Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction
IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fai...
Saved in:
| Published in | Frontiers in plant science Vol. 16 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
15.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-462X 1664-462X |
| DOI | 10.3389/fpls.2025.1610571 |
Cover
| Abstract | IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fail to adequately capture the dynamic nature of stand development. In addition, commonly used heuristic and traditional methods often suffer from limitations in computational efficiency and generalization ability.MethodsTo address these challenges, this study explores the potential and advantages of multi-agent deep reinforcement learning in forest management, offering innovative insights and methods for achieving sustainable forest ecosystem management. Using the secondary forests of Pinus yunnanensis in southwest China as the research subject, we constructed an objective function and constraints based on spatial and non-spatial structure indexes. Selective harvesting and replanting were employed as optimization measures, and experiments were conducted on five circular plots to compare the performance of multi-agent deep reinforcement learning with that of multi-agent reinforcement learning. To account for the dynamic characteristics of stand structure, we further integrated structure prediction with multi-agent deep reinforcement learning for dynamic optimization across the five plots.ResultsThe results indicate that multi agent deep reinforcement learning consistently outperformed multi agent reinforcement learning across all plots. For the initial objective function values of each plot (0.3501, 0.3799, 0.3982, 0.3344, 0.4294), the optimized results obtained through multi agent deep reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were significantly superior to the maximum objective function values achieved by multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906). Furthermore, the dynamic optimization results incorporating structure prediction demonstrate that all plots progressively approached an ideal stand condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863, 0.6210), leading to a more balanced stand structure and improved long-term stability.DiscussionThis study proposes a novel stand structure optimization method that integrates multi agent deep reinforcement learning with structure prediction, providing theoretical support and practical guidance for the sustainable management of Pinus yunnanensis secondary forests. |
|---|---|
| AbstractList | IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fail to adequately capture the dynamic nature of stand development. In addition, commonly used heuristic and traditional methods often suffer from limitations in computational efficiency and generalization ability.MethodsTo address these challenges, this study explores the potential and advantages of multi-agent deep reinforcement learning in forest management, offering innovative insights and methods for achieving sustainable forest ecosystem management. Using the secondary forests of Pinus yunnanensis in southwest China as the research subject, we constructed an objective function and constraints based on spatial and non-spatial structure indexes. Selective harvesting and replanting were employed as optimization measures, and experiments were conducted on five circular plots to compare the performance of multi-agent deep reinforcement learning with that of multi-agent reinforcement learning. To account for the dynamic characteristics of stand structure, we further integrated structure prediction with