019 ident: B34 article-title: EEG-based prediction of cognitive load in intelligence tests publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00191 – volume: 20 start-page: 37 year: 1960 ident: B22 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 9 start-page: 103 year: 2000 ident: B31 article-title: Prefrontal cortex activation in task switching: an event-related fMRI study publication-title: Cogn. Brain Res. doi: 10.1016/S0926-6410(99)00029-4 – volume-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2021 ident: B89 article-title: “Single feature spatio-temporal architecture for EEG Based cognitive load assessment,” doi: 10.1109/EMBC46164.2021.9630107 – volume: 43 start-page: 977 year: 2015 ident: B30 article-title: Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-1143-0 – start-page: 2848 volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2015 ident: B69 article-title: “Resting State EEG-based biometrics for individual identification using convolutional neural networks,” doi: 10.1109/EMBC.2015.7318985 – volume: 71 start-page: 93 year: 2017 ident: B104 article-title: The smartphone and the driver's cognitive workload: a comparison of Apple, Google, and Microsoft's intelligent personal assistants publication-title: Can. J. Exp. Psychol. doi: 10.1037/cep0000104 – ident: B24 – volume: 16 start-page: 1967 year: 2022 ident: B90 article-title: An evaluation of the EEG alpha-to-theta and theta-to-alpha band ratios as indexes of mental workload publication-title: Front. Neuroinform. doi: 10.3389/fninf.2022.861967 – volume: 73 start-page: 1 year: 2024 ident: B110 article-title: ARFN: an attention-based recurrent fuzzy network for EEG mental workload assessment publication-title: IEEE Trans. Instrum. Meas doi: 10.1109/TIM.2024.3369143 – volume: 60 start-page: 101989 year: 2020 ident: B25 article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101989 – volume: 12 start-page: 2298 year: 2022 ident: B44 article-title: Recognition of the mental workloads of pilots in the cockpit using EEG signals publication-title: Appl. Sci doi: 10.3390/app12052298 – start-page: 2877 volume-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) year: 2004 ident: B72 article-title: “On the need for on-line learning in brain-computer interfaces,” doi: 10.1109/IJCNN.2004.1381116 – volume: 65 start-page: 43 year: 2018 ident: B33 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2693157 – volume: 14 start-page: 149 ident: B85 article-title: Mental workload classification and tasks detection in multitasking: deep learning insights from EEG study publication-title: Brain Sci. doi: 10.3390/brainsci14020149 – year: 2019 ident: B10 publication-title: SIMKAP Simultankapazität/Multi-Tasking. – volume: 40 start-page: 79 year: 1998 ident: B36 article-title: Monitoring working memory load during computer-based tasks with EEG Pattern recognition methods publication-title: Hum. Factors doi: 10.1518/001872098779480578 – volume: 56 start-page: 1822 year: 2012 ident: B21 article-title: Measuring workload using a combination of electroencephalography and near infrared spectroscopy publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. doi: 10.1177/1071181312561367 – volume: 73 start-page: 1 year: 2024 ident: B117 article-title: Generic mental workload measurement using a shared spatial map network with different EEG channel layouts publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3373070 – volume: 27 start-page: 750 year: 2020 ident: B47 article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition publication-title: IEEE Signal Proc. Lett. doi: 10.1109/LSP.2020.2989663 – volume: 20 start-page: 036010 year: 2023 ident: B20 article-title: Using EEG signals to assess workload during memory retrieval in a real-world scenario publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/accbed – volume: 11 start-page: 0389 year: 2017 ident: B65 article-title: Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00389 – volume: 70 start-page: 1 year: 2021 ident: B79 article-title: EEG-based multiclass workload identification using feature fusion and selection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3019849 – volume: 69 start-page: 265 year: 2022 ident: B121 article-title: Real-time EEG-based cognitive workload monitoring on wearable devices publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3092206 – volume: 12 start-page: 406 year: 2004 ident: B40 article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.838443 – volume: 11 start-page: 995 year: 2023 ident: B14 article-title: Development of a neuroergonomic assessment for the evaluation of mental workload in an industrial human–robot interaction assembly task: a comparative case study publication-title: Machines doi: 10.3390/machines11110995 – volume: 25 start-page: 3824 year: 2021 ident: B49 article-title: EEG fingerprints of task-independent mental workload discrimination publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3085131 – volume: 14 start-page: 1009 year: 2024 ident: B8 article-title: Neuroergonomic attention assessment in safety-critical tasks: EEG indices and subjective metrics validation in a novel task-embedded reaction time paradigm publication-title: Brain Sci. doi: 10.3390/brainsci14101009 – volume: 10 start-page: 361 year: 2023 ident: B119 article-title: Prediction of cognitive load from electroencephalography signals using long short-term memory network publication-title: Bioengineering doi: 10.3390/bioengineering10030361 – volume: 20 start-page: 5881 year: 2020 ident: B6 article-title: Feature selection model based on EEG signals for assessing the cognitive workload in drivers publication-title: Sensors doi: 10.3390/s20205881 – volume: 9 start-page: 5340 year: 2019 ident: B82 article-title: A three-class classification of cognitive workload based on EEG spectral data publication-title: Appl. Sci. doi: 10.3390/app9245340 – start-page: 1838 volume-title: 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT) year: 2024 ident: B19 article-title: “An improved inceptiontime model for mental workload assessment based on EEG signal,” doi: 10.1109/AINIT61980.2024.10581666 – volume: 9 start-page: 045008 year: 2012 ident: B12 article-title: Estimating workload using EEG spectral power and ERPs in the n-back task publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/9/4/045008 – volume: 25 start-page: 1940 year: 2017 ident: B29 article-title: Task-Independent mental workload classification based upon common multiband EEG cortical connectivity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2701002 – volume: 70 start-page: 103032 year: 2021 ident: B13 article-title: Studying the generalisability of cognitive load measured with EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103032 – start-page: 5206 volume-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2015 ident: B78 article-title: “Librispeech: an ASR corpus based on public domain audio books,” doi: 10.1109/ICASSP.2015.7178964 – volume: 7 start-page: 134 year: 2003 ident: B74 article-title: Task switching publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(03)00028-7 – volume: 13 start-page: 026019 year: 2016 ident: B92 article-title: Efficient mental workload estimation using task-independent EEG features publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/13/2/026019 – volume: 20 start-page: 5122 year: 2020 ident: B112 article-title: Pattern recognition of cognitive load using EEG and ECG Signals publication-title: Sensors doi: 10.3390/s20185122 – volume: 11 start-page: 0359 year: 2017 ident: B1 article-title: Measuring mental workload with EEG+fNIRS publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00359 – volume: 73 start-page: 1 year: 2024 ident: B7 article-title: Assessment of mental workload using a transformer network and two prefrontal EEG channels: an unparameterized approach publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3395312 – volume: 12 start-page: e0174949 year: 2017 ident: B102 article-title: An evaluation of mental workload with frontal EEG publication-title: PLoS ONE doi: 10.1371/journal.pone.0174949 – year: 2024 ident: B116 publication-title: Cross-Subject Data Splitting for Brain-to-Text – volume: 14 start-page: 799 year: 2022 ident: B123 article-title: Cognitive workload recognition using eeg signals and machine learning: a review publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3090217 – volume: 28 start-page: 793 year: 2007 ident: B97 article-title: Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20309 – volume: 8 start-page: 0322 year: 2014 ident: B45 article-title: Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00322 – volume: 16 start-page: 497 year: 2022 ident: B93 article-title: Investigation of the effect of rosemary odor on mental workload using EEG: an artificial intelligence approach publication-title: SIViP doi: 10.1007/s11760-021-01992-5 – volume: 18 start-page: 414 year: 2014 ident: B16 article-title: Frontal theta as a mechanism for cognitive control publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2014.04.012 – start-page: 3448 volume-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) year: 2008 ident: B62 article-title: “An EEG-based subject- and session-independent drowsiness detection,” – volume: 10 start-page: 80448 year: 2022 ident: B75 article-title: Why is multiclass classification hard? publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3192514 – volume: 56 start-page: 188 year: 2012 ident: B80 article-title: Temporal factors of EEG and artificial neural network classifiers of mental workload publication-title: Proc. Hum. Factors Ergon. Soc. Ann. Meet. doi: 10.1177/1071181312561016 – volume: 22 start-page: 7623 year: 2022 ident: B15 article-title: EEG/fNIRS based workload classification using functional brain connectivity and machine learning publication-title: Sensors doi: 10.3390/s22197623 – volume: 98 start-page: 157 year: 2015 ident: B52 article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression publication-title: Int. J. Psychophysiol doi: 10.1016/j.ijpsycho.2015.10.004 – volume: 24 start-page: 4577 year: 2024 ident: B59 article-title: Rapid mental workload detection of air traffic controllers with three EEG Sensors publication-title: Sensors doi: 10.3390/s24144577 – volume: 26 start-page: 2106 year: 2018 ident: B61 article-title: STEW: simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2872924 – start-page: 123 volume-title: Proceedings. IEEE SoutheastCon 2001 (Cat. No.01CH37208) year: 2001 ident: B63 article-title: “EEG signal analysis for human workload classification,” doi: 10.1109/SECON.2001.923101 – start-page: 663 volume-title: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2022 ident: B57 article-title: “Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks,” doi: 10.1109/IROS47612.2022.9981424 – volume: 31 start-page: 2632 year: 2023 ident: B38 article-title: Cross-task mental workload recognition based on EEG tensor representation and transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3277867 – volume: 53 start-page: 357 year: 2023 ident: B66 article-title: Fusion of spatial, temporal, and spectral EEG signatures improves multilevel cognitive load prediction publication-title: IEEE Trans. Hum. Machine Syst. doi: 10.1109/THMS.2023.3235003 – volume: 27 start-page: 31 year: 2019 ident: B122 article-title: Learning spatial–spectral–temporal eeg features with recurrent 3d convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2884641 – volume: 197 start-page: 470 year: 2019 ident: B107 article-title: Decrypting the electrophysiological individuality of the human brain: identification of individuals based on resting-state EEG activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.04.005 – volume: 92 start-page: 106046 year: 2024 ident: B109 article-title: LGNet: learning local–global EEG representations for cognitive workload classification in simulated flights publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2024.106046 – volume: 59 start-page: 48 year: 2012 ident: B5 article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.047 – start-page: 2999 volume-title: Proceeding of the 33rd European Safety and Reliability Conference year: 2023 ident: B83 article-title: “Visual mental workload assessment from EEG in manual assembly task,” doi: 10.3850/978-981-18-8071-1_P667-cd – volume: 16 start-page: 1006 year: 2024 ident: B41 article-title: Deep learning framework for modeling cognitive load from small and noisy EEG Data publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2023.3319305 – volume: 11 start-page: 327 year: 2020 ident: B37 article-title: Context sensitivity of EEG-Based workload classification under different affective valence publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2775616 – volume: 22 start-page: 2917 year: 2005 ident: B99 article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04482.x – volume: 48 start-page: 267 year: 2016 ident: B103 article-title: EEG-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning publication-title: ZDM Math. Educ. doi: 10.1007/s11858-015-0754-8 – volume: 21 start-page: 5205 year: 2021 ident: B54 article-title: Tracking of mental workload with a mobile EEG sensor publication-title: Sensors doi: 10.3390/s21155205 – year: 2014 ident: B4 doi: 10.1109/TENCONSpring.2014.6863035 – volume: 5 start-page: 6794 year: 2024 ident: B27 article-title: Reproducible machine learning research in mental workload classification using EEG publication-title: Front. Neuroergon. doi: 10.3389/fnrgo.2024.1346794 – volume: 21 start-page: 6710 year: 2021 ident: B39 article-title: Subject-specific cognitive workload classification using EEG-based functional connectivity and deep learning publication-title: Sensors doi: 10.3390/s21206710 – volume: 10 start-page: 373 year: 2018 ident: B9 article-title: Quantifying cognitive workload in simulated flight using passive, dry EEG measurements publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2016.2628702 – volume: 19 start-page: 1324 year: 2019 ident: B26 article-title: Monitoring pilot's mental workload using ERPs and spectral power with a six-dry-electrode EEG System in real flight conditions publication-title: Sensors doi: 10.3390/s19061324 – volume: 12 start-page: 046020 year: 2015 ident: B120 article-title: Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/12/4/046020 – volume: 95 start-page: 106379 year: 2024 ident: B43 article-title: ECG and EEG based machine learning models for the classification of mental workload and stress levels for women in different menstrual phases, men, and mixed sexes publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2024.106379 – volume: 10 start-page: 3036 year: 2020 ident: B87 article-title: Mental workload classification method based on EEG independent component features publication-title: Appl. Sci. doi: 10.3390/app10093036 – volume: 33 start-page: 30 year: 2017 ident: B118 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2016.11.013 – volume: 4 start-page: 853 year: 2024 ident: B91 article-title: Comparing ANOVA and powershap feature selection methods via shapley additive explanations of models of mental workload built with the theta and alpha EEG band ratios publication-title: Bio. Med. Inform. doi: 10.3390/biomedinformatics4010048 – volume: 89 start-page: 105662 year: 2024 ident: B48 article-title: Identifying stable EEG patterns over time for mental workload recognition using transfer DS-CNN framework publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2023.105662 – volume: 20 start-page: 066028 year: 2023 ident: B53 article-title: Enhancing EEG-based cross-day mental workload classification using periodic component of power spectrum publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/ad0f3d – start-page: 5605 volume-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2019 ident: B96 article-title: “EEG-Based Mental Workload Estimation,” doi: 10.1109/EMBC.2019.8857164 – start-page: 1 volume-title: 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC) year: 2023 ident: B95 article-title: “Dry EEG-based mental workload prediction for aviation,” doi: 10.1109/DASC58513.2023.10311163 – volume: 28 start-page: 2536 year: 2024 ident: B100 article-title: EEG-Based Mental Workload classification method based on hybrid deep learning model under IoT publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3281793 – volume: 8 start-page: 0114 year: 2014 ident: B77 article-title: EEG-based workload estimation across affective contexts publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00114 – volume: 72 start-page: 1 year: 2023 ident: B124 article-title: Cross-subject cognitive workload recognition based on EEG and deep domain adaptation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1007/978-981-99-1642-9_20 – volume: 76 start-page: 582 year: 2018 ident: B46 article-title: Deep convolutional neural networks for mental load classification based on EEG data publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.12.002 – volume: 146 start-page: 107726 year: 2019 ident: B81 article-title: Mental workload of young and older adults gauged with ERPs and spectral power during N-back task performance publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2019.107726 – volume: 109 start-page: 159 year: 2019 ident: B114 article-title: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.034 – volume: 69 start-page: 1301 year: 2020 ident: B23 article-title: The impact of individual differences on multitasking ability publication-title: Int. J. Prod. Perform. Manag doi: 10.1108/IJPPM-04-2019-0191 – volume: 18 start-page: 3515 year: 2024 ident: B11 article-title: Data leakage in deep learning studies of translational EEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2024.1373515 – volume: 45 start-page: 635 year: 2003 ident: B111 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Hum. Factors doi: 10.1518/hfes.45.4.635.27088 – volume: 18 start-page: 3805 year: 2024 ident: B60 article-title: A cross-attention swin transformer network for EEG-based subject-independent cognitive load assessment publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-024-10160-7 – volume: 68 start-page: 102819 year: 2021 ident: B56 article-title: EEG based visual cognitive workload analysis using multirate IIR filters publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2021.102819 – volume: 8 start-page: 16009 year: 2020 ident: B55 article-title: Multilevel feature fusion with 3D convolutional neural network for EEG-based workload estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966834 – volume: 57 start-page: 101745 year: 2020 ident: B86 article-title: Ternary-task convolutional bidirectional neural turing machine for assessment of EEG-based cognitive workload publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2019.101745 – volume: 34 start-page: 11395 year: 2022 ident: B71 article-title: Beyond traditional approaches: a partial directed coherence with graph theory-based mental load assessment using EEG modality publication-title: Neural. Comput. Applic. doi: 10.1007/s00521-020-05408-2 – volume: 31 start-page: 771 year: 2023 ident: B115 article-title: Cognitive load detection using Ci-SSA for EEG signal decomposition and nature-inspired feature selection publication-title: Turk. J. Elec. Eng. Comput. Sci. doi: 10.55730/1300-0632.4017 – start-page: 1 volume-title: 2020 IEEE International Systems Conference (SysCon) year: 2020 ident: B94 article-title: “Evaluation of classification techniques for identifying cognitive load levels using EEG Signals,” – start-page: 271 volume-title: 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) year: 2024 ident: B70 article-title: “The Effect of EEG segment's length on mental workload detection,” doi: 10.1109/MetroXRAINE62247.2024.10795942 – volume: 8 start-page: 336 year: 2010 ident: B73 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Int. J. Surg. doi: 10.1016/j.ijsu.2010.02.007 – year: 2024 ident: B68 article-title: Exploring differential entropy and multifractal cumulants for EEG-based mental workload recognition publication-title: Int. J. Adv. Comput. Sci. Appl. (IJACSA) doi: 10.14569/IJACSA.2024.0150515 – volume: 10 start-page: 1875 year: 2022 ident: B88 article-title: Mental workload classification method based on EEG cross-session subspace alignment publication-title: Mathematics doi: 10.3390/math10111875 – volume: 11 start-page: 944 year: 2019 ident: B105 article-title: Individual-specific classification of mental workload levels via an ensemble heterogeneous extreme learning machine for EEG Modeling publication-title: Symmetry doi: 10.3390/sym11070944 – volume: 45 start-page: e26552 year: 2024 ident: B18 article-title: Evidence for modulation of EEG microstates by mental workload levels and task types publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26552 |
SSID | ssj0002784203 |
Score | 2.3067243 |
Snippet | The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | deep learning electroencephalogram (EEG) machine learning mental workload pattern recognition task design |
Title | Machine learning performance in EEG-based mental workload classification across task types: a systematic review |
URI | https://doaj.org/article/317e861f86144f8bada4d3804e920f7f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2673-6195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002784203 issn: 2673-6195 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2673-6195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002784203 issn: 2673-6195 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 2673-6195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002784203 issn: 2673-6195 databaseCode: RPM dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEFER5VDcgFhSaxHESsxXUUiHBRKVu0cWPildatWXg3-NzAi0TC2tkRafvnHvluzvGzrl19yCzZYCoeJCUPA7QBRqBVmGp0kinCj1B9jEdjZP7iZhsrPoiTlg9HrgGruf8m8nTyOaUudi8RI2J5nmYGBmHNrNkfZ0b20imXprfaXHI6y4Zl4XJnq0WU2r2i8VVlMbOcstfnmhjYL_3LMNdttOEhNCvRdljW6baZ-1-5dLh90-4AE_S9NXvNps9ePKjgWbbwxTma-Y_PFcwGNwF5Jk01FP7gYhXbzPUoChOJmKQ1wWglwpWuHwFqsMurwFhPdcZ6p6WAzYeDp5uR0GzMyFQznbRwjiL2ggCPREysiJP0X1oaHNMlUTnjXVmjFW5zqwt41IKYWwsjdapg0ZH_JC1qllljhi481xpyZMQVWK1cqFEhDLEUBophTUddvmNXzGvR2MULqUgtAuPdkFoFw3aHXZDEP-cpLHW_oFTdtEou_hL2cf_8ZITtk2CEekjEqestVp8mDMXWazKrr9EXV_y-QIYsc9q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+performance+in+EEG-based+mental+workload+classification+across+task+types%3A+a+systematic+review&rft.jtitle=Frontiers+in+neuroergonomics&rft.au=Pu%C5%A1ica%2C+Milo%C5%A1&rft.au=Mijovi%C4%87%2C+Bogdan&rft.au=Leva%2C+Maria+Chiara&rft.au=Gligorijevi%C4%87%2C+Ivan&rft.date=2025-09-15&rft.issn=2673-6195&rft.eissn=2673-6195&rft.volume=6&rft_id=info:doi/10.3389%2Ffnrgo.2025.1621309&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnrgo_2025_1621309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6195&client=summon |