One-Stage O(N \log N) Algorithm for Generating Nested Rank-Minimized Representation of Electrically Large Volume Integral Equations

In this paper, we develop a new one-stage <inline-formula><tex-math notation="LaTeX"> O(N \log N)</tex-math></inline-formula> algorithm to generate a rank-minimized <inline-formula><tex-math notation="LaTeX">\mathcal {H}^{2}</tex-math><...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 10; pp. 169 - 178
Main Authors Wang, Yifan, Jiao, Dan
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2379-8815
2379-8815
DOI10.1109/JMMCT.2025.3544143

Cover

Abstract In this paper, we develop a new one-stage <inline-formula><tex-math notation="LaTeX"> O(N \log N)</tex-math></inline-formula> algorithm to generate a rank-minimized <inline-formula><tex-math notation="LaTeX">\mathcal {H}^{2}</tex-math></inline-formula>-representation of electrically large volume integral equations (VIEs), which significantly reduces the CPU run time of state-of-the-art algorithms for completing the same task. Unlike existing two-stage algorithms, this new algorithm requires only one stage to build nested cluster bases. The cluster basis is obtained directly from the interaction between a cluster and its admissible clusters composed of real or auxiliary ones that cover all interaction directions. Furthermore, the row and column pivots of the resultant low-rank representation are chosen from the source and observer points in an analytical way without the need for numerically finding them. This further speeds up the computation. Numerical experiments on a suite of electrically large 3D scattering problems have demonstrated the efficiency and accuracy of the proposed new algorithm.
AbstractList In this paper, we develop a new one-stage <inline-formula><tex-math notation="LaTeX"> O(N \log N)</tex-math></inline-formula> algorithm to generate a rank-minimized <inline-formula><tex-math notation="LaTeX">\mathcal {H}^{2}</tex-math></inline-formula>-representation of electrically large volume integral equations (VIEs), which significantly reduces the CPU run time of state-of-the-art algorithms for completing the same task. Unlike existing two-stage algorithms, this new algorithm requires only one stage to build nested cluster bases. The cluster basis is obtained directly from the interaction between a cluster and its admissible clusters composed of real or auxiliary ones that cover all interaction directions. Furthermore, the row and column pivots of the resultant low-rank representation are chosen from the source and observer points in an analytical way without the need for numerically finding them. This further speeds up the computation. Numerical experiments on a suite of electrically large 3D scattering problems have demonstrated the efficiency and accuracy of the proposed new algorithm.
Author Jiao, Dan
Wang, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0003-2796-9412
  surname: Wang
  fullname: Wang, Yifan
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Dan
  orcidid: 0000-0002-4080-2716
  surname: Jiao
  fullname: Jiao, Dan