multi-agent deep reinforcement learning for dynamic optimization across the five plots.ResultsThe results indicate that multi agent deep reinforcement learning consistently outperformed multi agent reinforcement learning across all plots. For the initial objective function values of each plot (0.3501, 0.3799, 0.3982, 0.3344, 0.4294), the optimized results obtained through multi agent deep reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were significantly superior to the maximum objective function values achieved by multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906). Furthermore, the dynamic optimization results incorporating structure prediction demonstrate that all plots progressively approached an ideal stand condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863, 0.6210), leading to a more balanced stand structure and improved long-term stability.DiscussionThis study proposes a novel stand structure optimization method that integrates multi agent deep reinforcement learning with structure prediction, providing theoretical support and practical guidance for the sustainable management of Pinus yunnanensis secondary forests. |
| Author | Wu, Baoguo Chen, Yuling Zhao, Jian Yin, Jiting Wang, Jianming |
| Author_xml | – sequence: 1 givenname: Jian surname: Zhao fullname: Zhao, Jian – sequence: 2 givenname: Jianming surname: Wang fullname: Wang, Jianming – sequence: 3 givenname: Jiting surname: Yin fullname: Yin, Jiting – sequence: 4 givenname: Yuling surname: Chen fullname: Chen, Yuling – sequence: 5 givenname: Baoguo surname: Wu fullname: Wu, Baoguo |
| BookMark | eNqNkc1qHDEMx01JoWmaB-jNL7Bbf4y962NJPxIItIcWejMaWw4Os_Jgz1C279B3rrcbSo7VQRIS_58Q_9fsggohY2-l2Gq9d-_SPLWtEspspZXC7OQLdimtHTaDVT8unvWv2HVrj6KHEcK53SX7_eFIcMiBl3nJh_wLllyIl8TbAhR7rmtY1oo8E_-aaW38uBIBIbXceMNQKEI98lQqtqXxERpG3hERceYVM_VNwAPSwieESpke-HMyTHyuGHM4HX7DXiaYGl4_1Sv2_dPHbze3m_svn-9u3t9vgjRSboxLAMFFaQY00ijYW9NfBMBxjzjKIbgACZ3WSQerxl2PBC5aqwBEiPqK3Z25scCjn2s-9B98gez_Dkp98FCXHCb0QUdAYdI4jnGIJkHU_ebeOi2Uiyp1ljqzVprh-BOm6R9QCn_yx5_88Sd__JM_XSTPolBLaxXTf2j-ANFrm9I |
| Cites_doi | 10.14067/j.cnki.1673-923x.2020.01.002 10.3390/f14102046 10.3390/f15111963 10.13332/j.1000-1522.2011.05.017 10.13332/j.1000-1522.20140356 10.1080/02827581.2019.1680729 10.3390/f15071143 10.1016/j.jce.2003.10.003 10.1016/j.foreco.2024.121783 10.12302/j.issn.1000-2006.202005043 10.13332/j.1000-1522.20190025 10.13484/j.nmgdxxbzk.20210306 10.3390/f9100610 10.1016/j.foreco.2014.02.006 10.11929/j.swfu.202312031 10.5424/srf/2007161-00999 10.1016/j.forpol.2012.04.002 10.1016/j.procir.2018.03.212 10.1016/j.pdpdt.2022.103023 10.1139/x11-078 10.1093/forestscience/45.2.292 10.1109/TMC.2023.3312276 10.1016/j.foreco.2021.119965 10.1016/S0378-1127(03)00102-6 10.1093/forestry/cpac032 10.1016/j.autcon.2023.104767 10.13287/j.1001-9332.202404.023 10.3390/f15122181 10.13275/j.cnki.lykxy.2008.01.025 10.3390/f14122456 10.1016/j.oceaneng.2025.120659 10.1016/J.ECOLIND.2018.11.017 10.1007/s11676-023-01647-w 10.3390/rs15164090 10.1016/j.jenvman.2020.111805 10.13836/j.jjau.2018142 10.1016/j.apenergy.2022.118724 10.1016/j.strusafe.2009.06.005 10.1016/j.ecoinf.2018.01.002 10.3390/f11040413 10.21203/rs.3.rs-1398671/v1 10.16182/j.issn1004731x.joss.19-0320 10.13275/j.cnki.lykxyj.2018.01.011 10.1046/j.1439-0337.2003.00127.x 10.16473/j.cnki.xblykx1972.2024.01.007 10.3390/f13060888 10.14067/j.cnki.1673-923x.2017.02.001 10.1093/forestscience/43.1.129 10.1016/j.foreco.2023.121486 10.1007/s10462-021-09996-w 10.17221/51/2015-JFS |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3389/fpls.2025.1610571 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1664-462X |
