Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction

IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fai...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 16
Main Authors Zhao, Jian, Wang, Jianming, Yin, Jiting, Chen, Yuling, Wu, Baoguo
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.10.2025
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2025.1610571

Cover

Abstract IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fail to adequately capture the dynamic nature of stand development. In addition, commonly used heuristic and traditional methods often suffer from limitations in computational efficiency and generalization ability.MethodsTo address these challenges, this study explores the potential and advantages of multi-agent deep reinforcement learning in forest management, offering innovative insights and methods for achieving sustainable forest ecosystem management. Using the secondary forests of Pinus yunnanensis in southwest China as the research subject, we constructed an objective function and constraints based on spatial and non-spatial structure indexes. Selective harvesting and replanting were employed as optimization measures, and experiments were conducted on five circular plots to compare the performance of multi-agent deep reinforcement learning with that of multi-agent reinforcement learning. To account for the dynamic characteristics of stand structure, we further integrated structure prediction with multi-agent deep reinforcement learning for dynamic optimization across the five plots.ResultsThe results indicate that multi agent deep reinforcement learning consistently outperformed multi agent reinforcement learning across all plots. For the initial objective function values of each plot (0.3501, 0.3799, 0.3982, 0.3344, 0.4294), the optimized results obtained through multi agent deep reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were significantly superior to the maximum objective function values achieved by multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906). Furthermore, the dynamic optimization results incorporating structure prediction demonstrate that all plots progressively approached an ideal stand condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863, 0.6210), leading to a more balanced stand structure and improved long-term stability.DiscussionThis study proposes a novel stand structure optimization method that integrates multi agent deep reinforcement learning with structure prediction, providing theoretical support and practical guidance for the sustainable management of Pinus yunnanensis secondary forests.
AbstractList IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fail to adequately capture the dynamic nature of stand development. In addition, commonly used heuristic and traditional methods often suffer from limitations in computational efficiency and generalization ability.MethodsTo address these challenges, this study explores the potential and advantages of multi-agent deep reinforcement learning in forest management, offering innovative insights and methods for achieving sustainable forest ecosystem management. Using the secondary forests of Pinus yunnanensis in southwest China as the research subject, we constructed an objective function and constraints based on spatial and non-spatial structure indexes. Selective harvesting and replanting were employed as optimization measures, and experiments were conducted on five circular plots to compare the performance of multi-agent deep reinforcement learning with that of multi-agent reinforcement learning. To account for the dynamic characteristics of stand structure, we further integrated structure prediction with multi-agent deep reinforcement learning for dynamic optimization across the five plots.ResultsThe results indicate that multi agent deep reinforcement learning consistently outperformed multi agent reinforcement learning across all plots. For the initial objective function values of each plot (0.3501, 0.3799, 0.3982, 0.3344, 0.4294), the optimized results obtained through multi agent deep reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were significantly superior to the maximum objective function values achieved by multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906). Furthermore, the dynamic optimization results incorporating structure prediction demonstrate that all plots progressively approached an ideal stand condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863, 0.6210), leading to a more balanced stand structure and improved long-term stability.DiscussionThis study proposes a novel stand structure optimization method that integrates multi agent deep reinforcement learning with structure prediction, providing theoretical support and practical guidance for the sustainable management of Pinus yunnanensis secondary forests.
Author Wu, Baoguo
Chen, Yuling
Zhao, Jian
Yin, Jiting
Wang, Jianming
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhao
  fullname: Zhao, Jian
– sequence: 2
  givenname: Jianming
  surname: Wang
  fullname: Wang, Jianming
– sequence: 3
  givenname: Jiting
  surname: Yin
  fullname: Yin, Jiting
– sequence: 4
  givenname: Yuling
  surname: Chen
  fullname: Chen, Yuling
– sequence: 5
  givenname: Baoguo
  surname: Wu
  fullname: Wu, Baoguo
BookMark eNqNkc1qHDEMx01JoWmaB-jNL7Bbf4y962NJPxIItIcWejMaWw4Os_Jgz1C279B3rrcbSo7VQRIS_58Q_9fsggohY2-l2Gq9d-_SPLWtEspspZXC7OQLdimtHTaDVT8unvWv2HVrj6KHEcK53SX7_eFIcMiBl3nJh_wLllyIl8TbAhR7rmtY1oo8E_-aaW38uBIBIbXceMNQKEI98lQqtqXxERpG3hERceYVM_VNwAPSwieESpke-HMyTHyuGHM4HX7DXiaYGl4_1Sv2_dPHbze3m_svn-9u3t9vgjRSboxLAMFFaQY00ijYW9NfBMBxjzjKIbgACZ3WSQerxl2PBC5aqwBEiPqK3Z25scCjn2s-9B98gez_Dkp98FCXHCb0QUdAYdI4jnGIJkHU_ebeOi2Uiyp1ljqzVprh-BOm6R9QCn_yx5_88Sd__JM_XSTPolBLaxXTf2j-ANFrm9I
Cites_doi 10.14067/j.cnki.1673-923x.2020.01.002
10.3390/f14102046
10.3390/f15111963
10.13332/j.1000-1522.2011.05.017
10.13332/j.1000-1522.20140356
10.1080/02827581.2019.1680729
10.3390/f15071143
10.1016/j.jce.2003.10.003
10.1016/j.foreco.2024.121783
10.12302/j.issn.1000-2006.202005043
10.13332/j.1000-1522.20190025
10.13484/j.nmgdxxbzk.20210306
10.3390/f9100610
10.1016/j.foreco.2014.02.006
10.11929/j.swfu.202312031
10.5424/srf/2007161-00999
10.1016/j.forpol.2012.04.002
10.1016/j.procir.2018.03.212
10.1016/j.pdpdt.2022.103023
10.1139/x11-078
10.1093/forestscience/45.2.292
10.1109/TMC.2023.3312276
10.1016/j.foreco.2021.119965
10.1016/S0378-1127(03)00102-6
10.1093/forestry/cpac032
10.1016/j.autcon.2023.104767
10.13287/j.1001-9332.202404.023
10.3390/f15122181
10.13275/j.cnki.lykxy.2008.01.025
10.3390/f14122456
10.1016/j.oceaneng.2025.120659
10.1016/J.ECOLIND.2018.11.017
10.1007/s11676-023-01647-w
10.3390/rs15164090
10.1016/j.jenvman.2020.111805
10.13836/j.jjau.2018142
10.1016/j.apenergy.2022.118724
10.1016/j.strusafe.2009.06.005
10.1016/j.ecoinf.2018.01.002
10.3390/f11040413
10.21203/rs.3.rs-1398671/v1
10.16182/j.issn1004731x.joss.19-0320
10.13275/j.cnki.lykxyj.2018.01.011
10.1046/j.1439-0337.2003.00127.x
10.16473/j.cnki.xblykx1972.2024.01.007
10.3390/f13060888
10.14067/j.cnki.1673-923x.2017.02.001
10.1093/forestscience/43.1.129
10.1016/j.foreco.2023.121486
10.1007/s10462-021-09996-w
10.17221/51/2015-JFS
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fpls.2025.1610571
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_c3dae05fbbbd4d5fad3e518693029d2f
10.3389/fpls.2025.1610571
10_3389_fpls_2025_1610571
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RNS
RPM
ADTOC
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c1511-59faac9d154e5152a865664aaeb8eeb14c9cafe933f3c62b7777fa9d662aa0cd3
IEDL.DBID UNPAY
ISSN 1664-462X
IngestDate Mon Oct 20 20:02:59 EDT 2025
Sun Oct 19 01:16:11 EDT 2025
Sat Oct 25 05:11:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1511-59faac9d154e5152a865664aaeb8eeb14c9cafe933f3c62b7777fa9d662aa0cd3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1610571/pdf
ParticipantIDs doaj_primary_oai_doaj_org_article_c3dae05fbbbd4d5fad3e518693029d2f
unpaywall_primary_10_3389_fpls_2025_1610571
crossref_primary_10_3389_fpls_2025_1610571
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B21
Chunyan (B8) 2017; 37
Chi (B7) 2019
Waschneck (B50) 2018; 72
Zaizhi (B57) 2001
Luo (B30) 2021
Sánchez-González (B40) 2007; 16
Boston (B4) 1999; 45
Dongsheng (B12) 2020; 32
Kim (B25) 2025; 324
Gangying (B15) 2018; 31
Jiazheng (B23) 2021; 52
Xiaonan (B53) 2024; 35
Nhat-Duc (B34) 2023; 148
Packalen (B38) 2023; 96
Liu (B29) 2023; 34
Han (B19) 2011; 31
Lei (B27) 2008; 21
Su (B46) 2010; 39
Shuai (B44) 2024; 53
Siipilehto (B45) 2023; 549
Ling-bo (B28) 2011; 33
Bohora (B3) 2014; 319
Chen (B6) 2023; 15
Ning (B35) 2023; 23
Xuan (B54) 2023; 14
Haight (B18) 1997; 43
B33
Jiping (B24) 2020; 40
Zhang (B61) 2023
Dong (B11) 2020; 11
Zhao (B62) 2024; 15
Zhou (B63) 2022; 13
Dong (B10) 2022; 506
Zhang (B58) 2019; 34
Wu (B51) 2022
Gangying (B14) 2005; 26
Okasha (B36) 2009; 31
Gyawali (B17) 2015; 61
Chang (B5) 2024; 44
Xuan (B55) 2024; 15
Tang (B47) 2004; 40
Sattler (B41) 2011; 41
Shen (B42) 2022; 312
Von Gadow (B48) 2003; 122
Zhang (B60) 2024; 15
B56
Ding (B9) 2021; 279
Fotakis (B13) 2012; 21
Xi (B52) 2015; 37
Mengying (B32) 2021; 45
Ma (B31) 2022; 39
Aguirre (B1) 2003; 183
Sheng (B43) 2023; 14
Ali (B2) 2019; 98
Gronauer (B16) 2022; 55
Zhang (B59) 2018; 45
Raptis (B39) 2018; 9
Wang (B49) 2019; 41
Jianming (B22) 2017; 53
Lee (B26) 2024; 558
Jian (B20) 2018; 40
Olsthoorn (B37) 1999
References_xml – volume: 40
  start-page: 9
  year: 2020
  ident: B24
  article-title: Prediction of stand spatial structure of natural secondary forest based on gm (1,1)
  publication-title: J. Cent. South Univ. Forestry Technol.
  doi: 10.14067/j.cnki.1673-923x.2020.01.002
– volume: 14
  start-page: 2046
  year: 2023
  ident: B43
  article-title: Selection of the optimal timber harvest based on optimizing stand spatial structure of broadleaf mixed forests
  publication-title: Forests
  doi: 10.3390/f14102046
– start-page: 639
  year: 2001
  ident: B57
  article-title: Status and perspectives on secondary forests in tropical China
  publication-title: J. Trop. For. Sci.
– volume: 15
  start-page: 1963
  year: 2024
  ident: B60
  article-title: Optimizing Pinus tabuliformis forest spatial structure and function in beijing, China
  publication-title: Forests (19994907)
  doi: 10.3390/f15111963
– year: 2021
  ident: B30
  article-title: Stand structure characteristics of betula alnoides natural forest in dehong prefecture, yunnan province
– volume: 33
  start-page: 20
  year: 2011
  ident: B28
  article-title: Visualization of individual Mongolian scots pines in the plantation conditions based on characteristic parameters of morphological structures
  publication-title: J. OF Beijing FORESTRY Univ.
  doi: 10.13332/j.1000-1522.2011.05.017
– year: 1999
  ident: B37
  article-title: Management of mixed-species forest: silviculture and economics
– year: 2023
  ident: B61
  article-title: Technical regulation for forestation; technical report gb/t 15776-2023, state administration for market regulation
– volume: 37
  start-page: 19
  year: 2015
  ident: B52
  article-title: Individual growth simulation for natural secondary forest of Quercus variabilis in qinling area based on fvs
  publication-title: J. OF Beijing FORESTRY Univ.
  doi: 10.13332/j.1000-1522.20140356
– volume: 34
  start-page: 751
  year: 2019
  ident: B58
  article-title: Telescope method for characterizing the spatial structure of a pine-oak mixed forest in the xiaolong mountains, China
  publication-title: Scandinavian J. For. Res.
  doi: 10.1080/02827581.2019.1680729
– volume: 31
  start-page: 27
  year: 2011
  ident: B19
  article-title: Effects of different intensity of thinning on the improvement of middle-aged yunnan pine stand
  publication-title: J. Cent. South Univ. For. Technol.
– volume: 15
  start-page: 1143
  year: 2024
  ident: B55
  article-title: Multi-agent reinforcement learning for stand structure collaborative optimization of Pinus yunnanensis secondary forests
  publication-title: Forests
  doi: 10.3390/f15071143
– ident: B21
– start-page: 1635
  year: 2019
  ident: B7
  article-title: Dynamic multi-objective optimization model for forest spatial structure with environmental detection mechanism
– volume: 40
  start-page: 25
  year: 2004
  ident: B47
  article-title: Study on spatial structure optimizing model of stand selection cutting
  publication-title: Sci. Silvae Sin.
  doi: 10.1016/j.jce.2003.10.003
– volume: 558
  start-page: 121783
  year: 2024
  ident: B26
  article-title: Calibration models for diameter and height growth of Norway spruce growing in uneven-aged stands in Finland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2024.121783
– volume: 45
  start-page: 13
  year: 2021
  ident: B32
  article-title: Tree crown length prediction models for Larix algensis and Fraxinus mandshurica in mixed plantations with different mixing methods
  publication-title: J. Nanjing Forestry Univesity (Natural Sci. Edition)
  doi: 10.12302/j.issn.1000-2006.202005043
– volume: 41
  start-page: 127
  year: 2019
  ident: B49
  article-title: Optimization of replanting space of natural secondary forest in daxing’anling mountains of northeastern China
  publication-title: J. OF Beijing FORESTRY Univ.
  doi: 10.13332/j.1000-1522.20190025
– volume: 52
  start-page: 257-263
  year: 2021
  ident: B23
  article-title: Study on the growth prediction model of birch species in the mountainous area of northern hebei
  publication-title: J. Inner Mongolia Univ. (Natural Sci. Edition)
  doi: 10.13484/j.nmgdxxbzk.20210306
– volume: 9
  start-page: 610
  year: 2018
  ident: B39
  article-title: A crown width-diameter model for natural even-aged black pine forest management
  publication-title: Forests
  doi: 10.3390/f9100610
– volume: 26
  start-page: 45-48, 60
  year: 2005
  ident: B14
  article-title: Quantitative analysis of forest spatial structure
  publication-title: J. Northeast Forestry Univ.
– volume: 319
  start-page: 62
  year: 2014
  ident: B3
  article-title: Prediction of tree diameter growth using quantile regression and mixed-effects models
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2014.02.006
– volume: 44
  start-page: 129
  year: 2024
  ident: B5
  article-title: Model for predicting individual tree crown width of natural secondary Betula Platyphylla
  publication-title: J. OF SOUTHWEST FORESTRY Univ.
  doi: 10.11929/j.swfu.202312031
– volume: 16
  start-page: 76
  year: 2007
  ident: B40
  article-title: Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain
  publication-title: For. Syst.
  doi: 10.5424/srf/2007161-00999
– volume: 21
  start-page: 12
  year: 2012
  ident: B13
  article-title: Spatial genetic algorithm for multi-objective forest planning
  publication-title: For. Policy Econ
  doi: 10.1016/j.forpol.2012.04.002
– volume: 72
  start-page: 1264
  year: 2018
  ident: B50
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Proc. Cirpw
  doi: 10.1016/j.procir.2018.03.212
– volume: 39
  start-page: 103023
  year: 2022
  ident: B31
  article-title: Ft-ir combined with pso-cnn algorithm for rapid screening of cervical tumors
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2022.103023
– volume: 41
  start-page: 1567
  year: 2011
  ident: B41
  article-title: A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model sortie-nd
  publication-title: Can. J. For. Res.
  doi: 10.1139/x11-078
– volume: 45
  start-page: 292
  year: 1999
  ident: B4
  article-title: An analysis of monte carlo integer programming, simulated annealing, and tabu search heuristics for solving spatial harvest scheduling problems
  publication-title: For. Sci.
  doi: 10.1093/forestscience/45.2.292
– volume: 23
  start-page: 5818
  year: 2023
  ident: B35
  article-title: Multi-agent deep reinforcement learning based uav trajectory optimization for differentiated services
  publication-title: IEEE Trans. Mobile Computing
  doi: 10.1109/TMC.2023.3312276
– volume: 506
  start-page: 119965
  year: 2022
  ident: B10
  article-title: Optimizing neighborhood-based stand spatial structure: Four cases of boreal forests
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2021.119965
– volume: 183
  start-page: 137
  year: 2003
  ident: B1
  article-title: An analysis of spatial forest structure using neighbourhood-based variables
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(03)00102-6
– volume: 96
  start-page: 49
  year: 2023
  ident: B38
  article-title: Circular or square plots in als-based forest inventories—does it matter
  publication-title: Forestry
  doi: 10.1093/forestry/cpac032
– volume: 148
  start-page: 104767
  year: 2023
  ident: B34
  article-title: Comparison of histogram-based gradient boosting classification machine, random forest, and deep convolutional neural network for pavement raveling severity classification
  publication-title: Automation construction
  doi: 10.1016/j.autcon.2023.104767
– volume: 35
  start-page: 1055
  year: 2024
  ident: B53
  article-title: Age estimation model for individual trees in natural Larix gmelinii forest based on random forest model
  publication-title: Chin. J. Appl. Ecol.
  doi: 10.13287/j.1001-9332.202404.023
– volume: 15
  start-page: 2181
  year: 2024
  ident: B62
  article-title: Optimization of the stand structure in secondary forests of Pinus yunnanensis based on deep reinforcement learning
  publication-title: Forests
  doi: 10.3390/f15122181
– volume: 21
  start-page: 126
  year: 2008
  ident: B27
  article-title: A study on d iametra l structure of yunnan pine forestin the pla teaus ofm id-yunnan province
  publication-title: For. Res.
  doi: 10.13275/j.cnki.lykxy.2008.01.025
– volume: 14
  start-page: 2456
  year: 2023
  ident: B54
  article-title: Reinforcement learning for stand structure optimization of Pinus yunnanensis secondary forests in southwest China
  publication-title: Forests
  doi: 10.3390/f14122456
– volume: 324
  start-page: 120659
  year: 2025
  ident: B25
  article-title: A method for generating multiple hull forms at once using mlp (multi-layer perceptron)
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2025.120659
– volume: 98
  start-page: 665
  year: 2019
  ident: B2
  article-title: Forest stand structure and functioning: Current knowledge and future challenges. Ecological 707
  publication-title: Indicators
  doi: 10.1016/J.ECOLIND.2018.11.017
– volume: 34
  start-page: 1881
  year: 2023
  ident: B29
  article-title: A novel model to evaluate spatial structure in thinned conifer-broadleaved mixed natural forests
  publication-title: J. Forestry Res.
  doi: 10.1007/s11676-023-01647-w
– volume: 15
  start-page: 4090
  year: 2023
  ident: B6
  article-title: Optimizing the spatial structure of metasequoia plantation forest based on uav-lidar and backpack-lidar
  publication-title: Remote Sens.
  doi: 10.3390/rs15164090
– volume: 279
  start-page: 111805
  year: 2021
  ident: B9
  article-title: Effects of thinning on the demography and functional community structure of a secondary tropical lowland rain forest
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.111805
– volume: 40
  start-page: 1125
  year: 2018
  ident: B20
  article-title: Simulation of replantation of low-density ecological landscape forest with coupled stand structure
  publication-title: Acta Agriculturae Universitatis Jiangxiensis
  doi: 10.13836/j.jjau.2018142
– volume: 53
  start-page: 63
  year: 2017
  ident: B22
  article-title: Forest thinning subcompartment intelligent selection based on genetic algorithm
  publication-title: SCIENTIA Silvae SINICAE
– volume: 312
  start-page: 118724
  year: 2022
  ident: B42
  article-title: Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118724
– volume: 31
  start-page: 460
  year: 2009
  ident: B36
  article-title: Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using ga
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2009.06.005
– volume: 45
  start-page: 1
  year: 2018
  ident: B59
  article-title: Composition of basal area in natural forests based on the uniform angle index
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2018.01.002
– volume: 11
  start-page: 413
  year: 2020
  ident: B11
  article-title: Optimizing forest spatial structure with neighborhood-based indices: Four case studies from northeast China
  publication-title: Forests
  doi: 10.3390/f11040413
– ident: B33
– ident: B56
– year: 2022
  ident: B51
  article-title: Multi-objective optimization model of forest spatial structure based on dynamic multi-group pso algorithm
  doi: 10.21203/rs.3.rs-1398671/v1
– volume: 32
  start-page: 371
  year: 2020
  ident: B12
  article-title: Spatial structure optimization of natural forest based on bee colony-particle swarm algorithm
  publication-title: J. System Simulation
  doi: 10.16182/j.issn1004731x.joss.19-0320
– volume: 31
  start-page: 85
  year: 2018
  ident: B15
  article-title: Research progress of structure-based forest management
  publication-title: Lin Ye Ke Xue Yan Jiu
  doi: 10.13275/j.cnki.lykxyj.2018.01.011
– volume: 122
  start-page: 127
  year: 2003
  ident: B48
  article-title: Beziehungen zwischen winkelmaßund baumabständen: Relationship between the winkelmaßand nearest neighbor distances
  publication-title: Forstwissenschaftliches Centralblatt
  doi: 10.1046/j.1439-0337.2003.00127.x
– volume: 53
  start-page: 47
  year: 2024
  ident: B44
  article-title: Characteristics of stand structure of pinus yunnanensis Secondary forests on the east slope of cangshan mountain
  publication-title: J. West China Forestry Sci.
  doi: 10.16473/j.cnki.xblykx1972.2024.01.007
– volume: 13
  start-page: 888
  year: 2022
  ident: B63
  article-title: Spatial structure dynamics and maintenance of a natural mixed forest
  publication-title: Forests
  doi: 10.3390/f13060888
– volume: 37
  start-page: 1
  year: 2017
  ident: B8
  article-title: Spatial location and allocation of replanting trees on pure chinese fir plantation based on voronoi diagram and delaunay triangulation
  publication-title: J. Cent. South Univ. Forestry Technol.
  doi: 10.14067/j.cnki.1673-923x.2017.02.001
– volume: 43
  start-page: 129
  year: 1997
  ident: B18
  article-title: Wildlife conservation planning using stochastic optimization and importance sampling
  publication-title: For. Sci.
  doi: 10.1093/forestscience/43.1.129
– volume: 549
  start-page: 121486
  year: 2023
  ident: B45
  article-title: Predicting height-diameter relationship in uneven-aged stands in Finland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2023.121486
– volume: 39
  start-page: 27
  year: 2010
  ident: B46
  article-title: Effect of intermediate cutting intensity on growth of Pinus yunnanensis plantation
  publication-title: J. West China Forestry Sci.
– volume: 55
  start-page: 895
  year: 2022
  ident: B16
  article-title: Multi-agent deep reinforcement learning: a survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09996-w
– volume: 61
  start-page: 535-543
  year: 2015
  ident: B17
  article-title: Individual tree basal area growth models for chir pine (Pinus roxberghii Sarg.) in western Nepal
  doi: 10.17221/51/2015-JFS
SSID ssj0000500997
Score 2.4158087
Snippet IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms multi-agent deep reinforcement learning
multi-objective optimization
secondary forests
stand structure
structure prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4ignoQn7i-yMGTUu02SXdz9IkIigcFb2WSTERYu2XXRfZH-J-daausJy_2WEoSZqb5vsnjGyEOne6hzR0kRIXTRKNySV85k2CKfFWzRyDLO7p39_nNk759Ns8zpb74TFgjD9wY7tSrAJia6JwLOpgIQaHhOkoqzWzIIs--ad_OJFONqjdTn16zjUlZmD2N1YDVuTNzQhyHSEr3FxDVev3LYnFSVjD9gMFgBmSuV8VKyw7lWTOqNTGH5bpYOB8Sg5tuiM_Lpny8HNJ__tZeoJTDKOv1ANlIwU5GKF9L-fBaTsZySvQUSj6jPpZjTn0DjKaSeCphwVgyggVJTQTESo6wFlH19XqhbKtJvMjZlmlo1Yh3drjjTfF0ffV4cZO05RQST7DeTYyNAN4GIk1kQZNBn7mcBkDXR5qytbceIlqlovJ55nr0RLAhzzOA1Ae1JebLYYnbQhqgxAejxgCgac5zijKjPGQKvDPaq444-rZtUTWqGQVlG-yIgh1RsCOK1hEdcc7W__mQBa_rFxQGRRsGxV9h0BHHP777u8ud_-hyVyxxmwxkXbMn5skVuE8M5d0d1MH4Ba4c6UA
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction
URI https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1610571/pdf
https://doaj.org/article/c3dae05fbbbd4d5fad3e518693029d2f
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk48EaER7UHTqDNw_tIfGyBUiFR9UCk9GTNvlBEcKy4EUr_A_-ZGdupCkJCHPDBkq19zqw93-zszAC8cnoSc-tQEhQeSR2Vk1PljIyjyK6aExKybNH9dGpPZvrj3Mz34HznC8PHKhO77nMi6EXZ2PI7qtbDakm9yU40DHcnx_jDJ0UrH6ZqyQG4MzMgGEM4ZDysQroB-9YQTO_B_uz07PCcFTBrtdQ2m7dWzj_X_UVONeH878CtTVnh9jsul9dk0PE9uNyNvj168nWwuXADf_lbYMf_Mr37cLdDruKwrfAA9mL5EG4erQhdbh_Bj3dtanuxon_Qt865U6ySaPYqRBumdrOOYlGKs0W5qcWWoDOWfH6-FjWr5QHXW0EYmuRULVi6BkFNhBgrsY5NgFff7GWKLtPFF3G9ZRpatWarE3f8GGbH7z-_PZFdqgfpCXKMpckTos8DAbpICCvDKeNMjRjdNJI40T73mGKuVFLeZm5CV8I8WJshjnxQT6BXrsr4FIRB4nZMOgZETf9jp0hrsyFT6J3RXvXh9Y6xRdVG9ChIE2ISF0zigklcdCTuwxGz_qogB-NuXhDjio5DhVcB48gk51zQwSQMiiYx5SSTWR6y1Ic3Vwvn710--6fSz-E2P7I0HZsX0COax5cEky7cQbO9QPcP8_FBt_h_AkouGWw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk48EYNL-2BE2jz8D4SH1ugqpCoeiBSerJmXygiOFbcqEr_A_-ZGdupCkJCHPDN1j5n1jvf7MzOALxxehJz61ASFB5JHZWTU-WMjKPIVzUnJGTZovv51J7M9Ke5me_B-e4uDLtVJr66z4mgF2Vjy--oWg-rJfUmO9Ew3HmO8Y9PilY-TNWSA3BnZkAwhnDIeFiFdAv2rSGY3oP92enZ4TkrYNZqqW02b62cf677i5xqwvnfgzubssLtJS6XN2TQ8QO42o2-dT35NthcuIG_-i2w43-Z3kO43yFXcdhWeAR7sXwMt49WhC63T-DHhza1vVjRHvS9u9wpVkk0ZxWiDVO7WUexKMXZotzUYkvQGUv2n69FzWp5wPVWEIYmOVULlq5BUBMhxkqsYxPg1TdnmaLLdPFV3GyZhlat2erEHT-F2fHHL-9PZJfqQXqCHGNp8oTo80CALhLCynDKOFMjRjeNJE60zz2mmCuVlLeZm9CTMA_WZogjH9Qz6JWrMh6AMEjcjknHgKhpP3aKtDYbMoXeGe1VH97uGFtUbUSPgjQhJnHBJC6YxEVH4j4cMeuvC3Iw7uYDMa7oOFR4FTCOTHLOBR1MwqBoElNOMpnlIUt9eHe9cP7e5fN_Kv0C7vIrS9OxeQk9onl8RTDpwr3uFvxPKkgXhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+of+stand+structure+in+Pinus+yunnanensis+secondary+forests+based+on+deep+reinforcement+learning+and+structural+prediction&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhao%2C+Jian&rft.au=Wang%2C+Jianming&rft.au=Yin%2C+Jiting&rft.au=Chen%2C+Yuling&rft.date=2025-10-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=16&rft_id=info:doi/10.3389%2Ffpls.2025.1610571&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2025_1610571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon