Stacking ensemble machine learning for predicting land surface temperature hotspots using landsat 9 data

Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Nigerian Society of Physical Sciences Vol. 2; no. 1; p. 158
Main Authors Abdulsalami, Momohjimoh, Dahuwa, Dahiru, Hussaini, Saratu Muhammad, Danjuma, Yahaya Jibrin, Ibitomi, Michael Adewale, Abdulmalik, Danga Onimisi, Isaac, Bunmi Oyekola, Usman, Zainab, Alao, Joseph Omeiza, Abdullateef, Aliyu
Format Journal Article
LanguageEnglish
Published FLAYOO PUBLISHING HOUSE LIMITED 15.04.2025
Subjects
Online AccessGet full text
ISSN1115-5876
1115-5876
DOI10.61298/pnspsc.2025.2.158

Cover

Abstract Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors (KNN) to enhance LST prediction using Landsat 9 and SRTM DEM data in Kogi State, Nigeria. The SEM outperformed individual models, achieving an R² of 99.86%, surpassing RF by 3.31%, XGBoost by 8.03%, and KNN by 12.79%. Results revealed significant spatial variability, with temperatures ranging from 24.8°C to 49.3°C and critical hotspots above 40°C covering 1,035 km², supporting geothermal energy exploration. Incorporating elevation spectral indices and key predictors like NDVI, proportion of vegetation, land surface emissivity, and brightness temperature further improved accuracy. This SEM framework enhances predictive robustness, scalability, and spatial analysis for better LST modeling.
AbstractList Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and k-Nearest Neighbors (KNN) to enhance LST prediction using Landsat 9 and SRTM DEM data in Kogi State, Nigeria. The SEM outperformed individual models, achieving an R² of 99.86%, surpassing RF by 3.31%, XGBoost by 8.03%, and KNN by 12.79%. Results revealed significant spatial variability, with temperatures ranging from 24.8°C to 49.3°C and critical hotspots above 40°C covering 1,035 km², supporting geothermal energy exploration. Incorporating elevation spectral indices and key predictors like NDVI, proportion of vegetation, land surface emissivity, and brightness temperature further improved accuracy. This SEM framework enhances predictive robustness, scalability, and spatial analysis for better LST modeling.
Author Hussaini, Saratu Muhammad
Isaac, Bunmi Oyekola
Dahuwa, Dahiru
Abdullateef, Aliyu
Abdulsalami, Momohjimoh
Abdulmalik, Danga Onimisi
Ibitomi, Michael Adewale
Danjuma, Yahaya Jibrin
Alao, Joseph Omeiza
Usman, Zainab
Author_xml – sequence: 1
  givenname: Momohjimoh
  surname: Abdulsalami
  fullname: Abdulsalami, Momohjimoh
– sequence: 2
  givenname: Dahiru
  surname: Dahuwa
  fullname: Dahuwa, Dahiru
– sequence: 3
  givenname: Saratu Muhammad
  surname: Hussaini
  fullname: Hussaini, Saratu Muhammad
– sequence: 4
  givenname: Yahaya Jibrin
  surname: Danjuma
  fullname: Danjuma, Yahaya Jibrin
– sequence: 5
  givenname: Michael Adewale
  surname: Ibitomi
  fullname: Ibitomi, Michael Adewale
– sequence: 6
  givenname: Danga Onimisi
  surname: Abdulmalik
  fullname: Abdulmalik, Danga Onimisi
– sequence: 7
  givenname: Bunmi Oyekola
  surname: Isaac
  fullname: Isaac, Bunmi Oyekola
– sequence: 8
  givenname: Zainab
  surname: Usman
  fullname: Usman, Zainab
– sequence: 9
  givenname: Joseph Omeiza
  surname: Alao
  fullname: Alao, Joseph Omeiza
– sequence: 10
  givenname: Aliyu
  surname: Abdullateef
  fullname: Abdullateef, Aliyu
BookMark eNpNkMlOwzAQQC1UJErpD3DyDzTYTrzkiCqWSpU4AGdr7IzbQDbZ6YG_J20BcZjVoyf5XZNZ13dIyC1nmeKiNHdDl4bkM8GEzETGpbkgc865XEmj1exff0WWKdWOSWVMIRmbk_3rCP6z7nYUu4Sta5C24Pd1h7RBiN3xJfSRDhGr2o_HsYGuoukQA3ikI7YDRhgPEem-H9MwBT2k37sEIy1pBSPckMsATcLlT12Q98eHt_XzavvytFnfb1eey9ysKkQNnDvFAneyzLlAXTif6xAULypkU6qklk4FJyROf1CB57wo89LloIt8QTZnbtXDhx1i3UL8sj3U9rTo485CHGvfoA3GgRZMOaewKIQyTmuDXjvuGCtBTixxZvnYpxQx_PE4syf19qzeHtVbYSf1-Te4cHwB
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.61298/pnspsc.2025.2.158
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1115-5876
ExternalDocumentID oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5
10_61298_pnspsc_2025_2_158
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c1538-dee7a11b60f1b59312e74bc37ff614de014dd575b6fb25e5006f1314939b3a743
IEDL.DBID DOA
ISSN 1115-5876
IngestDate Wed Aug 27 01:29:47 EDT 2025
Tue Jul 01 04:58:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1538-dee7a11b60f1b59312e74bc37ff614de014dd575b6fb25e5006f1314939b3a743
OpenAccessLink https://doaj.org/article/f8ba7206bb6e44268b778ec7b1b009a5
ParticipantIDs doaj_primary_oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5
crossref_primary_10_61298_pnspsc_2025_2_158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings of the Nigerian Society of Physical Sciences
PublicationYear 2025
Publisher FLAYOO PUBLISHING HOUSE LIMITED
Publisher_xml – name: FLAYOO PUBLISHING HOUSE LIMITED
SSID ssib056884500
ssib059951249
Score 2.2883506
Snippet Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface Temperature (LST) estimation. This...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 158
SubjectTerms Geothermal energy
Landsat 9
LST
Machine learning
Title Stacking ensemble machine learning for predicting land surface temperature hotspots using landsat 9 data
URI https://doaj.org/article/f8ba7206bb6e44268b778ec7b1b009a5
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgc2lDZ2bCceAVFVSDBRqVtkOzYdaFo16f_nzgmQjYU1ciLr-ZR7l3t5R8hdBZTemCJLdNA8EUaJREthEm-Ec4VzNosd3dc3NV-Il6VcDkZ9oSasswfugJuGwpqcp8pa5QWkk8LmeeFdbhkEjDbRvTTV6aCYgkiSqiiE_DWeQ1ctnLLc_TUDSV0X023dbBs0MeRywicMZ74PMtPAwD9mmtkxOeopIn3otnZCDnx9SlbACh1-1qZQd_q1_fR0HXWQnvaDHz4o8E-63WHnBbXMFDWLtNnvgnGeogVV759MV5sWitm2oSh679Y1pqWaolz0jCxmz-9P86SfkpC4-LaqvM8NY1algVmpM8Z9LqzL8hAg9VYeaqCqAlJmVbBcekBFBZZBYZRpmxkgEOdkVG9qf0GokiboNCpOMyGM0UzmnAfutJR455jcfyNUbjszjBKKiIhn2eFZIp4lLwHPMXlEEH9WopF1vADHW_bHW_51vJf_8ZArcojbwiYQk9dk1O72_ga4RGtvY9h8AZYyxuU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+ensemble+machine+learning+for+predicting+land+surface+temperature+hotspots+using+landsat+9+data&rft.jtitle=Proceedings+of+the+Nigerian+Society+of+Physical+Sciences&rft.au=Momohjimoh+Abdulsalami&rft.au=Dahiru+Dahuwa&rft.au=Saratu+Muhammad+Hussaini&rft.au=Yahaya+Jibrin+Danjuma&rft.date=2025-04-15&rft.pub=FLAYOO+PUBLISHING+HOUSE+LIMITED&rft.eissn=1115-5876&rft.volume=2&rft.issue=1&rft_id=info:doi/10.61298%2Fpnspsc.2025.2.158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8ba7206bb6e44268b778ec7b1b009a5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1115-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1115-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1115-5876&client=summon