| ExternalDocumentID | oai_doaj_org_article_c3dae05fbbbd4d5fad3e518693029d2f 10.3389/fpls.2025.1610571 10_3389_fpls_2025_1610571 |
| GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M~E OK1 PGMZT RNS RPM ADTOC IPNFZ M48 RIG UNPAY |
| ID | FETCH-LOGICAL-c1511-59faac9d154e5152a865664aaeb8eeb14c9cafe933f3c62b7777fa9d662aa0cd3 |
| IEDL.DBID | UNPAY |
| ISSN | 1664-462X |
| IngestDate | Mon Oct 20 20:02:59 EDT 2025 Sun Oct 19 01:16:11 EDT 2025 Sat Oct 25 05:11:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1511-59faac9d154e5152a865664aaeb8eeb14c9cafe933f3c62b7777fa9d662aa0cd3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1610571/pdf |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3dae05fbbbd4d5fad3e518693029d2f unpaywall_primary_10_3389_fpls_2025_1610571 crossref_primary_10_3389_fpls_2025_1610571 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in plant science |
| PublicationYear | 2025 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | B21 Chunyan (B8) 2017; 37 Chi (B7) 2019 Waschneck (B50) 2018; 72 Zaizhi (B57) 2001 Luo (B30) 2021 Sánchez-González (B40) 2007; 16 Boston (B4) 1999; 45 Dongsheng (B12) 2020; 32 Kim (B25) 2025; 324 Gangying (B15) 2018; 31 Jiazheng (B23) 2021; 52 Xiaonan (B53) 2024; 35 Nhat-Duc (B34) 2023; 148 Packalen (B38) 2023; 96 Liu (B29) 2023; 34 Han (B19) 2011; 31 Lei (B27) 2008; 21 Su (B46) 2010; 39 Shuai (B44) 2024; 53 Siipilehto (B45) 2023; 549 Ling-bo (B28) 2011; 33 Bohora (B3) 2014; 319 Chen (B6) 2023; 15 Ning (B35) 2023; 23 Xuan (B54) 2023; 14 Haight (B18) 1997; 43 B33 Jiping (B24) 2020; 40 Zhang (B61) 2023 Dong (B11) 2020; 11 Zhao (B62) 2024; 15 Zhou (B63) 2022; 13 Dong (B10) 2022; 506 Zhang (B58) 2019; 34 Wu (B51) 2022 Gangying (B14) 2005; 26 Okasha (B36) 2009; 31 Gyawali (B17) 2015; 61 Chang (B5) 2024; 44 Xuan (B55) 2024; 15 Tang (B47) 2004; 40 Sattler (B41) 2011; 41 Shen (B42) 2022; 312 Von Gadow (B48) 2003; 122 Zhang (B60) 2024; 15 B56 Ding (B9) 2021; 279 Fotakis (B13) 2012; 21 Xi (B52) 2015; 37 Mengying (B32) 2021; 45 Ma (B31) 2022; 39 Aguirre (B1) 2003; 183 Sheng (B43) 2023; 14 Ali (B2) 2019; 98 Gronauer (B16) 2022; 55 Zhang (B59) 2018; 45 Raptis (B39) 2018; 9 Wang (B49) 2019; 41 Jianming (B22) 2017; 53 Lee (B26) 2024; 558 Jian (B20) 2018; 40 Olsthoorn (B37) 1999 |
| References_xml | – volume: 40 start-page: 9 year: 2020 ident: B24 article-title: Prediction of stand spatial structure of natural secondary forest based on gm (1,1) publication-title: J. Cent. South Univ. Forestry Technol. doi: 10.14067/j.cnki.1673-923x.2020.01.002 – volume: 14 start-page: 2046 year: 2023 ident: B43 article-title: Selection of the optimal timber harvest based on optimizing stand spatial structure of broadleaf mixed forests publication-title: Forests doi: 10.3390/f14102046 – start-page: 639 year: 2001 ident: B57 article-title: Status and perspectives on secondary forests in tropical China publication-title: J. Trop. For. Sci. – volume: 15 start-page: 1963 year: 2024 ident: B60 article-title: Optimizing Pinus tabuliformis forest spatial structure and function in beijing, China publication-title: Forests (19994907) doi: 10.3390/f15111963 – year: 2021 ident: B30 article-title: Stand structure characteristics of betula alnoides natural forest in dehong prefecture, yunnan province – volume: 33 start-page: 20 year: 2011 ident: B28 article-title: Visualization of individual Mongolian scots pines in the plantation conditions based on characteristic parameters of morphological structures publication-title: J. OF Beijing FORESTRY Univ. doi: 10.13332/j.1000-1522.2011.05.017 – year: 1999 ident: B37 article-title: Management of mixed-species forest: silviculture and economics – year: 2023 ident: B61 article-title: Technical regulation for forestation; technical report gb/t 15776-2023, state administration for market regulation – volume: 37 start-page: 19 year: 2015 ident: B52 article-title: Individual growth simulation for natural secondary forest of Quercus variabilis in qinling area based on fvs publication-title: J. OF Beijing FORESTRY Univ. doi: 10.13332/j.1000-1522.20140356 – volume: 34 start-page: 751 year: 2019 ident: B58 article-title: Telescope method for characterizing the spatial structure of a pine-oak mixed forest in the xiaolong mountains, China publication-title: Scandinavian J. For. Res. doi: 10.1080/02827581.2019.1680729 – volume: 31 start-page: 27 year: 2011 ident: B19 article-title: Effects of different intensity of thinning on the improvement of middle-aged yunnan pine stand publication-title: J. Cent. South Univ. For. Technol. – volume: 15 start-page: 1143 year: 2024 ident: B55 article-title: Multi-agent reinforcement learning for stand structure collaborative optimization of Pinus yunnanensis secondary forests publication-title: Forests doi: 10.3390/f15071143 – ident: B21 – start-page: 1635 year: 2019 ident: B7 article-title: Dynamic multi-objective optimization model for forest spatial structure with environmental detection mechanism – volume: 40 start-page: 25 year: 2004 ident: B47 article-title: Study on spatial structure optimizing model of stand selection cutting publication-title: Sci. Silvae Sin. doi: 10.1016/j.jce.2003.10.003 – volume: 558 start-page: 121783 year: 2024 ident: B26 article-title: Calibration models for diameter and height growth of Norway spruce growing in uneven-aged stands in Finland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2024.121783 – volume: 45 start-page: 13 year: 2021 ident: B32 article-title: Tree crown length prediction models for Larix algensis and Fraxinus mandshurica in mixed plantations with different mixing methods publication-title: J. Nanjing Forestry Univesity (Natural Sci. Edition) doi: 10.12302/j.issn.1000-2006.202005043 – volume: 41 start-page: 127 year: 2019 ident: B49 article-title: Optimization of replanting space of natural secondary forest in daxing’anling mountains of northeastern China publication-title: J. OF Beijing FORESTRY Univ. doi: 10.13332/j.1000-1522.20190025 – volume: 52 start-page: 257-263 year: 2021 ident: B23 article-title: Study on the growth prediction model of birch species in the mountainous area of northern hebei publication-title: J. Inner Mongolia Univ. (Natural Sci. Edition) doi: 10.13484/j.nmgdxxbzk.20210306 – volume: 9 start-page: 610 year: 2018 ident: B39 article-title: A crown width-diameter model for natural even-aged black pine forest management publication-title: Forests doi: 10.3390/f9100610 – volume: 26 start-page: 45-48, 60 year: 2005 ident: B14 article-title: Quantitative analysis of forest spatial structure publication-title: J. Northeast Forestry Univ. – volume: 319 start-page: 62 year: 2014 ident: B3 article-title: Prediction of tree diameter growth using quantile regression and mixed-effects models publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.02.006 – volume: 44 start-page: 129 year: 2024 ident: B5 article-title: Model for predicting individual tree crown width of natural secondary Betula Platyphylla publication-title: J. OF SOUTHWEST FORESTRY Univ. doi: 10.11929/j.swfu.202312031 – volume: 16 start-page: 76 year: 2007 ident: B40 article-title: Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain publication-title: For. Syst. doi: 10.5424/srf/2007161-00999 – volume: 21 start-page: 12 year: 2012 ident: B13 article-title: Spatial genetic algorithm for multi-objective forest planning publication-title: For. Policy Econ doi: 10.1016/j.forpol.2012.04.002 – volume: 72 start-page: 