An Approach to ECG-based Gender Recognition Using Random Forest Algorithm

Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, ide...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronics, electromedical engineering, and medical informatics Vol. 6; no. 2; pp. 107 - 115
Main Authors Arif, Nuuruddin Hamid, Faisal, Mohammad Reza, Farmadi, Andi, Nugrahadi, Dodon, Abadi, Friska, Ahmad, Umar Ali
Format Journal Article
LanguageEnglish
Published 01.04.2024
Online AccessGet full text
ISSN2656-8632
2656-8632
DOI10.35882/jeeemi.v6i2.363

Cover

Abstract Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, identity, emotional state, age, and gender, has exhibited potential for biometric recognition. The Random Forest method proves essential to facilitate gender classification based on ECG. This research delves into applying the Random Forest method for gender classification, utilizing ECG data from the ECG ID Database. The primary aim is to assess the efficacy of the Random Forest algorithm in gender classification. The dataset employed in this study comprises 10,000 features, encompassing both raw and filtered datasets, evaluated through 10-fold cross-validation with Random Forest Classification. Results reveal the highest accuracy for raw data at 55.000%, with sensitivity at 46.452% and specificity at 63.548%. In contrast, the filtered data achieved the highest accuracy of 65.806%, with sensitivity and specificity at 67.097%. These findings conclude that the most significant impact on gender classification in this study lies in the low sensitivity value in raw data. The implications of this research contribute to knowledge by presenting the performance results of the Random Forest algorithm in ECG-based gender classification.
AbstractList Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). ECG, containing diverse information about medical history, identity, emotional state, age, and gender, has exhibited potential for biometric recognition. The Random Forest method proves essential to facilitate gender classification based on ECG. This research delves into applying the Random Forest method for gender classification, utilizing ECG data from the ECG ID Database. The primary aim is to assess the efficacy of the Random Forest algorithm in gender classification. The dataset employed in this study comprises 10,000 features, encompassing both raw and filtered datasets, evaluated through 10-fold cross-validation with Random Forest Classification. Results reveal the highest accuracy for raw data at 55.000%, with sensitivity at 46.452% and specificity at 63.548%. In contrast, the filtered data achieved the highest accuracy of 65.806%, with sensitivity and specificity at 67.097%. These findings conclude that the most significant impact on gender classification in this study lies in the low sensitivity value in raw data. The implications of this research contribute to knowledge by presenting the performance results of the Random Forest algorithm in ECG-based gender classification.
Author Abadi, Friska
Faisal, Mohammad Reza
Arif, Nuuruddin Hamid
Nugrahadi, Dodon
Ahmad, Umar Ali
Farmadi, Andi
Author_xml – sequence: 1
  givenname: Nuuruddin Hamid
  orcidid: 0000-0001-5748-7639
  surname: Arif
  fullname: Arif, Nuuruddin Hamid
– sequence: 2
  givenname: Mohammad Reza
  orcidid: 0000-0001-5748-7639
  surname: Faisal
  fullname: Faisal, Mohammad Reza
– sequence: 3
  givenname: Andi
  orcidid: 0000-0001-5748-7639
  surname: Farmadi
  fullname: Farmadi, Andi
– sequence: 4
  givenname: Dodon
  orcidid: 0000-0001-5748-7639
  surname: Nugrahadi
  fullname: Nugrahadi, Dodon
– sequence: 5
  givenname: Friska
  orcidid: 0000-0001-5748-7639
  surname: Abadi
  fullname: Abadi, Friska
– sequence: 6
  givenname: Umar Ali
  orcidid: 0000-0001-9285-297X
  surname: Ahmad
  fullname: Ahmad, Umar Ali
BookMark eNqF0DtvwjAUhmGrolIpZe_oPxDqS05wxggBRUKqhMocOb6AUWJHdtqKf18KHbp1Omd5v-F5RCMfvEHomZIZByHYy8kY07nZZ-HYjBf8Do1ZAUUmCs5Gf_4HNE3pRAhhYg5AyRhtKo-rvo9BqiMeAl4u1lkjk9F4bbw2Ee-MCgfvBhc83ifnD3gnvQ4dXoVo0oCr9hCiG47dE7q3sk1m-nsnaL9avi9es-3berOotpmiwHkGNre6ZKAEJ4rQJs8tL1muQAuQYLWinBFBC2hANYooKRXwspSSaZhbavgE0dvuh-_l-Uu2bd1H18l4rimprxz1jaP-4agvHJeG3BoVQ0rR2P-Tb_1KZvA
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35882/jeeemi.v6i2.363
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2656-8632
EndPage 115
ExternalDocumentID 10.35882/jeeemi.v6i2.363
10_35882_jeeemi_v6i2_363
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c1533-5f4fd925c830c01b44f3924c5d85a5fdc13208165b5cbc0caac5399aa2d57f1e3
IEDL.DBID UNPAY
ISSN 2656-8632
IngestDate Sun Sep 07 11:22:53 EDT 2025
Tue Jul 01 02:42:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1533-5f4fd925c830c01b44f3924c5d85a5fdc13208165b5cbc0caac5399aa2d57f1e3
ORCID 0000-0001-5748-7639
0000-0001-9285-297X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.35882/jeeemi.v6i2.363
PageCount 9
ParticipantIDs unpaywall_primary_10_35882_jeeemi_v6i2_363
crossref_primary_10_35882_jeeemi_v6i2_363
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of electronics, electromedical engineering, and medical informatics
PublicationYear 2024
SSID ssj0002875510
Score 2.3239148
Snippet Human-Computer Interaction (HCI) has witnessed rapid advancements in signal processing research within the health domain, particularly in signal analyses like...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 107
Title An Approach to ECG-based Gender Recognition Using Random Forest Algorithm
URI https://doi.org/10.35882/jeeemi.v6i2.363
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2656-8632
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875510
  issn: 2656-8632
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxFIWDbRfqwrdYHyULNwqpnTzmsRxKaxVapFioqyHJZLTazpR2qujC327SmUoVQd0nEE4C90ty77kAnGKJlSssgjhzBKKu4khgzlHoWo7EnmsRZYqT2x271aPXfdbP3ztMLczS_z1hmv4uHpVSo0H12R7gKrFJAZRspqm7CEq9zo1_Z3rHaSRBrk1w9gv547QvUWd1Fo_56wsfDpdCSXMz8zWazh0ITQbJU3WWiqp8--bP-JdVboGNnCehnx2AbbCi4h2wvuQyuAuu_Bj6uXU4TBPYqF8iE7xCmPWRg91FElESw3kKAezyOExG0PTtnKbQH94nk0H6MNoDvWbjtt5CeQcFJA3HIRbRKPQwky6pyZolKI00D1HJQpdxFoXSFFC7ls0Ek0LWJOfSONVyjkPmRJYi-6AYJ7E6ANBTkiq75igqPKpC6knP0ZvKiNCIIZVdBmcLhYNxZpQR6AvGXJ4gkycw8gRanjI4_9yCXwcf_mfwEVjDmjqy1JpjUEwnM3WiqSEVFVBovzcq-bH5AOrywrE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDbg_qg3dx3siDLwqpbS69PJaxOQWHDAfzqSRpqtOtHVun6F9vsnYyRVDfEwhfAueX5JzvAHCKJVa-cAjizBOI-oojgTlHse94Ege-Q5QpTr5pu60uve6xXvneYWphFv7vCdP0d_GklBr2rRe3jy3ikmVQdZmm7gqodtu34b3pHaeRBPkuwcUv5I_TvkSdlWk64m-vfDBYCCXNjcLXaDJzIDQZJM_WNBeWfP_mz_iXVW6C9ZInYVgcgC2wpNJtsLbgMrgDrsIUhqV1OMwz2KhfIhO8Ylj0kYOdeRJRlsJZCgHs8DTOhtD07ZzkMBw8ZON-_jjcBd1m467eQmUHBSQNxyGW0CQOMJM-saXtCEoTzUNUsthnnCWxNAXUvuMywaSQtuRcGqdaznHMvMRRZA9U0ixV-wAGSlLl2p6iIqAqpoEMPL2pjAiNGFK5NXA2VzgaFUYZkb5gzOSJCnkiI0-k5amB888t-HXwwX8GH4JVrKmjSK05ApV8PFXHmhpycVIemA9fZsGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+to+ECG-based+Gender+Recognition+Using+Random+Forest+Algorithm&rft.jtitle=Journal+of+electronics%2C+electromedical+engineering%2C+and+medical+informatics&rft.au=Arif%2C+Nuuruddin+Hamid&rft.au=Faisal%2C+Mohammad+Reza&rft.au=Farmadi%2C+Andi&rft.au=Nugrahadi%2C+Dodon&rft.date=2024-04-01&rft.issn=2656-8632&rft.eissn=2656-8632&rft.volume=6&rft.issue=2&rft.spage=107&rft.epage=115&rft_id=info:doi/10.35882%2Fjeeemi.v6i2.363&rft.externalDBID=n%2Fa&rft.externalDocID=10_35882_jeeemi_v6i2_363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2656-8632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2656-8632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2656-8632&client=summon