  email: djiao@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNpNkD1PwzAQhi1UJErpH0AMHmFIsR3HiceqKqWoHxIUJqTIOJdgSJziuENZ-eOkH0Onu9O9zzs8l6hjawsIXVMyoJTI-6f5fLQaMMKiQRhxTnl4hrosjGWQJDTqnOwXqN80X4QQGjNGCOuiv6WF4MWrAvDydoHfy7rAizs8LIvaGf9Z4bx2eAIWnPLGtj9oPGT4WdnvYG6sqczv7oS1gwasb0O1xXWOxyVo74xWZbnFM-Xa_re63FSAp9ZD4VSJxz-bfby5Que5KhvoH2cPvT6MV6PHYLacTEfDWaAplz6QHKgMoyz7EJIJLVgUJ4JoFgIIIQE0TwiJ80xqTtpEHNOICS6o5CoGBTzsIXbo1a5uGgd5unamUm6bUpLuTKZ7k-nOZHo02UI3B8gAwAmQSNFWh_9N63HE
CODEN IJMMOP
Cites_doi 10.1109/74.250128
10.1002/mop.4650100107
10.1109/APS/URSI47566.2021.9703797
10.1109/TCPMT.2013.2261693
10.1109/TAP.2020.3044584
10.1109/22.156602
10.1109/APS.2015.7304757
10.1006/jcph.2000.6451
10.1109/TMTT.2017.2734090
10.1109/LAWP.2002.805126
10.1109/TAP.2014.2321139
10.1109/APS/URSI47566.2021.9704131
10.1007/978-3-662-47324-5
10.1016/j.jcp.2006.02.004
10.1109/TAP.2006.874316
10.1109/TMAG.2004.824575
10.1109/apusncursinrsm.2019.8888901
10.1109/APUSNCURSINRSM.2018.8608851
10.1109/TMTT.2019.2920894
10.1109/ICEAA.2014.6903928
10.1007/s00211-012-0449-9
10.1109/TAP.2022.3168749
10.1016/S0024-3795(96)00301-1
10.1109/JMMCT.2017.2764683
10.1109/JMMCT.2016.2645838
10.1109/TAP.1984.1143193
10.1163/156939395X00082
10.1109/TAP.2004.838803
10.1109/TMTT.2015.2396494
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JMMCT.2025.3544143
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore digital library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore digital library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2379-8815
EndPage 178
ExternalDocumentID 10_1109_JMMCT_2025_3544143
10896619
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-2235414
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c149t-94e1935ddb6926c6257860c23ee669eec48007fd9c4069277152646194a7eae43
IEDL.DBID RIE
ISSN 2379-8815
IngestDate Wed Oct 01 06:38:33 EDT 2025
Wed Aug 27 02:03:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c149t-94e1935ddb6926c6257860c23ee669eec48007fd9c4069277152646194a7eae43
ORCID 0000-0002-4080-2716
0000-0003-2796-9412
PageCount 10
ParticipantIDs ieee_primary_10896619
crossref_primary_10_1109_JMMCT_2025_3544143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE journal on multiscale and multiphysics computational techniques
PublicationTitleAbbrev JMMCT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
Brm (ref27) 2003; 21
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/74.250128
– ident: ref14
  doi: 10.1002/mop.4650100107
– ident: ref25
  doi: 10.1109/APS/URSI47566.2021.9703797
– ident: ref29
  doi: 10.1109/TCPMT.2013.2261693
– ident: ref19
  doi: 10.1109/TAP.2020.3044584
– volume: 21
  year: 2003
  ident: ref27
  article-title: Hierarchical matrices
  publication-title: Lecture Notes
– ident: ref4
  doi: 10.1109/22.156602
– ident: ref11
  doi: 10.1109/APS.2015.7304757
– ident: ref16
  doi: 10.1006/jcph.2000.6451
– ident: ref13
  doi: 10.1109/TMTT.2017.2734090
– ident: ref7
  doi: 10.1109/LAWP.2002.805126
– ident: ref21
  doi: 10.1109/TAP.2014.2321139
– ident: ref24
  doi: 10.1109/APS/URSI47566.2021.9704131
– ident: ref26
  doi: 10.1007/978-3-662-47324-5
– ident: ref2
  doi: 10.1016/j.jcp.2006.02.004
– ident: ref3
  doi: 10.1109/TAP.2006.874316
– ident: ref8
  doi: 10.1109/TMAG.2004.824575
– ident: ref18
  doi: 10.1109/apusncursinrsm.2019.8888901
– ident: ref17
  doi: 10.1109/APUSNCURSINRSM.2018.8608851
– ident: ref28
  doi: 10.1109/TMTT.2019.2920894
– ident: ref10
  doi: 10.1109/ICEAA.2014.6903928
– ident: ref20
  doi: 10.1007/s00211-012-0449-9
– ident: ref23
  doi: 10.1109/TAP.2022.3168749
– ident: ref30
  doi: 10.1016/S0024-3795(96)00301-1
– ident: ref12
  doi: 10.1109/JMMCT.2017.2764683
– ident: ref22
  doi: 10.1109/JMMCT.2016.2645838
– ident: ref1
  doi: 10.1109/TAP.1984.1143193
– ident: ref5
  doi: 10.1163/156939395X00082
– ident: ref6
  doi: 10.1109/TAP.2004.838803
– ident: ref9
  doi: 10.1109/TMTT.2015.2396494
SSID ssj0001722002
Score 2.2810013
Snippet In this paper, we develop a new one-stage <inline-formula><tex-math notation="LaTeX"> O(N \log N)</tex-math></inline-formula> algorithm to generate a...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 169
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {\mathcal {H}}^{2}</tex-math> </inline-formula> </named-content> matrix
Accuracy
Approximation algorithms
Clustering algorithms
Complexity theory
Costs
electrically large analysis
fast solvers
Indexes
Integral equations
low-rank representation
matrix compression
nested representation
rank-minimized compression
Scattering
Three-dimensional displays
Training
Volume integral equations
Title One-Stage O(N \log N) Algorithm for Generating Nested Rank-Minimized Representation of Electrically Large Volume Integral Equations
URI https://ieeexplore.ieee.org/document/10896619
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore digital library
  customDbUrl:
  eissn: 2379-8815
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001722002
  issn: 2379-8815
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ukxfro2J9MQcPiqTW7Ga3eyxSUbERpJUehJBsJrW0pmrTg1794-4jxSoI3pKQkGVnJ_vN5JtvCDmSMlPUp9wLJAodoCSJdqmMe2mm4zCeJCJIrNpnyK967KYf9MtidVsLg4iWfIZ1c2j_5acTNTOpMu3hTY3OjcjnsmhyV6z1nVARviEczAtjGvLsptO56OoQ0A_q1LTaYvTH5rPQTcVuJpcVEs6H4Tgko_qsSOrq45dC47_HuU7WSlgJLbcONsgS5pukUkJMKB14ukU-73L0NMAcINwdh_CoXwnhCbTGg8nbsHh6Bo1hwUlRGz40hDYdCvdxPvI6w3z4PPwwp5Y-W1Yt5TDJoG276RiDj9_h1rDL4cF-9-Da6VGMof3qVMWnVdK7bHcvrryyD4OndPxUeJKhhnlBmiZc-lxx4-W8oXyKyLlEVEyjTpGlUpkyWl8IjQk4M-mRWGCMjG6TlXyS4w4BJfwANcrAmJ6zQDZjlrGMUm6YW6kSskZO5waKXpzcRmTDlIaMrDkjY86oNGeNVM3kL9zp5n33j-t7ZNU87jIo-2SleJvhgcYURXJo19IXH2rJRg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5ED3qxPvHtHDwoklqzL_coUqnaRpAqHoSQbCZarKnW9KBX_7j7SPEBgrckhGTZ2cl-M_nmG0J2lMo1DakIuEJpApQ0NS6ViyDLTRwm0lTy1Kl9RqJ1zc5v-W1VrO5qYRDRkc-wbg_dv_xsoEc2VWY8_MigcyvyOcUZY9yXa32lVGRoKQfj0piGOjjvdE66JggMeZ3aZluM_th-vvVTcdvJaY1E44F4FsljfVSmdf3-S6Px3yOdI7MVsIRjvxLmyQQWC6RWgUyoXPh1kXxcFhgYiHmPcLkbwZ15JUR7cNy_Hwx75cMTGBQLXozaMqIhcglRuEqKx6DTK3pPvXd76gi0Vd1SAYMcmq6fjjV5_w3all8ON-7LB2dekaIPzRevK_66RK5Pm92TVlB1Ygi0iaDKQDE0QI9nWSpUKLSwfi4aOqSIQihEzQzulHmmtC2kDaU0qEAwmyBJJCbI6DKZLAYFrhDQMuRocAYm9JBxdZSwnOWUCsvdyrRUq2R_bKD42QtuxC5QaajYmTO25owrc66SJTv53-708772x_VtMt3qdtpx-yy6WCcz9lE-n7JBJsvhCDcNwijTLbeuPgHUr8yT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Stage+O%28N+%5Clog+N%29+Algorithm+for+Generating+Nested+Rank-Minimized+Representation+of+Electrically+Large+Volume+Integral+Equations&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Wang%2C+Yifan&rft.au=Jiao%2C+Dan&rft.date=2025&rft.pub=IEEE&rft.eissn=2379-8815&rft.volume=10&rft.spage=169&rft.epage=178&rft_id=info:doi/10.1109%2FJMMCT.2025.3544143&rft.externalDocID=10896619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon