Bayesian Integration Analysis of Spectral Data

In recent years, advances in analysis software have made it possible to automatically perform data analysis for simple, single-spectrum analyses. This is crucial for ensuring the reproducibility and objectivity of data analysis. However, there is a growing concern that this automation may turn data...

Full description

Saved in:
Bibliographic Details
Published inJournal of Surface Analysis Vol. 31; no. 2; p. 137
Main Author Murakami, Ryo
Format Journal Article
LanguageJapanese
Published Tokyo The Surface Analysis Society of Japan 2024
Surface Analysis Society of Japan
Subjects
Online AccessGet full text
ISSN1341-1756
1347-8400
1347-8400
DOI10.1384/jsa.31.137

Cover

Abstract In recent years, advances in analysis software have made it possible to automatically perform data analysis for simple, single-spectrum analyses. This is crucial for ensuring the reproducibility and objectivity of data analysis. However, there is a growing concern that this automation may turn data analysis into a black box, leading to situations where analysis is conducted through unnatural processes without users even realizing it. This issue is also prevalent in the analysis of spectral data. In this article, we introduce a small part of the mathematical structure of spectral analysis within the framework of Bayesian statistics, with a particular focus on the design of the error function. Additionally, we also show that the Bayesian statistical framework naturally leads to integrated analysis of multiple spectra, as would be achieved by a skilled analyst.
AbstractList In recent years, advances in analysis software have made it possible to automatically perform data analysis for simple, single-spectrum analyses. This is crucial for ensuring the reproducibility and objectivity of data analysis. However, there is a growing concern that this automation may turn data analysis into a black box, leading to situations where analysis is conducted through unnatural processes without users even realizing it. This issue is also prevalent in the analysis of spectral data. In this article, we introduce a small part of the mathematical structure of spectral analysis within the framework of Bayesian statistics, with a particular focus on the design of the error function. Additionally, we also show that the Bayesian statistical framework naturally leads to integrated analysis of multiple spectra, as would be achieved by a skilled analyst.
Author Murakami, Ryo
Author_xml – sequence: 1
  fullname: Murakami, Ryo
  organization: National Institute for Materials Science
BookMark eNp9zz1PwzAQBmALFYlSWPgFkdhAKXZsx87AUMpXpUoMwGxd3UtJFJxgp0L596SkdGS6V6dHp3tPycjVDgm5YHTKuBY3ZYApZ31WR2TMuFCxFpSOfjOLmZLpCTkNoaQ0TZUUYzK9gw5DAS5auBY3HtqidtHMQdWFIkR1Hr02aFsPVXQPLZyR4xyqgOf7OSHvjw9v8-d4-fK0mM-WsWWSqxioBJ4iXYlEYgqZoND_stIss5RBJpGjXSsFiInlICGzqwxoDlJovta55hNyPdzduga6b6gq0_jiE3xnGDW7qqavajjrs-r15aAbX39tMbSmrLe-7xAMTxiTWgu5U1eDsr4OwWP-_8nbAZehhQ0eKPi2sBX-0WTvD3v7Ad6g4z_e1Hhg
Cites_doi 10.7566/JPSJ.93.034003
10.1103/PhysRevB.5.4709
10.1016/j.elspec.2019.146903
10.1038/s41592-019-0686-2
10.1016/0039-6028(89)90380-4
10.1063/1.1699114
10.1080/27660400.2021.1957304
10.1080/27660400.2021.1943172
10.1016/j.elspec.2020.147003
10.1016/0370-2693(87)91197-X
10.1016/j.neunet.2011.12.001
10.1016/j.elspec.2023.147298
ContentType Journal Article
Copyright 2024 by The Surface Analysis Society of Japan
Copyright Surface Analysis Society of Japan 2024
Copyright_xml – notice: 2024 by The Surface Analysis Society of Japan
– notice: Copyright Surface Analysis Society of Japan 2024
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1384/jsa.31.137
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1347-8400
ExternalDocumentID 10.1384/jsa.31.137
10_1384_jsa_31_137
article_jsa_31_2_31_137_article_char_en
GroupedDBID 2WC
5GY
ACIWK
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
HH5
JSF
JSH
KQ8
RJT
RZJ
TKC
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1537-a05a36e0b425e6a940a347b819c01a95e3ecd77aee2c3a5a9cb9a0fa5483d8f83
IEDL.DBID UNPAY
ISSN 1341-1756
1347-8400
IngestDate Tue Aug 19 23:38:22 EDT 2025
Mon Jun 30 07:44:15 EDT 2025
Wed Oct 01 06:05:57 EDT 2025
Thu Jul 17 14:00:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1537-a05a36e0b425e6a940a347b819c01a95e3ecd77aee2c3a5a9cb9a0fa5483d8f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jsa/31/2/31_137/_pdf
PQID 3211588457
PQPubID 1976362
ParticipantIDs unpaywall_primary_10_1384_jsa_31_137
proquest_journals_3211588457
crossref_primary_10_1384_jsa_31_137
jstage_primary_article_jsa_31_2_31_137_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Surface Analysis
PublicationYear 2024
Publisher The Surface Analysis Society of Japan
Surface Analysis Society of Japan
Publisher_xml – name: The Surface Analysis Society of Japan
– name: Surface Analysis Society of Japan
References [5]A. Machida, K. Nagata, R. Murakami, H. Shinotsuka, H. Shouno, H. Yoshikawa, and M. Okada, Sci. Technol. Adv. Mater.: Methods 1, 123 (2021).https://doi.org/10.1080/27660400.2021.1943172.
[11]N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).https://doi.org/10.1063/1.1699114.
[3]R. Nishimura, S. Katakami, K. Nagata, M. Mizumaki, and M. Okada, J. Phys. Soc. Jpn. 93, 034003 (2024). https://doi.org/10.7566/JPSJ.93.034003.
[1]K. Nagata, S. Sugita, and M. Okada, Neural Networks 28, 82 (2012).https://doi.org/10.1016/j.neunet.2011.12.001.
[9]P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al., Nature Methods 17, 261 (2020). https://doi.org/10.1038/s41592-019-0686-2.
[4]R. Murakami, K. Nagata, H. Shouno, and H. Yoshikawa, Sci. Technol. Adv. Mater.: Methods 1, 182 (2021).https://doi.org/10.1080/27660400.2021.1957304.
[13]S. Watanabe, J. Machine Learning Research 14, 867 (2013).
[10]R. Murakami, H. Tanaka, H. Shinotsuka, N. Kenji, H. Shouno, and H. Yoshikawa, J. Electron Spectrosc. Relat. Phenom. 245, 147003 (2020).https://doi.org/10.1016/j.elspec.2020.147003.
[6]R. Murakami, H. Yoshitomo, Y. Sonobayashi, H. Oji, H. Makino, H. Tanaka, H. Taguchi, et al., J. Electron Spectrosc. Relat. Phenom. 264, 147298 (2023). https://doi.org/10.1016/j.elspec.2023.147298.
[12]S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Phys. Lett. B 195, 216 (1987).https://doi.org/10.1016/0370-2693(87)91197-X.
[8]S. Tougaard, Surf. Sci. 216, 343 (1989).https://doi.org/10.1016/0039-6028(89)90380-4.
[2]H. Shinotsuka, H. Yoshikawa, R. Murakami, K. Nakamura, H. Tanaka, and K. Yoshihara, J. Electron Spectrosc. Relat. Phenom. 239, 146903 (2020).https://doi.org/10.1016/j.elspec.2019.146903.
[7]S. A. Shirley, Phys. Rev. B 5, 4709 (1972).https://doi.org/10.1103/PhysRevB.5.4709.
11
12
13
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [5]A. Machida, K. Nagata, R. Murakami, H. Shinotsuka, H. Shouno, H. Yoshikawa, and M. Okada, Sci. Technol. Adv. Mater.: Methods 1, 123 (2021).https://doi.org/10.1080/27660400.2021.1943172.
– reference: [7]S. A. Shirley, Phys. Rev. B 5, 4709 (1972).https://doi.org/10.1103/PhysRevB.5.4709.
– reference: [13]S. Watanabe, J. Machine Learning Research 14, 867 (2013).
– reference: [10]R. Murakami, H. Tanaka, H. Shinotsuka, N. Kenji, H. Shouno, and H. Yoshikawa, J. Electron Spectrosc. Relat. Phenom. 245, 147003 (2020).https://doi.org/10.1016/j.elspec.2020.147003.
– reference: [4]R. Murakami, K. Nagata, H. Shouno, and H. Yoshikawa, Sci. Technol. Adv. Mater.: Methods 1, 182 (2021).https://doi.org/10.1080/27660400.2021.1957304.
– reference: [3]R. Nishimura, S. Katakami, K. Nagata, M. Mizumaki, and M. Okada, J. Phys. Soc. Jpn. 93, 034003 (2024). https://doi.org/10.7566/JPSJ.93.034003.
– reference: [8]S. Tougaard, Surf. Sci. 216, 343 (1989).https://doi.org/10.1016/0039-6028(89)90380-4.
– reference: [2]H. Shinotsuka, H. Yoshikawa, R. Murakami, K. Nakamura, H. Tanaka, and K. Yoshihara, J. Electron Spectrosc. Relat. Phenom. 239, 146903 (2020).https://doi.org/10.1016/j.elspec.2019.146903.
– reference: [11]N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).https://doi.org/10.1063/1.1699114.
– reference: [6]R. Murakami, H. Yoshitomo, Y. Sonobayashi, H. Oji, H. Makino, H. Tanaka, H. Taguchi, et al., J. Electron Spectrosc. Relat. Phenom. 264, 147298 (2023). https://doi.org/10.1016/j.elspec.2023.147298.
– reference: [9]P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, et al., Nature Methods 17, 261 (2020). https://doi.org/10.1038/s41592-019-0686-2.
– reference: [12]S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Phys. Lett. B 195, 216 (1987).https://doi.org/10.1016/0370-2693(87)91197-X.
– reference: [1]K. Nagata, S. Sugita, and M. Okada, Neural Networks 28, 82 (2012).https://doi.org/10.1016/j.neunet.2011.12.001.
– ident: 3
  doi: 10.7566/JPSJ.93.034003
– ident: 7
  doi: 10.1103/PhysRevB.5.4709
– ident: 2
  doi: 10.1016/j.elspec.2019.146903
– ident: 9
  doi: 10.1038/s41592-019-0686-2
– ident: 8
  doi: 10.1016/0039-6028(89)90380-4
– ident: 11
  doi: 10.1063/1.1699114
– ident: 4
  doi: 10.1080/27660400.2021.1957304
– ident: 5
  doi: 10.1080/27660400.2021.1943172
– ident: 10
  doi: 10.1016/j.elspec.2020.147003
– ident: 12
  doi: 10.1016/0370-2693(87)91197-X
– ident: 13
– ident: 1
  doi: 10.1016/j.neunet.2011.12.001
– ident: 6
  doi: 10.1016/j.elspec.2023.147298
SSID ssj0066754
Score 2.2461743
Snippet In recent years, advances in analysis software have made it possible to automatically perform data analysis for simple, single-spectrum analyses. This is...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 137
SubjectTerms Bayesian analysis
Data analysis
Error functions
Spectrum analysis
Title Bayesian Integration Analysis of Spectral Data
URI https://www.jstage.jst.go.jp/article/jsa/31/2/31_137/_article/-char/en
https://www.proquest.com/docview/3211588457
https://www.jstage.jst.go.jp/article/jsa/31/2/31_137/_pdf
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Surface Analysis, 2024, Vol.31(2), pp.137
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1347-8400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0066754
  issn: 1347-8400
  databaseCode: HH5
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1347-8400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0066754
  issn: 1347-8400
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CnrxgYrVWgJ6zXM3r2N9FPUgHixUL2GymRSqpEVTpP56Z7uboh5EvCRLMuxjZmfnm33MMnYWSwjoj28HRcxtGvB8G0RSkNdaeEnMU4k62udddD0Qt8Nw-OWqL7Wtcky4aITq5YwmznjqGia64zdwue8G9Mh8HrvZtChX2Vqk1pZabG1wd997XDhYwrfJLEY6TaMwdVQTmpQnQmVDriql42_GaF2X-w1qbsyqKczf4eXli9Xpb7Onpr56s8mzM6tzR378COX4rwbtsC2DRa2eJttlK1jtMecc5qhOVlo3JpIESc5qYpdYk9JSV9ar-RHrEmrYZ4P-1cPFtW0uVbAlDW6xDV4IPEIvJ2XFCFLhAbEoJ2AgPR_SEDnKIo4BMZAcQkhlnoJXAnk2vEjKhB-wVjWp8JBZGEXol8i5B0IEJfnZCZfcB0yRKKVos9OGu9lUx87IFgtoicio5ZludJtFmj9LGsOdhiYwhMvv6jwaKXWbdRpBZUbx3jJODq06extSvmdL4f1S_NHfyI7ZZkBwRk--dFirfp3hCcGROu8qYxB2Tff7BBQU36U
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMOiuoBcfqLi-KOi1z6Svo09WD4sHF9RLmaZTYV26xe0i-vVOTLqsHkS8tKEdkswkmUeSmWHsNJYQ0B_fDoqY28TwfBtEUpDVWnhJzFOJOtrnIOoPxe1D-LCQ6ktdqxyRXvSM6uU8T5xR7RoiuqMpuNx3A3pkPo_drC7KZdaN1NlSh3WHg7uzxy8DS_g2icVIl4kL00Q1oUl5IlQ1ZKpSOf4mjFZ0u99UzdVZVcP7G4zHC1LneoM9tf3Vl01enFmTO_LjRyjHfyG0ydaNLmqdabAttoTVNnPO4R2VZ6V1YyJJ0MhZbewSa1JaKmW92h-xLqGBHTa8vrq_6NsmqYItibnFNngh8Ai9nBYrRpAKD4hEOSkG0vMhDZGjLOIYEAPJIYRU5il4JZBlw4ukTPgu61STCveYhVGEfomceyBEUJKdnXDJfcAUCVKKHjtpqZvVOnZG9nWAloiMMM800j0WafrMYQx1WpjAAM6_K380WtQ9dtgOVGYW3jTjZNAq39uQ6j2dD94vze__DeyArQWkzujNl0PWaV5neETqSJMfm4n3CdvT3r8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Integration+Analysis+of+Spectral+Data&rft.jtitle=Journal+of+surface+analysis&rft.au=Murakami%2C+Ryo&rft.date=2024&rft.issn=1341-1756&rft.eissn=1347-8400&rft.volume=31&rft.issue=2&rft.spage=137&rft_id=info:doi/10.1384%2Fjsa.31.137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1384_jsa_31_137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1756&client=summon