1264 year: 2018 ident: B50 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Proc. Cirpw doi: 10.1016/j.procir.2018.03.212 – volume: 39 start-page: 103023 year: 2022 ident: B31 article-title: Ft-ir combined with pso-cnn algorithm for rapid screening of cervical tumors publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2022.103023 – volume: 41 start-page: 1567 year: 2011 ident: B41 article-title: A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model sortie-nd publication-title: Can. J. For. Res. doi: 10.1139/x11-078 – volume: 45 start-page: 292 year: 1999 ident: B4 article-title: An analysis of monte carlo integer programming, simulated annealing, and tabu search heuristics for solving spatial harvest scheduling problems publication-title: For. Sci. doi: 10.1093/forestscience/45.2.292 – volume: 23 start-page: 5818 year: 2023 ident: B35 article-title: Multi-agent deep reinforcement learning based uav trajectory optimization for differentiated services publication-title: IEEE Trans. Mobile Computing doi: 10.1109/TMC.2023.3312276 – volume: 506 start-page: 119965 year: 2022 ident: B10 article-title: Optimizing neighborhood-based stand spatial structure: Four cases of boreal forests publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2021.119965 – volume: 183 start-page: 137 year: 2003 ident: B1 article-title: An analysis of spatial forest structure using neighbourhood-based variables publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(03)00102-6 – volume: 96 start-page: 49 year: 2023 ident: B38 article-title: Circular or square plots in als-based forest inventories—does it matter publication-title: Forestry doi: 10.1093/forestry/cpac032 – volume: 148 start-page: 104767 year: 2023 ident: B34 article-title: Comparison of histogram-based gradient boosting classification machine, random forest, and deep convolutional neural network for pavement raveling severity classification publication-title: Automation construction doi: 10.1016/j.autcon.2023.104767 – volume: 35 start-page: 1055 year: 2024 ident: B53 article-title: Age estimation model for individual trees in natural Larix gmelinii forest based on random forest model publication-title: Chin. J. Appl. Ecol. doi: 10.13287/j.1001-9332.202404.023 – volume: 15 start-page: 2181 year: 2024 ident: B62 article-title: Optimization of the stand structure in secondary forests of Pinus yunnanensis based on deep reinforcement learning publication-title: Forests doi: 10.3390/f15122181 – volume: 21 start-page: 126 year: 2008 ident: B27 article-title: A study on d iametra l structure of yunnan pine forestin the pla teaus ofm id-yunnan province publication-title: For. Res. doi: 10.13275/j.cnki.lykxy.2008.01.025 – volume: 14 start-page: 2456 year: 2023 ident: B54 article-title: Reinforcement learning for stand structure optimization of Pinus yunnanensis secondary forests in southwest China publication-title: Forests doi: 10.3390/f14122456 – volume: 324 start-page: 120659 year: 2025 ident: B25 article-title: A method for generating multiple hull forms at once using mlp (multi-layer perceptron) publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2025.120659 – volume: 98 start-page: 665 year: 2019 ident: B2 article-title: Forest stand structure and functioning: Current knowledge and future challenges. Ecological 707 publication-title: Indicators doi: 10.1016/J.ECOLIND.2018.11.017 – volume: 34 start-page: 1881 year: 2023 ident: B29 article-title: A novel model to evaluate spatial structure in thinned conifer-broadleaved mixed natural forests publication-title: J. Forestry Res. doi: 10.1007/s11676-023-01647-w – volume: 15 start-page: 4090 year: 2023 ident: B6 article-title: Optimizing