Machine learning performance in EEG-based mental workload classification across task types: a systematic review

The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult,...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroergonomics Vol. 6
Main Authors Pušica, Miloš, Mijović, Bogdan, Leva, Maria Chiara, Gligorijević, Ivan
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.09.2025
Subjects
Online AccessGet full text
ISSN2673-6195
2673-6195
DOI10.3389/fnrgo.2025.1621309

Cover

Abstract The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult, as their performance is significantly dependent on these factors. In this paper, we present the first comprehensive examination of ML models' performance in EEG-based MWL classification across task types. To achieve this, we categorized ML studies based on the task type used in their experiments and compared models' performances across these categories. Notably, a significant drop in MWL classification accuracy was observed among the best-performing models in multitasking studies where MWL was rated based on quantitative task load, compared to those in single-tasking studies and studies where MWL was subjectively rated. This points to the inherent challenges associated with estimating MWL in more complex tasks such as multitasking. This is particularly relevant for practical applications, as real-world tasks typically involve some degree of multitasking. By comparing ML models' performances across task types, this review provides valuable insights into the state-of-the-art of EEG-based MWL estimation, highlights existing gaps in the field, and points to open questions for further research.
AbstractList The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no standardized benchmark task or set of tasks exists, the comparison of different machine learning (ML) solutions in this field is difficult, as their performance is significantly dependent on these factors. In this paper, we present the first comprehensive examination of ML models' performance in EEG-based MWL classification across task types. To achieve this, we categorized ML studies based on the task type used in their experiments and compared models' performances across these categories. Notably, a significant drop in MWL classification accuracy was observed among the best-performing models in multitasking studies where MWL was rated based on quantitative task load, compared to those in single-tasking studies and studies where MWL was subjectively rated. This points to the inherent challenges associated with estimating MWL in more complex tasks such as multitasking. This is particularly relevant for practical applications, as real-world tasks typically involve some degree of multitasking. By comparing ML models' performances across task types, this review provides valuable insights into the state-of-the-art of EEG-based MWL estimation, highlights existing gaps in the field, and points to open questions for further research.
Author Leva, Maria Chiara
Pušica, Miloš
Mijović, Bogdan
Gligorijević, Ivan
Author_xml – sequence: 1
  givenname: Miloš
  surname: Pušica
  fullname: Pušica, Miloš
– sequence: 2
  givenname: Bogdan
  surname: Mijović
  fullname: Mijović, Bogdan
– sequence: 3
  givenname: Maria Chiara
  surname: Leva
  fullname: Leva, Maria Chiara
– sequence: 4
  givenname: Ivan
  surname: Gligorijević
  fullname: Gligorijević, Ivan
BookMark eNpNkdtKBDEMQIsoeP0Bn_oDs_Yy7Ux9E1kvoPiizyXTpmt1tl3aQdm_d1xFfAgJIRySnGOyn3JCQs45W0jZm4uQyiovBBNqwbXgkpk9ciR0JxvNjdr_Vx-Ss1rfGGOi61vB5BHJj-BeY0I6IpQU04pusIRc1pAc0pjocnnbDFDR0zWmCUb6mcv7mMFTN0KtMUQHU8yJgiu5VjpBfafTdoP1kgKt2zrheh5wtOBHxM9TchBgrHj2m0_Iy83y-fqueXi6vb--emgcV9I0rQngUbWDFK0yPKheA2MKQg_aGdCa-w4xuN53IQxiMEphEAa91_MbPJcn5P6H6zO82U2JayhbmyHaXSOXlYUyrzWilbzDXvMwR9uGfgAPrZc9a9EIFrows8QPa3dhwfDH48x-G7A7A_bbgP01IL8ADA9-XA
Cites_doi 10.1007/978-3-030-91408-0
10.1145/1166253.1166268
10.1109/ACII.2013.164
10.3389/fnins.2021.703139
10.1109/ACCESS.2021.3058271
10.23947/2334-8496-2015-3-1-35-41
10.3389/fnins.2022.744737
10.1109/CVPR.2009.5206848
10.1093/cercor/10.9.829
10.3390/s18051339
10.3390/bioengineering10091027
10.3389/frai.2022.992732
10.3390/app14062282
10.1177/0018720812470842
10.1109/TIM.2023.3265114
10.3389/fnins.2022.869522
10.1007/s41870-021-00807-7
10.1007/978-3-030-32423-0_2
10.3389/fnhum.2019.00191
10.1177/001316446002000104
10.1016/S0926-6410(99)00029-4
10.1109/EMBC46164.2021.9630107
10.1007/s10439-014-1143-0
10.1109/EMBC.2015.7318985
10.1037/cep0000104
10.3389/fninf.2022.861967
10.1109/TIM.2024.3369143
10.1016/j.bspc.2020.101989
10.3390/app12052298
10.1109/IJCNN.2004.1381116
10.1109/TBME.2017.2693157
10.3390/brainsci14020149
10.1518/001872098779480578
10.1177/1071181312561367
10.1109/TIM.2024.3373070
10.1109/LSP.2020.2989663
10.1088/1741-2552/accbed
10.3389/fnhum.2017.00389
10.1109/TIM.2020.3019849
10.1109/TBME.2021.3092206
10.1109/TNSRE.2004.838443
10.3390/machines11110995
10.1109/JBHI.2021.3085131
10.3390/brainsci14101009
10.3390/bioengineering10030361
10.3390/s20205881
10.3390/app9245340
10.1109/AINIT61980.2024.10581666
10.1088/1741-2560/9/4/045008
10.1109/TNSRE.2017.2701002
10.1016/j.bspc.2021.103032
10.1109/ICASSP.2015.7178964
10.1016/S1364-6613(03)00028-7
10.1088/1741-2560/13/2/026019
10.3390/s20185122
10.3389/fnhum.2017.00359
10.1109/TIM.2024.3395312
10.1371/journal.pone.0174949
10.1109/TCDS.2021.3090217
10.1002/hbm.20309
10.3389/fnins.2014.00322
10.1007/s11760-021-01992-5
10.1016/j.tics.2014.04.012
10.1109/ACCESS.2022.3192514
10.1177/1071181312561016
10.3390/s22197623
10.1016/j.ijpsycho.2015.10.004
10.3390/s24144577
10.1109/TNSRE.2018.2872924
10.1109/SECON.2001.923101
10.1109/IROS47612.2022.9981424
10.1109/TNSRE.2023.3277867
10.1109/THMS.2023.3235003
10.1109/TNSRE.2018.2884641
10.1016/j.neuroimage.2019.04.005
10.1016/j.bspc.2024.106046
10.1016/j.neuroimage.2011.07.047
10.3850/978-981-18-8071-1_P667-cd
10.1109/TCDS.2023.3319305
10.1109/TAFFC.2017.2775616
10.1111/j.1460-9568.2005.04482.x
10.1007/s11858-015-0754-8
10.3390/s21155205
10.1109/TENCONSpring.2014.6863035
10.3389/fnrgo.2024.1346794
10.3390/s21206710
10.1109/TCDS.2016.2628702
10.3390/s19061324
10.1088/1741-2560/12/4/046020
10.1016/j.bspc.2024.106379
10.3390/app10093036
10.1016/j.bspc.2016.11.013
10.3390/biomedinformatics4010048
10.1016/j.bspc.2023.105662
10.1088/1741-2552/ad0f3d
10.1109/EMBC.2019.8857164
10.1109/DASC58513.2023.10311163
10.1109/JBHI.2023.3281793
10.3389/fnins.2014.00114
10.1007/978-981-99-1642-9_20
10.1016/j.patcog.2017.12.002
10.1016/j.biopsycho.2019.107726
10.1016/j.compbiomed.2019.04.034
10.1108/IJPPM-04-2019-0191
10.3389/fnins.2024.1373515
10.1518/hfes.45.4.635.27088
10.1007/s11571-024-10160-7
10.1016/j.bspc.2021.102819
10.1109/ACCESS.2020.2966834
10.1016/j.bspc.2019.101745
10.1007/s00521-020-05408-2
10.55730/1300-0632.4017
10.1109/MetroXRAINE62247.2024.10795942
10.1016/j.ijsu.2010.02.007
10.14569/IJACSA.2024.0150515
10.3390/math10111875
10.3390/sym11070944
10.1002/hbm.26552
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fnrgo.2025.1621309
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2673-6195
ExternalDocumentID oai_doaj_org_article_317e861f86144f8bada4d3804e920f7f
10_3389_fnrgo_2025_1621309
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
ID FETCH-LOGICAL-c1539-49fade54b324591f586a005af8a6c9a661d7eefc8d7ffb2b955ef29edd6025d13
IEDL.DBID DOA
ISSN 2673-6195
IngestDate Mon Sep 22 19:24:00 EDT 2025
Thu Sep 18 00:20:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1539-49fade54b324591f586a005af8a6c9a661d7eefc8d7ffb2b955ef29edd6025d13
OpenAccessLink https://doaj.org/article/317e861f86144f8bada4d3804e920f7f
ParticipantIDs doaj_primary_oai_doaj_org_article_317e861f86144f8bada4d3804e920f7f
crossref_primary_10_3389_fnrgo_2025_1621309
PublicationCentury 2000
PublicationDate 2025-9-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-9-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in neuroergonomics
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cabañero Gómez (B13) 2021; 70
Demirezen (B27) 2024; 5
Ma (B69) 2015
Zhou (B124) 2023; 72
B24
Panayotov (B78) 2015
Pušica (B85); 14
Zhou (B123) 2022; 14
Jiao (B46) 2018; 76
Gevins (B36) 1998; 40
Mazher (B71) 2022; 34
Becerra-Sánchez (B6) 2020; 20
Yoo (B119) 2023; 10
Kartali (B50) 2019
Yu (B120) 2015; 12
Qu (B87) 2020; 10
Chen (B19) 2024
Moral (B75) 2022; 10
Crews (B23) 2020; 69
Yin (B117) 2024; 73
Shao (B100) 2024; 28
Ladekar (B56) 2021; 68
Sauseng (B99) 2005; 22
Plechawska-Wójcik (B82) 2019; 9
Friedman (B34) 2019; 13
Kwak (B55) 2020; 8
Wang (B110) 2024; 73
Jin (B48) 2024; 89
Sharma (B101) 2021; 13
Hogervorst (B45) 2014; 8
Hernández-Sabaté (B44) 2022; 12
Yang (B114) 2019; 109
Blanco (B9) 2018; 10
So (B102) 2017; 12
Ke (B53) 2023; 20
Li (B60) 2024; 18
Cao (B15) 2022; 22
Ke (B52) 2015; 98
Sahin Sadik (B93) 2022; 16
Walter (B108) 2013
Das Chakladar (B25) 2020; 60
Liu (B66) 2023; 53
Lagomarsino (B57) 2022
Kutafina (B54) 2021; 21
Salvan (B95) 2023
Wilson (B111) 2003; 45
Qu (B88) 2022; 10
Sarailoo (B98) 2022; 16
Beiramvand (B7) 2024; 73
Pei (B79) 2021; 70
Pušica (B83) 2023
Deng (B28) 2009
Liu (B65) 2017; 11
Longo (B67) 2021
B106
Li (B59) 2024; 24
Dehais (B26) 2019; 19
Aghajani (B1) 2017; 11
Yin (B116) 2024
Ling (B63) 2001
Zanetti (B121) 2022; 69
Havugimana (B41) 2024; 16
Hefron (B42) 2018; 18
Caiazzo (B14) 2023; 11
Chandra (B17) 2015; 3
Xiong (B112) 2020; 20
Gevins (B35) 2000; 10
Yedukondalu (B115) 2023; 31
Pušica (B84)
Wang (B109) 2024; 92
Fan (B33) 2018; 65
Ke (B51) 2021; 15
Penaranda (B80) 2012; 56
Salaken (B94) 2020
Mühl (B77) 2014; 8
Monsell (B74) 2003; 7
Bratfisch (B10) 2019
Ramaswamy (B89) 2021
Strayer (B104) 2017; 71
Grissmann (B37) 2020; 11
Kakkos (B49) 2021; 25
Valizadeh (B107) 2019; 197
Qiao (B86) 2020; 57
Liu (B64) 2023; 10
Zhang (B122) 2019; 27
Brookshire (B11) 2024; 18
Brouwer (B12) 2012; 9
Gupta (B39) 2021; 21
Morgan (B76) 2013; 55
Cavanagh (B16) 2014; 18
Yan (B113) 2023; 72
Chen (B18) 2024; 45
Pergher (B81) 2019; 146
Lin (B62) 2008
Coffey (B21) 2012; 56
Awais (B4) 2014
Yin (B118) 2017; 33
Dove (B31) 2000; 9
Lee (B58) 2006
Lu (B68) 2024
Gysels (B40) 2004; 12
Tao (B105) 2019; 11
Samima (B96) 2019
Zhu (B125) 2021; 9
Fan (B32) 2022; 16
Dimitriadis (B30) 2015; 43
Millan (B72) 2004
Baldwin (B5) 2012; 59
Bjegojević (B8) 2024; 14
Guan (B38) 2023; 31
Moher (B73) 2010; 8
Maarouf (B70) 2024
Hemakom (B43) 2024; 95
Aksu (B2) 2024; 14
Raufi (B90) 2022; 16
Dimitrakopoulos (B29) 2017; 25
Raufi (B91) 2024; 4
Roy (B92) 2016; 13
Cohen (B22) 1960; 20
Spüler (B103) 2016; 48
Jiménez-Guarneros (B47) 2020; 27
Albuquerque (B3) 2022; 5
Chiang (B20) 2023; 20
Lim (B61) 2018; 26
Sammer (B97) 2007; 28
References_xml – start-page: 24
  year: 2021
  ident: B67
  doi: 10.1007/978-3-030-91408-0
– volume-title: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology
  year: 2006
  ident: B58
  article-title: “Using a low-cost electroencephalograph for task classification in HCI research,”
  doi: 10.1145/1166253.1166268
– start-page: 876
  volume-title: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction
  year: 2013
  ident: B108
  article-title: “Using cross-task classification for classifying workload levels in complex learning tasks,”
  doi: 10.1109/ACII.2013.164
– volume: 15
  start-page: 3139
  year: 2021
  ident: B51
  article-title: Cross-task consistency of electroencephalography-based mental workload indicators: comparisons between power spectral density and task-irrelevant auditory event-related potentials
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.703139
– volume: 9
  start-page: 33102
  year: 2021
  ident: B125
  article-title: Cognitive load during multitasking can be accurately assessed based on single channel electroencephalography using graph methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058271
– volume: 3
  start-page: 35
  year: 2015
  ident: B17
  article-title: EEG based cognitive workload classification during NASA MATB-II multitasking
  publication-title: Int. J. Cogn. Res. Sci. Eng. Educ.
  doi: 10.23947/2334-8496-2015-3-1-35-41
– volume: 16
  start-page: 4737
  year: 2022
  ident: B98
  article-title: Assessment of instantaneous cognitive load imposed by educational multimedia using electroencephalography signals
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.744737
– start-page: 248
  year: 2009
  ident: B28
  doi: 10.1109/CVPR.2009.5206848
– volume: 10
  start-page: 829
  year: 2000
  ident: B35
  article-title: Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.9.829
– volume: 18
  start-page: 1339
  year: 2018
  ident: B42
  article-title: Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks
  publication-title: Sensors
  doi: 10.3390/s18051339
– volume: 10
  start-page: 1027
  year: 2023
  ident: B64
  article-title: Research on mental workload of deep-sea oceanauts driving operation tasks from EEG Data
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10091027
– volume: 5
  start-page: 2732
  year: 2022
  ident: B3
  article-title: Estimating distribution shifts for predicting cross-subject generalization in electroencephalography-based mental workload assessment
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.992732
– volume: 14
  start-page: 2282
  year: 2024
  ident: B2
  article-title: Mental workload assessment using machine learning techniques based on EEG and eye tracking data
  publication-title: Appl. Sci.
  doi: 10.3390/app14062282
– start-page: 1
  volume-title: 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN)
  ident: B84
  article-title: “Towards practical deployment: subject-independent EEG-based mental workload classification on assembly lines,”
– volume: 55
  start-page: 776
  year: 2013
  ident: B76
  article-title: Individual differences in multitasking ability and adaptability
  publication-title: Hum. Factors
  doi: 10.1177/0018720812470842
– ident: B106
– volume: 72
  start-page: 1
  year: 2023
  ident: B113
  article-title: Topological EEG-based functional connectivity analysis for mental workload state recognition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3265114
– volume: 16
  start-page: 9522
  year: 2022
  ident: B32
  article-title: EEG-TNet: an end-to-end brain computer interface framework for mental workload estimation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.869522
– volume: 13
  start-page: 2363
  year: 2021
  ident: B101
  article-title: Mental arithmetic task load recognition using EEG signal and Bayesian optimized K-nearest neighbor
  publication-title: Int. J. Inf. Tecnol.
  doi: 10.1007/s41870-021-00807-7
– start-page: 20
  year: 2019
  ident: B50
  article-title: “Real-Time mental workload estimation using EEG,”
  publication-title: Human Mental Workload: Models and Applications
  doi: 10.1007/978-3-030-32423-0_2
– volume: 13
  start-page: 0191
  year: 2019
  ident: B34
  article-title: EEG-based prediction of cognitive load in intelligence tests
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00191
– volume: 20
  start-page: 37
  year: 1960
  ident: B22
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 9
  start-page: 103
  year: 2000
  ident: B31
  article-title: Prefrontal cortex activation in task switching: an event-related fMRI study
  publication-title: Cogn. Brain Res.
  doi: 10.1016/S0926-6410(99)00029-4
– volume-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2021
  ident: B89
  article-title: “Single feature spatio-temporal architecture for EEG Based cognitive load assessment,”
  doi: 10.1109/EMBC46164.2021.9630107
– volume: 43
  start-page: 977
  year: 2015
  ident: B30
  article-title: Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1143-0
– start-page: 2848
  volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2015
  ident: B69
  article-title: “Resting State EEG-based biometrics for individual identification using convolutional neural networks,”
  doi: 10.1109/EMBC.2015.7318985
– volume: 71
  start-page: 93
  year: 2017
  ident: B104
  article-title: The smartphone and the driver's cognitive workload: a comparison of Apple, Google, and Microsoft's intelligent personal assistants
  publication-title: Can. J. Exp. Psychol.
  doi: 10.1037/cep0000104
– ident: B24
– volume: 16
  start-page: 1967
  year: 2022
  ident: B90
  article-title: An evaluation of the EEG alpha-to-theta and theta-to-alpha band ratios as indexes of mental workload
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2022.861967
– volume: 73
  start-page: 1
  year: 2024
  ident: B110
  article-title: ARFN: an attention-based recurrent fuzzy network for EEG mental workload assessment
  publication-title: IEEE Trans. Instrum. Meas
  doi: 10.1109/TIM.2024.3369143
– volume: 60
  start-page: 101989
  year: 2020
  ident: B25
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101989
– volume: 12
  start-page: 2298
  year: 2022
  ident: B44
  article-title: Recognition of the mental workloads of pilots in the cockpit using EEG signals
  publication-title: Appl. Sci
  doi: 10.3390/app12052298
– start-page: 2877
  volume-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541)
  year: 2004
  ident: B72
  article-title: “On the need for on-line learning in brain-computer interfaces,”
  doi: 10.1109/IJCNN.2004.1381116
– volume: 65
  start-page: 43
  year: 2018
  ident: B33
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2693157
– volume: 14
  start-page: 149
  ident: B85
  article-title: Mental workload classification and tasks detection in multitasking: deep learning insights from EEG study
  publication-title: Brain Sci.
  doi: 10.3390/brainsci14020149
– year: 2019
  ident: B10
  publication-title: SIMKAP Simultankapazität/Multi-Tasking.
– volume: 40
  start-page: 79
  year: 1998
  ident: B36
  article-title: Monitoring working memory load during computer-based tasks with EEG Pattern recognition methods
  publication-title: Hum. Factors
  doi: 10.1518/001872098779480578
– volume: 56
  start-page: 1822
  year: 2012
  ident: B21
  article-title: Measuring workload using a combination of electroencephalography and near infrared spectroscopy
  publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet.
  doi: 10.1177/1071181312561367
– volume: 73
  start-page: 1
  year: 2024
  ident: B117
  article-title: Generic mental workload measurement using a shared spatial map network with different EEG channel layouts
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3373070
– volume: 27
  start-page: 750
  year: 2020
  ident: B47
  article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition
  publication-title: IEEE Signal Proc. Lett.
  doi: 10.1109/LSP.2020.2989663
– volume: 20
  start-page: 036010
  year: 2023
  ident: B20
  article-title: Using EEG signals to assess workload during memory retrieval in a real-world scenario
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/accbed
– volume: 11
  start-page: 0389
  year: 2017
  ident: B65
  article-title: Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00389
– volume: 70
  start-page: 1
  year: 2021
  ident: B79
  article-title: EEG-based multiclass workload identification using feature fusion and selection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3019849
– volume: 69
  start-page: 265
  year: 2022
  ident: B121
  article-title: Real-time EEG-based cognitive workload monitoring on wearable devices
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3092206
– volume: 12
  start-page: 406
  year: 2004
  ident: B40
  article-title: Phase synchronization for the recognition of mental tasks in a brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.838443
– volume: 11
  start-page: 995
  year: 2023
  ident: B14
  article-title: Development of a neuroergonomic assessment for the evaluation of mental workload in an industrial human–robot interaction assembly task: a comparative case study
  publication-title: Machines
  doi: 10.3390/machines11110995
– volume: 25
  start-page: 3824
  year: 2021
  ident: B49
  article-title: EEG fingerprints of task-independent mental workload discrimination
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3085131
– volume: 14
  start-page: 1009
  year: 2024
  ident: B8
  article-title: Neuroergonomic attention assessment in safety-critical tasks: EEG indices and subjective metrics validation in a novel task-embedded reaction time paradigm
  publication-title: Brain Sci.
  doi: 10.3390/brainsci14101009
– volume: 10
  start-page: 361
  year: 2023
  ident: B119
  article-title: Prediction of cognitive load from electroencephalography signals using long short-term memory network
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030361
– volume: 20
  start-page: 5881
  year: 2020
  ident: B6
  article-title: Feature selection model based on EEG signals for assessing the cognitive workload in drivers
  publication-title: Sensors
  doi: 10.3390/s20205881
– volume: 9
  start-page: 5340
  year: 2019
  ident: B82
  article-title: A three-class classification of cognitive workload based on EEG spectral data
  publication-title: Appl. Sci.
  doi: 10.3390/app9245340
– start-page: 1838
  volume-title: 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)
  year: 2024
  ident: B19
  article-title: “An improved inceptiontime model for mental workload assessment based on EEG signal,”
  doi: 10.1109/AINIT61980.2024.10581666
– volume: 9
  start-page: 045008
  year: 2012
  ident: B12
  article-title: Estimating workload using EEG spectral power and ERPs in the n-back task
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/9/4/045008
– volume: 25
  start-page: 1940
  year: 2017
  ident: B29
  article-title: Task-Independent mental workload classification based upon common multiband EEG cortical connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2701002
– volume: 70
  start-page: 103032
  year: 2021
  ident: B13
  article-title: Studying the generalisability of cognitive load measured with EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103032
– start-page: 5206
  volume-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2015
  ident: B78
  article-title: “Librispeech: an ASR corpus based on public domain audio books,”
  doi: 10.1109/ICASSP.2015.7178964
– volume: 7
  start-page: 134
  year: 2003
  ident: B74
  article-title: Task switching
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(03)00028-7
– volume: 13
  start-page: 026019
  year: 2016
  ident: B92
  article-title: Efficient mental workload estimation using task-independent EEG features
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/13/2/026019
– volume: 20
  start-page: 5122
  year: 2020
  ident: B112
  article-title: Pattern recognition of cognitive load using EEG and ECG Signals
  publication-title: Sensors
  doi: 10.3390/s20185122
– volume: 11
  start-page: 0359
  year: 2017
  ident: B1
  article-title: Measuring mental workload with EEG+fNIRS
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00359
– volume: 73
  start-page: 1
  year: 2024
  ident: B7
  article-title: Assessment of mental workload using a transformer network and two prefrontal EEG channels: an unparameterized approach
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3395312
– volume: 12
  start-page: e0174949
  year: 2017
  ident: B102
  article-title: An evaluation of mental workload with frontal EEG
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0174949
– year: 2024
  ident: B116
  publication-title: Cross-Subject Data Splitting for Brain-to-Text
– volume: 14
  start-page: 799
  year: 2022
  ident: B123
  article-title: Cognitive workload recognition using eeg signals and machine learning: a review
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3090217
– volume: 28
  start-page: 793
  year: 2007
  ident: B97
  article-title: Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20309
– volume: 8
  start-page: 0322
  year: 2014
  ident: B45
  article-title: Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00322
– volume: 16
  start-page: 497
  year: 2022
  ident: B93
  article-title: Investigation of the effect of rosemary odor on mental workload using EEG: an artificial intelligence approach
  publication-title: SIViP
  doi: 10.1007/s11760-021-01992-5
– volume: 18
  start-page: 414
  year: 2014
  ident: B16
  article-title: Frontal theta as a mechanism for cognitive control
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2014.04.012
– start-page: 3448
  volume-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
  year: 2008
  ident: B62
  article-title: “An EEG-based subject- and session-independent drowsiness detection,”
– volume: 10
  start-page: 80448
  year: 2022
  ident: B75
  article-title: Why is multiclass classification hard?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3192514
– volume: 56
  start-page: 188
  year: 2012
  ident: B80
  article-title: Temporal factors of EEG and artificial neural network classifiers of mental workload
  publication-title: Proc. Hum. Factors Ergon. Soc. Ann. Meet.
  doi: 10.1177/1071181312561016
– volume: 22
  start-page: 7623
  year: 2022
  ident: B15
  article-title: EEG/fNIRS based workload classification using functional brain connectivity and machine learning
  publication-title: Sensors
  doi: 10.3390/s22197623
– volume: 98
  start-page: 157
  year: 2015
  ident: B52
  article-title: Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression
  publication-title: Int. J. Psychophysiol
  doi: 10.1016/j.ijpsycho.2015.10.004
– volume: 24
  start-page: 4577
  year: 2024
  ident: B59
  article-title: Rapid mental workload detection of air traffic controllers with three EEG Sensors
  publication-title: Sensors
  doi: 10.3390/s24144577
– volume: 26
  start-page: 2106
  year: 2018
  ident: B61
  article-title: STEW: simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2872924
– start-page: 123
  volume-title: Proceedings. IEEE SoutheastCon 2001 (Cat. No.01CH37208)
  year: 2001
  ident: B63
  article-title: “EEG signal analysis for human workload classification,”
  doi: 10.1109/SECON.2001.923101
– start-page: 663
  volume-title: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2022
  ident: B57
  article-title: “Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks,”
  doi: 10.1109/IROS47612.2022.9981424
– volume: 31
  start-page: 2632
  year: 2023
  ident: B38
  article-title: Cross-task mental workload recognition based on EEG tensor representation and transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3277867
– volume: 53
  start-page: 357
  year: 2023
  ident: B66
  article-title: Fusion of spatial, temporal, and spectral EEG signatures improves multilevel cognitive load prediction
  publication-title: IEEE Trans. Hum. Machine Syst.
  doi: 10.1109/THMS.2023.3235003
– volume: 27
  start-page: 31
  year: 2019
  ident: B122
  article-title: Learning spatial–spectral–temporal eeg features with recurrent 3d convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2884641
– volume: 197
  start-page: 470
  year: 2019
  ident: B107
  article-title: Decrypting the electrophysiological individuality of the human brain: identification of individuals based on resting-state EEG activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.04.005
– volume: 92
  start-page: 106046
  year: 2024
  ident: B109
  article-title: LGNet: learning local–global EEG representations for cognitive workload classification in simulated flights
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2024.106046
– volume: 59
  start-page: 48
  year: 2012
  ident: B5
  article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.047
– start-page: 2999
  volume-title: Proceeding of the 33rd European Safety and Reliability Conference
  year: 2023
  ident: B83
  article-title: “Visual mental workload assessment from EEG in manual assembly task,”
  doi: 10.3850/978-981-18-8071-1_P667-cd
– volume: 16
  start-page: 1006
  year: 2024
  ident: B41
  article-title: Deep learning framework for modeling cognitive load from small and noisy EEG Data
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2023.3319305
– volume: 11
  start-page: 327
  year: 2020
  ident: B37
  article-title: Context sensitivity of EEG-Based workload classification under different affective valence
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2775616
– volume: 22
  start-page: 2917
  year: 2005
  ident: B99
  article-title: A shift of visual spatial attention is selectively associated with human EEG alpha activity
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04482.x
– volume: 48
  start-page: 267
  year: 2016
  ident: B103
  article-title: EEG-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning
  publication-title: ZDM Math. Educ.
  doi: 10.1007/s11858-015-0754-8
– volume: 21
  start-page: 5205
  year: 2021
  ident: B54
  article-title: Tracking of mental workload with a mobile EEG sensor
  publication-title: Sensors
  doi: 10.3390/s21155205
– year: 2014
  ident: B4
  doi: 10.1109/TENCONSpring.2014.6863035
– volume: 5
  start-page: 6794
  year: 2024
  ident: B27
  article-title: Reproducible machine learning research in mental workload classification using EEG
  publication-title: Front. Neuroergon.
  doi: 10.3389/fnrgo.2024.1346794
– volume: 21
  start-page: 6710
  year: 2021
  ident: B39
  article-title: Subject-specific cognitive workload classification using EEG-based functional connectivity and deep learning
  publication-title: Sensors
  doi: 10.3390/s21206710
– volume: 10
  start-page: 373
  year: 2018
  ident: B9
  article-title: Quantifying cognitive workload in simulated flight using passive, dry EEG measurements
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2016.2628702
– volume: 19
  start-page: 1324
  year: 2019
  ident: B26
  article-title: Monitoring pilot's mental workload using ERPs and spectral power with a six-dry-electrode EEG System in real flight conditions
  publication-title: Sensors
  doi: 10.3390/s19061324
– volume: 12
  start-page: 046020
  year: 2015
  ident: B120
  article-title: Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/12/4/046020
– volume: 95
  start-page: 106379
  year: 2024
  ident: B43
  article-title: ECG and EEG based machine learning models for the classification of mental workload and stress levels for women in different menstrual phases, men, and mixed sexes
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2024.106379
– volume: 10
  start-page: 3036
  year: 2020
  ident: B87
  article-title: Mental workload classification method based on EEG independent component features
  publication-title: Appl. Sci.
  doi: 10.3390/app10093036
– volume: 33
  start-page: 30
  year: 2017
  ident: B118
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2016.11.013
– volume: 4
  start-page: 853
  year: 2024
  ident: B91
  article-title: Comparing ANOVA and powershap feature selection methods via shapley additive explanations of models of mental workload built with the theta and alpha EEG band ratios
  publication-title: Bio. Med. Inform.
  doi: 10.3390/biomedinformatics4010048
– volume: 89
  start-page: 105662
  year: 2024
  ident: B48
  article-title: Identifying stable EEG patterns over time for mental workload recognition using transfer DS-CNN framework
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2023.105662
– volume: 20
  start-page: 066028
  year: 2023
  ident: B53
  article-title: Enhancing EEG-based cross-day mental workload classification using periodic component of power spectrum
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/ad0f3d
– start-page: 5605
  volume-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2019
  ident: B96
  article-title: “EEG-Based Mental Workload Estimation,”
  doi: 10.1109/EMBC.2019.8857164
– start-page: 1
  volume-title: 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC)
  year: 2023
  ident: B95
  article-title: “Dry EEG-based mental workload prediction for aviation,”
  doi: 10.1109/DASC58513.2023.10311163
– volume: 28
  start-page: 2536
  year: 2024
  ident: B100
  article-title: EEG-Based Mental Workload classification method based on hybrid deep learning model under IoT
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3281793
– volume: 8
  start-page: 0114
  year: 2014
  ident: B77
  article-title: EEG-based workload estimation across affective contexts
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00114
– volume: 72
  start-page: 1
  year: 2023
  ident: B124
  article-title: Cross-subject cognitive workload recognition based on EEG and deep domain adaptation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1007/978-981-99-1642-9_20
– volume: 76
  start-page: 582
  year: 2018
  ident: B46
  article-title: Deep convolutional neural networks for mental load classification based on EEG data
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.12.002
– volume: 146
  start-page: 107726
  year: 2019
  ident: B81
  article-title: Mental workload of young and older adults gauged with ERPs and spectral power during N-back task performance
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2019.107726
– volume: 109
  start-page: 159
  year: 2019
  ident: B114
  article-title: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.034
– volume: 69
  start-page: 1301
  year: 2020
  ident: B23
  article-title: The impact of individual differences on multitasking ability
  publication-title: Int. J. Prod. Perform. Manag
  doi: 10.1108/IJPPM-04-2019-0191
– volume: 18
  start-page: 3515
  year: 2024
  ident: B11
  article-title: Data leakage in deep learning studies of translational EEG
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2024.1373515
– volume: 45
  start-page: 635
  year: 2003
  ident: B111
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Hum. Factors
  doi: 10.1518/hfes.45.4.635.27088
– volume: 18
  start-page: 3805
  year: 2024
  ident: B60
  article-title: A cross-attention swin transformer network for EEG-based subject-independent cognitive load assessment
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-024-10160-7
– volume: 68
  start-page: 102819
  year: 2021
  ident: B56
  article-title: EEG based visual cognitive workload analysis using multirate IIR filters
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2021.102819
– volume: 8
  start-page: 16009
  year: 2020
  ident: B55
  article-title: Multilevel feature fusion with 3D convolutional neural network for EEG-based workload estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966834
– volume: 57
  start-page: 101745
  year: 2020
  ident: B86
  article-title: Ternary-task convolutional bidirectional neural turing machine for assessment of EEG-based cognitive workload
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2019.101745
– volume: 34
  start-page: 11395
  year: 2022
  ident: B71
  article-title: Beyond traditional approaches: a partial directed coherence with graph theory-based mental load assessment using EEG modality
  publication-title: Neural. Comput. Applic.
  doi: 10.1007/s00521-020-05408-2
– volume: 31
  start-page: 771
  year: 2023
  ident: B115
  article-title: Cognitive load detection using Ci-SSA for EEG signal decomposition and nature-inspired feature selection
  publication-title: Turk. J. Elec. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.4017
– start-page: 1
  volume-title: 2020 IEEE International Systems Conference (SysCon)
  year: 2020
  ident: B94
  article-title: “Evaluation of classification techniques for identifying cognitive load levels using EEG Signals,”
– start-page: 271
  volume-title: 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)
  year: 2024
  ident: B70
  article-title: “The Effect of EEG segment's length on mental workload detection,”
  doi: 10.1109/MetroXRAINE62247.2024.10795942
– volume: 8
  start-page: 336
  year: 2010
  ident: B73
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2010.02.007
– year: 2024
  ident: B68
  article-title: Exploring differential entropy and multifractal cumulants for EEG-based mental workload recognition
  publication-title: Int. J. Adv. Comput. Sci. Appl. (IJACSA)
  doi: 10.14569/IJACSA.2024.0150515
– volume: 10
  start-page: 1875
  year: 2022
  ident: B88
  article-title: Mental workload classification method based on EEG cross-session subspace alignment
  publication-title: Mathematics
  doi: 10.3390/math10111875
– volume: 11
  start-page: 944
  year: 2019
  ident: B105
  article-title: Individual-specific classification of mental workload levels via an ensemble heterogeneous extreme learning machine for EEG Modeling
  publication-title: Symmetry
  doi: 10.3390/sym11070944
– volume: 45
  start-page: e26552
  year: 2024
  ident: B18
  article-title: Evidence for modulation of EEG microstates by mental workload levels and task types
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26552
SSID ssj0002784203
Score 2.3067243
Snippet The literature features a variety of tasks and methodologies to induce mental workload (MWL) and to assess the performance of MWL estimation models. Because no...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms deep learning
electroencephalogram (EEG)
machine learning
mental workload
pattern recognition
task design
Title Machine learning performance in EEG-based mental workload classification across task types: a systematic review
URI https://doaj.org/article/317e861f86144f8bada4d3804e920f7f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2673-6195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002784203
  issn: 2673-6195
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2673-6195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002784203
  issn: 2673-6195
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 2673-6195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002784203
  issn: 2673-6195
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEFER5VDcgFhSaxHESsxXUUiHBRKVu0cWPildatWXg3-NzAi0TC2tkRafvnHvluzvGzrl19yCzZYCoeJCUPA7QBRqBVmGp0kinCj1B9jEdjZP7iZhsrPoiTlg9HrgGruf8m8nTyOaUudi8RI2J5nmYGBmHNrNkfZ0b20imXprfaXHI6y4Zl4XJnq0WU2r2i8VVlMbOcstfnmhjYL_3LMNdttOEhNCvRdljW6baZ-1-5dLh90-4AE_S9NXvNps9ePKjgWbbwxTma-Y_PFcwGNwF5Jk01FP7gYhXbzPUoChOJmKQ1wWglwpWuHwFqsMurwFhPdcZ6p6WAzYeDp5uR0GzMyFQznbRwjiL2ggCPREysiJP0X1oaHNMlUTnjXVmjFW5zqwt41IKYWwsjdapg0ZH_JC1qllljhi481xpyZMQVWK1cqFEhDLEUBophTUddvmNXzGvR2MULqUgtAuPdkFoFw3aHXZDEP-cpLHW_oFTdtEou_hL2cf_8ZITtk2CEekjEqestVp8mDMXWazKrr9EXV_y-QIYsc9q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+performance+in+EEG-based+mental+workload+classification+across+task+types%3A+a+systematic+review&rft.jtitle=Frontiers+in+neuroergonomics&rft.au=Pu%C5%A1ica%2C+Milo%C5%A1&rft.au=Mijovi%C4%87%2C+Bogdan&rft.au=Leva%2C+Maria+Chiara&rft.au=Gligorijevi%C4%87%2C+Ivan&rft.date=2025-09-15&rft.issn=2673-6195&rft.eissn=2673-6195&rft.volume=6&rft_id=info:doi/10.3389%2Ffnrgo.2025.1621309&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnrgo_2025_1621309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6195&client=summon