An Approach to ECG-based Gender Recognition Using Random Forest Algorithm
Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, ide...
Saved in:
| Published in | Journal of electronics, electromedical engineering, and medical informatics Vol. 6; no. 2; pp. 107 - 115 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2024
|
| Online Access | Get full text |
| ISSN | 2656-8632 2656-8632 |
| DOI | 10.35882/jeeemi.v6i2.363 |
Cover
| Abstract | Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, identity, emotional state, age, and gender, has exhibited potential for biometric recognition. The Random Forest method proves essential to facilitate gender classification based on ECG. This research delves into applying the Random Forest method for gender classification, utilizing ECG data from the ECG ID Database. The primary aim is to assess the efficacy of the Random Forest algorithm in gender classification. The dataset employed in this study comprises 10,000 features, encompassing both raw and filtered datasets, evaluated through 10-fold cross-validation with Random Forest Classification. Results reveal the highest accuracy for raw data at 55.000%, with sensitivity at 46.452% and specificity at 63.548%. In contrast, the filtered data achieved the highest accuracy of 65.806%, with sensitivity and specificity at 67.097%. These findings conclude that the most significant impact on gender classification in this study lies in the low sensitivity value in raw data. The implications of this research contribute to knowledge by presenting the performance results of the Random Forest algorithm in ECG-based gender classification. |
|---|---|
| AbstractList | Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, identity, emotional state, age, and gender, has exhibited potential for biometric recognition. The Random Forest method proves essential to facilitate gender classification based on ECG. This research delves into applying the Random Forest method for gender classification, utilizing ECG data from the ECG ID Database. The primary aim is to assess the efficacy of the Random Forest algorithm in gender classification. The dataset employed in this study comprises 10,000 features, encompassing both raw and filtered datasets, evaluated through 10-fold cross-validation with Random Forest Classification. Results reveal the highest accuracy for raw data at 55.000%, with sensitivity at 46.452% and specificity at 63.548%. In contrast, the filtered data achieved the highest accuracy of 65.806%, with sensitivity and specificity at 67.097%. These findings conclude that the most significant impact on gender classification in this study lies in the low sensitivity value in raw data. The implications of this research contribute to knowledge by presenting the performance results of the Random Forest algorithm in ECG-based gender classification. |
| Author | Abadi, Friska Faisal, Mohammad Reza Arif, Nuuruddin Hamid Nugrahadi, Dodon Ahmad, Umar Ali Farmadi, Andi |
| Author_xml | – sequence: 1 givenname: Nuuruddin Hamid orcidid: 0000-0001-5748-7639 surname: Arif fullname: Arif, Nuuruddin Hamid – sequence: 2 givenname: Mohammad Reza orcidid: 0000-0001-5748-7639 surname: Faisal fullname: Faisal, Mohammad Reza – sequence: 3 givenname: Andi orcidid: 0000-0001-5748-7639 surname: Farmadi fullname: Farmadi, Andi – sequence: 4 givenname: Dodon orcidid: 0000-0001-5748-7639 surname: Nugrahadi fullname: Nugrahadi, Dodon – sequence: 5 givenname: Friska orcidid: 0000-0001-5748-7639 surname: Abadi fullname: Abadi, Friska – sequence: 6 givenname: Umar Ali orcidid: 0000-0001-9285-297X surname: Ahmad fullname: Ahmad, Umar Ali |
| BookMark | eNqF0DtvwjAUhmGrolIpZe_oPxDqS05wxggBRUKqhMocOb6AUWJHdtqKf18KHbp1Omd5v-F5RCMfvEHomZIZByHYy8kY07nZZ-HYjBf8Do1ZAUUmCs5Gf_4HNE3pRAhhYg5AyRhtKo-rvo9BqiMeAl4u1lkjk9F4bbw2Ee-MCgfvBhc83ifnD3gnvQ4dXoVo0oCr9hCiG47dE7q3sk1m-nsnaL9avi9es-3berOotpmiwHkGNre6ZKAEJ4rQJs8tL1muQAuQYLWinBFBC2hANYooKRXwspSSaZhbavgE0dvuh-_l-Uu2bd1H18l4rimprxz1jaP-4agvHJeG3BoVQ0rR2P-Tb_1KZvA |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.35882/jeeemi.v6i2.363 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2656-8632 |
| EndPage | 115 |
| ExternalDocumentID | 10.35882/jeeemi.v6i2.363 10_35882_jeeemi_v6i2_363 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1533-5f4fd925c830c01b44f3924c5d85a5fdc13208165b5cbc0caac5399aa2d57f1e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2656-8632 |
| IngestDate | Sun Sep 07 11:22:53 EDT 2025 Tue Jul 01 02:42:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 cc-by-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1533-5f4fd925c830c01b44f3924c5d85a5fdc13208165b5cbc0caac5399aa2d57f1e3 |
| ORCID | 0000-0001-5748-7639 0000-0001-9285-297X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.35882/jeeemi.v6i2.363 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_35882_jeeemi_v6i2_363 crossref_primary_10_35882_jeeemi_v6i2_363 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of electronics, electromedical engineering, and medical informatics |
| PublicationYear | 2024 |
| SSID | ssj0002875510 |
| Score | 2.3239148 |
| Snippet | Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 107 |
| Title | An Approach to ECG-based Gender Recognition Using Random Forest Algorithm |
| URI | https://doi.org/10.35882/jeeemi.v6i2.363 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2656-8632 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002875510 issn: 2656-8632 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxFIWDbRfqwrdYHyULNwqpnTzmsRxKaxVapFioqyHJZLTazpR2qujC327SmUoVQd0nEE4C90ty77kAnGKJlSssgjhzBKKu4khgzlHoWo7EnmsRZYqT2x271aPXfdbP3ztMLczS_z1hmv4uHpVSo0H12R7gKrFJAZRspqm7CEq9zo1_Z3rHaSRBrk1w9gv547QvUWd1Fo_56wsfDpdCSXMz8zWazh0ITQbJU3WWiqp8--bP-JdVboGNnCehnx2AbbCi4h2wvuQyuAuu_Bj6uXU4TBPYqF8iE7xCmPWRg91FElESw3kKAezyOExG0PTtnKbQH94nk0H6MNoDvWbjtt5CeQcFJA3HIRbRKPQwky6pyZolKI00D1HJQpdxFoXSFFC7ls0Ek0LWJOfSONVyjkPmRJYi-6AYJ7E6ANBTkiq75igqPKpC6knP0ZvKiNCIIZVdBmcLhYNxZpQR6AvGXJ4gkycw8gRanjI4_9yCXwcf_mfwEVjDmjqy1JpjUEwnM3WiqSEVFVBovzcq-bH5AOrywrE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDbg_qg3dx3siDLwqpbS69PJaxOQWHDAfzqSRpqtOtHVun6F9vsnYyRVDfEwhfAueX5JzvAHCKJVa-cAjizBOI-oojgTlHse94Ege-Q5QpTr5pu60uve6xXvneYWphFv7vCdP0d_GklBr2rRe3jy3ikmVQdZmm7gqodtu34b3pHaeRBPkuwcUv5I_TvkSdlWk64m-vfDBYCCXNjcLXaDJzIDQZJM_WNBeWfP_mz_iXVW6C9ZInYVgcgC2wpNJtsLbgMrgDrsIUhqV1OMwz2KhfIhO8Ylj0kYOdeRJRlsJZCgHs8DTOhtD07ZzkMBw8ZON-_jjcBd1m467eQmUHBSQNxyGW0CQOMJM-saXtCEoTzUNUsthnnCWxNAXUvuMywaSQtuRcGqdaznHMvMRRZA9U0ixV-wAGSlLl2p6iIqAqpoEMPL2pjAiNGFK5NXA2VzgaFUYZkb5gzOSJCnkiI0-k5amB888t-HXwwX8GH4JVrKmjSK05ApV8PFXHmhpycVIemA9fZsGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+to+ECG-based+Gender+Recognition+Using+Random+Forest+Algorithm&rft.jtitle=Journal+of+electronics%2C+electromedical+engineering%2C+and+medical+informatics&rft.au=Arif%2C+Nuuruddin+Hamid&rft.au=Faisal%2C+Mohammad+Reza&rft.au=Farmadi%2C+Andi&rft.au=Nugrahadi%2C+Dodon&rft.date=2024-04-01&rft.issn=2656-8632&rft.eissn=2656-8632&rft.volume=6&rft.issue=2&rft.spage=107&rft.epage=115&rft_id=info:doi/10.35882%2Fjeeemi.v6i2.363&rft.externalDBID=n%2Fa&rft.externalDocID=10_35882_jeeemi_v6i2_363 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2656-8632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2656-8632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2656-8632&client=summon |