the spatial structure of metasequoia plantation forest based on uav-lidar and backpack-lidar publication-title: Remote Sens. doi: 10.3390/rs15164090 – volume: 279 start-page: 111805 year: 2021 ident: B9 article-title: Effects of thinning on the demography and functional community structure of a secondary tropical lowland rain forest publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.111805 – volume: 40 start-page: 1125 year: 2018 ident: B20 article-title: Simulation of replantation of low-density ecological landscape forest with coupled stand structure publication-title: Acta Agriculturae Universitatis Jiangxiensis doi: 10.13836/j.jjau.2018142 – volume: 53 start-page: 63 year: 2017 ident: B22 article-title: Forest thinning subcompartment intelligent selection based on genetic algorithm publication-title: SCIENTIA Silvae SINICAE – volume: 312 start-page: 118724 year: 2022 ident: B42 article-title: Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118724 – volume: 31 start-page: 460 year: 2009 ident: B36 article-title: Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using ga publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2009.06.005 – volume: 45 start-page: 1 year: 2018 ident: B59 article-title: Composition of basal area in natural forests based on the uniform angle index publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2018.01.002 – volume: 11 start-page: 413 year: 2020 ident: B11 article-title: Optimizing forest spatial structure with neighborhood-based indices: Four case studies from northeast China publication-title: Forests doi: 10.3390/f11040413 – ident: B33 – ident: B56 – year: 2022 ident: B51 article-title: Multi-objective optimization model of forest spatial structure based on dynamic multi-group pso algorithm doi: 10.21203/rs.3.rs-1398671/v1 – volume: 32 start-page: 371 year: 2020 ident: B12 article-title: Spatial structure optimization of natural forest based on bee colony-particle swarm algorithm publication-title: J. System Simulation doi: 10.16182/j.issn1004731x.joss.19-0320 – volume: 31 start-page: 85 year: 2018 ident: B15 article-title: Research progress of structure-based forest management publication-title: Lin Ye Ke Xue Yan Jiu doi: 10.13275/j.cnki.lykxyj.2018.01.011 – volume: 122 start-page: 127 year: 2003 ident: B48 article-title: Beziehungen zwischen winkelmaßund baumabständen: Relationship between the winkelmaßand nearest neighbor distances publication-title: Forstwissenschaftliches Centralblatt doi: 10.1046/j.1439-0337.2003.00127.x – volume: 53 start-page: 47 year: 2024 ident: B44 article-title: Characteristics of stand structure of pinus yunnanensis Secondary forests on the east slope of cangshan mountain publication-title: J. West China Forestry Sci. doi: 10.16473/j.cnki.xblykx1972.2024.01.007 – volume: 13 start-page: 888 year: 2022 ident: B63 article-title: Spatial structure dynamics and maintenance of a natural mixed forest publication-title: Forests doi: 10.3390/f13060888 – volume: 37 start-page: 1 year: 2017 ident: B8 article-title: Spatial location and allocation of replanting trees on pure chinese fir plantation based on voronoi diagram and delaunay triangulation publication-title: J. Cent. South Univ. Forestry Technol. doi: 10.14067/j.cnki.1673-923x.2017.02.001 – volume: 43 start-page: 129 year: 1997 ident: B18 article-title: Wildlife conservation planning using stochastic optimization and importance sampling publication-title: For. Sci. doi: 10.1093/forestscience/43.1.129 – volume: 549 start-page: 121486 year: 2023 ident: B45 article-title: Predicting height-diameter relationship in uneven-aged stands in Finland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2023.121486 – volume: 39 start-page: 27 year: 2010 ident: B46 article-title: Effect of intermediate cutting intensity on growth of Pinus yunnanensis plantation publication-title: J. West China Forestry Sci. – volume: 55 start-page: 895 year: 2022 ident: B16 article-title: Multi-agent deep reinforcement learning: a survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09996-w – volume: 61 start-page: 535-543 year: 2015 ident: B17 article-title: Individual tree basal area growth models for chir pine (Pinus roxberghii Sarg.) in western Nepal doi: 10.17221/51/2015-JFS |
| SSID | ssj0000500997 |
| Score | 2.4158087 |
| Snippet | IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | multi-agent deep reinforcement learning multi-objective optimization secondary forests stand structure structure prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4ignoQn7i-yMGTUu02SXdz9IkIigcFb2WSTERYu2XXRfZH-J-daausJy_2WEoSZqb5vsnjGyEOne6hzR0kRIXTRKNySV85k2CKfFWzRyDLO7p39_nNk759Ns8zpb74TFgjD9wY7tSrAJia6JwLOpgIQaHhOkoqzWzIIs--ad_OJFONqjdTn16zjUlZmD2N1YDVuTNzQhyHSEr3FxDVev3LYnFSVjD9gMFgBmSuV8VKyw7lWTOqNTGH5bpYOB8Sg5tuiM_Lpny8HNJ__tZeoJTDKOv1ANlIwU5GKF9L-fBaTsZySvQUSj6jPpZjTn0DjKaSeCphwVgyggVJTQTESo6wFlH19XqhbKtJvMjZlmlo1Yh3drjjTfF0ffV4cZO05RQST7DeTYyNAN4GIk1kQZNBn7mcBkDXR5qytbceIlqlovJ55nr0RLAhzzOA1Ae1JebLYYnbQhqgxAejxgCgac5zijKjPGQKvDPaq444-rZtUTWqGQVlG-yIgh1RsCOK1hEdcc7W__mQBa_rFxQGRRsGxV9h0BHHP777u8ud_-hyVyxxmwxkXbMn5skVuE8M5d0d1MH4Ba4c6UA priority: 102 providerName: Directory of Open Access Journals |
| Title | Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction |
| URI | https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1610571/pdf https://doaj.org/article/c3dae05fbbbd4d5fad3e518693029d2f |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk48EaER7UHTqDNw_tIfGyBUiFR9UCk9GTNvlBEcKy4EUr_A_-ZGdupCkJCHPDBkq19zqw93-zszAC8cnoSc-tQEhQeSR2Vk1PljIyjyK6aExKybNH9dGpPZvrj3Mz34HznC8PHKhO77nMi6EXZ2PI7qtbDakm9yU40DHcnx_jDJ0UrH6ZqyQG4MzMgGEM4ZDysQroB-9YQTO_B_uz07PCcFTBrtdQ2m7dWzj_X_UVONeH878CtTVnh9jsul9dk0PE9uNyNvj168nWwuXADf_lbYMf_Mr37cLdDruKwrfAA9mL5EG4erQhdbh_Bj3dtanuxon_Qt865U6ySaPYqRBumdrOOYlGKs0W5qcWWoDOWfH6-FjWr5QHXW0EYmuRULVi6BkFNhBgrsY5NgFff7GWKLtPFF3G9ZRpatWarE3f8GGbH7z-_PZFdqgfpCXKMpckTos8DAbpICCvDKeNMjRjdNJI40T73mGKuVFLeZm5CV8I8WJshjnxQT6BXrsr4FIRB4nZMOgZETf9jp0hrsyFT6J3RXvXh9Y6xRdVG9ChIE2ISF0zigklcdCTuwxGz_qogB-NuXhDjio5DhVcB48gk51zQwSQMiiYx5SSTWR6y1Ic3Vwvn710--6fSz-E2P7I0HZsX0COax5cEky7cQbO9QPcP8_FBt_h_AkouGWw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk48EYNL-2BE2jz8D4SH1ugqpCoeiBSerJmXygiOFbcqEr_A_-ZGdupCkJCHPDN1j5n1jvf7MzOALxxehJz61ASFB5JHZWTU-WMjKPIVzUnJGTZovv51J7M9Ke5me_B-e4uDLtVJr66z4mgF2Vjy--oWg-rJfUmO9Ew3HmO8Y9PilY-TNWSA3BnZkAwhnDIeFiFdAv2rSGY3oP92enZ4TkrYNZqqW02b62cf677i5xqwvnfgzubssLtJS6XN2TQ8QO42o2-dT35NthcuIG_-i2w43-Z3kO43yFXcdhWeAR7sXwMt49WhC63T-DHhza1vVjRHvS9u9wpVkk0ZxWiDVO7WUexKMXZotzUYkvQGUv2n69FzWp5wPVWEIYmOVULlq5BUBMhxkqsYxPg1TdnmaLLdPFV3GyZhlat2erEHT-F2fHHL-9PZJfqQXqCHGNp8oTo80CALhLCynDKOFMjRjeNJE60zz2mmCuVlLeZm9CTMA_WZogjH9Qz6JWrMh6AMEjcjknHgKhpP3aKtDYbMoXeGe1VH97uGFtUbUSPgjQhJnHBJC6YxEVH4j4cMeuvC3Iw7uYDMa7oOFR4FTCOTHLOBR1MwqBoElNOMpnlIUt9eHe9cP7e5fN_Kv0C7vIrS9OxeQk9onl8RTDpwr3uFvxPKkgXhg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+of+stand+structure+in+Pinus+yunnanensis+secondary+forests+based+on+deep+reinforcement+learning+and+structural+prediction&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhao%2C+Jian&rft.au=Wang%2C+Jianming&rft.au=Yin%2C+Jiting&rft.au=Chen%2C+Yuling&rft.date=2025-10-15&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=16&rft_id=info:doi/10.3389%2Ffpls.2025.1610571&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2025_1610571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |