Stacking ensemble machine learning for predicting land surface temperature hotspots using landsat 9 data
Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors...
Saved in:
Published in | Proceedings of the Nigerian Society of Physical Sciences Vol. 2; no. 1; p. 158 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
FLAYOO PUBLISHING HOUSE LIMITED
15.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1115-5876 1115-5876 |
DOI | 10.61298/pnspsc.2025.2.158 |
Cover
Abstract | Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors (KNN) to enhance LST prediction using Landsat 9 and SRTM DEM data in Kogi State, Nigeria. The SEM outperformed individual models, achieving an R² of 99.86%, surpassing RF by 3.31%, XGBoost by 8.03%, and KNN by 12.79%. Results revealed significant spatial variability, with temperatures ranging from 24.8°C to 49.3°C and critical hotspots above 40°C covering 1,035 km², supporting geothermal energy exploration. Incorporating elevation spectral indices and key predictors like NDVI, proportion of vegetation, land surface emissivity, and brightness temperature further improved accuracy. This SEM framework enhances predictive robustness, scalability, and spatial analysis for better LST modeling. |
---|---|
AbstractList | Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors (KNN) to enhance LST prediction using Landsat 9 and SRTM DEM data in Kogi State, Nigeria. The SEM outperformed individual models, achieving an R² of 99.86%, surpassing RF by 3.31%, XGBoost by 8.03%, and KNN by 12.79%. Results revealed significant spatial variability, with temperatures ranging from 24.8°C to 49.3°C and critical hotspots above 40°C covering 1,035 km², supporting geothermal energy exploration. Incorporating elevation spectral indices and key predictors like NDVI, proportion of vegetation, land surface emissivity, and brightness temperature further improved accuracy. This SEM framework enhances predictive robustness, scalability, and spatial analysis for better LST modeling. |
Author | Hussaini, Saratu Muhammad Isaac, Bunmi Oyekola Dahuwa, Dahiru Abdullateef, Aliyu Abdulsalami, Momohjimoh Abdulmalik, Danga Onimisi Ibitomi, Michael Adewale Danjuma, Yahaya Jibrin Alao, Joseph Omeiza Usman, Zainab |
Author_xml | – sequence: 1 givenname: Momohjimoh surname: Abdulsalami fullname: Abdulsalami, Momohjimoh – sequence: 2 givenname: Dahiru surname: Dahuwa fullname: Dahuwa, Dahiru – sequence: 3 givenname: Saratu Muhammad surname: Hussaini fullname: Hussaini, Saratu Muhammad – sequence: 4 givenname: Yahaya Jibrin surname: Danjuma fullname: Danjuma, Yahaya Jibrin – sequence: 5 givenname: Michael Adewale surname: Ibitomi fullname: Ibitomi, Michael Adewale – sequence: 6 givenname: Danga Onimisi surname: Abdulmalik fullname: Abdulmalik, Danga Onimisi – sequence: 7 givenname: Bunmi Oyekola surname: Isaac fullname: Isaac, Bunmi Oyekola – sequence: 8 givenname: Zainab surname: Usman fullname: Usman, Zainab – sequence: 9 givenname: Joseph Omeiza surname: Alao fullname: Alao, Joseph Omeiza – sequence: 10 givenname: Aliyu surname: Abdullateef fullname: Abdullateef, Aliyu |
BookMark | eNpNkMlOwzAQQC1UJErpD3DyDzTYTrzkiCqWSpU4AGdr7IzbQDbZ6YG_J20BcZjVoyf5XZNZ13dIyC1nmeKiNHdDl4bkM8GEzETGpbkgc865XEmj1exff0WWKdWOSWVMIRmbk_3rCP6z7nYUu4Sta5C24Pd1h7RBiN3xJfSRDhGr2o_HsYGuoukQA3ikI7YDRhgPEem-H9MwBT2k37sEIy1pBSPckMsATcLlT12Q98eHt_XzavvytFnfb1eey9ysKkQNnDvFAneyzLlAXTif6xAULypkU6qklk4FJyROf1CB57wo89LloIt8QTZnbtXDhx1i3UL8sj3U9rTo485CHGvfoA3GgRZMOaewKIQyTmuDXjvuGCtBTixxZvnYpxQx_PE4syf19qzeHtVbYSf1-Te4cHwB |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.61298/pnspsc.2025.2.158 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1115-5876 |
ExternalDocumentID | oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5 10_61298_pnspsc_2025_2_158 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1538-dee7a11b60f1b59312e74bc37ff614de014dd575b6fb25e5006f1314939b3a743 |
IEDL.DBID | DOA |
ISSN | 1115-5876 |
IngestDate | Wed Aug 27 01:29:47 EDT 2025 Tue Jul 01 04:58:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1538-dee7a11b60f1b59312e74bc37ff614de014dd575b6fb25e5006f1314939b3a743 |
OpenAccessLink | https://doaj.org/article/f8ba7206bb6e44268b778ec7b1b009a5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5 crossref_primary_10_61298_pnspsc_2025_2_158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-15 |
PublicationDateYYYYMMDD | 2025-04-15 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the Nigerian Society of Physical Sciences |
PublicationYear | 2025 |
Publisher | FLAYOO PUBLISHING HOUSE LIMITED |
Publisher_xml | – name: FLAYOO PUBLISHING HOUSE LIMITED |
SSID | ssib056884500 ssib059951249 |
Score | 2.2883506 |
Snippet | Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 158 |
SubjectTerms | Geothermal energy Landsat 9 LST Machine learning |
Title | Stacking ensemble machine learning for predicting land surface temperature hotspots using landsat 9 data |
URI | https://doaj.org/article/f8ba7206bb6e44268b778ec7b1b009a5 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgc2lDZ2bCceAVFVSDBRqVtkOzYdaFo16f_nzgmQjYU1ciLr-ZR7l3t5R8hdBZTemCJLdNA8EUaJREthEm-Ec4VzNosd3dc3NV-Il6VcDkZ9oSasswfugJuGwpqcp8pa5QWkk8LmeeFdbhkEjDbRvTTV6aCYgkiSqiiE_DWeQ1ctnLLc_TUDSV0X023dbBs0MeRywicMZ74PMtPAwD9mmtkxOeopIn3otnZCDnx9SlbACh1-1qZQd_q1_fR0HXWQnvaDHz4o8E-63WHnBbXMFDWLtNnvgnGeogVV759MV5sWitm2oSh679Y1pqWaolz0jCxmz-9P86SfkpC4-LaqvM8NY1algVmpM8Z9LqzL8hAg9VYeaqCqAlJmVbBcekBFBZZBYZRpmxkgEOdkVG9qf0GokiboNCpOMyGM0UzmnAfutJR455jcfyNUbjszjBKKiIhn2eFZIp4lLwHPMXlEEH9WopF1vADHW_bHW_51vJf_8ZArcojbwiYQk9dk1O72_ga4RGtvY9h8AZYyxuU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+ensemble+machine+learning+for+predicting+land+surface+temperature+hotspots+using+landsat+9+data&rft.jtitle=Proceedings+of+the+Nigerian+Society+of+Physical+Sciences&rft.au=Momohjimoh+Abdulsalami&rft.au=Dahiru+Dahuwa&rft.au=Saratu+Muhammad+Hussaini&rft.au=Yahaya+Jibrin+Danjuma&rft.date=2025-04-15&rft.pub=FLAYOO+PUBLISHING+HOUSE+LIMITED&rft.eissn=1115-5876&rft.volume=2&rft.issue=1&rft_id=info:doi/10.61298%2Fpnspsc.2025.2.158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1115-5876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1115-5876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1115-5876&client=summon |