A Prediction Model of Power Consumption in Smart City Using Hybrid Deep Learning Algorithm
A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made i...
        Saved in:
      
    
          | Published in | JOIV : international journal on informatics visualization Online Vol. 7; no. 4 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        27.12.2023
     | 
| Online Access | Get full text | 
| ISSN | 2549-9610 2549-9904 2549-9904  | 
| DOI | 10.30630/joiv.7.4.1865 | 
Cover
| Abstract | A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made in the development of measuring infrastructure have garnered considerable interest in short-term power consumption forecasting. In reality, predicting future power demands has shown to be a crucial factor in preventing energy waste and developing successful power management techniques. In addition, historical time series data on energy consumption may be considered necessary to derive all relevant knowledge and estimate future use. This research paper aims to construct and compare with original deep learning algorithms for forecasting power consumption over time. The proposed model, LSTM-GRU-PPCM, combines the Long -Short-Term -Memory (LSTM) and Gated- Recurrent- Unit (GRU) Prediction Power Consumption Model. Power consumption data will be utilized as the time series dataset, and predictions will be generated using the developed model. This research avoids consumption peaks by using the proposed LSTM-GRU-PPCM neural network to forecast future load demand. In order to conduct a thorough assessment of the method, a series of experiments were carried out using actual power consumption data from various cities in India. The experiment results show that the LSTM-GRU-PPCM model improves the original LSTM forecasting algorithms evaluated by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for various time series. The proposed model achieved a minimum error prediction of MAE=0.004 and RMSE=0.032, which are excellent values compared to the original LSTM. Significant implications for power quality management and equipment maintenance may be expected from the LSTM-GRU-PPCM approach, as its forecasts will allow for proactive decision-making and lead to load shedding when power consumption exceeds the allowed level | 
    
|---|---|
| AbstractList | A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made in the development of measuring infrastructure have garnered considerable interest in short-term power consumption forecasting. In reality, predicting future power demands has shown to be a crucial factor in preventing energy waste and developing successful power management techniques. In addition, historical time series data on energy consumption may be considered necessary to derive all relevant knowledge and estimate future use. This research paper aims to construct and compare with original deep learning algorithms for forecasting power consumption over time. The proposed model, LSTM-GRU-PPCM, combines the Long -Short-Term -Memory (LSTM) and Gated- Recurrent- Unit (GRU) Prediction Power Consumption Model. Power consumption data will be utilized as the time series dataset, and predictions will be generated using the developed model. This research avoids consumption peaks by using the proposed LSTM-GRU-PPCM neural network to forecast future load demand. In order to conduct a thorough assessment of the method, a series of experiments were carried out using actual power consumption data from various cities in India. The experiment results show that the LSTM-GRU-PPCM model improves the original LSTM forecasting algorithms evaluated by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for various time series. The proposed model achieved a minimum error prediction of MAE=0.004 and RMSE=0.032, which are excellent values compared to the original LSTM. Significant implications for power quality management and equipment maintenance may be expected from the LSTM-GRU-PPCM approach, as its forecasts will allow for proactive decision-making and lead to load shedding when power consumption exceeds the allowed level | 
    
| Author | Salman, Aseel Dawod Noaman, Salam Abdulkhaleq Ahmed, Ali Mohammed Saleh  | 
    
| Author_xml | – sequence: 1 givenname: Salam Abdulkhaleq surname: Noaman fullname: Noaman, Salam Abdulkhaleq – sequence: 2 givenname: Ali Mohammed Saleh surname: Ahmed fullname: Ahmed, Ali Mohammed Saleh – sequence: 3 givenname: Aseel Dawod surname: Salman fullname: Salman, Aseel Dawod  | 
    
| BookMark | eNqFkMtOwzAQRS1UJErplrV_IKkdO3ayjMKjSEVUgm7YWE5iF1eJHdkpVf6ePmDNakYzOldX5xZMrLMKgHuMYoIYQYudM98xj2mMM5ZegWmS0jzKc0QnfzvD6AbMQ9ghhJKMU07wFHwWcO1VY-rBOAtfXaNa6DRcu4PysHQ27Lv-_DIWvnfSD7A0wwg3wdgtXI6VNw18UKqHKyW9PR2Lduu8Gb66O3CtZRvU_HfOwObp8aNcRqu355eyWEU1pnkakboiqsE5aRhLOEO6qjljOK20TLCUulIszRjWOUa80UwSzBjCSZXVNMsSQskMLC65e9vL8SDbVvTeHLuOAiNxtiNOdgQXVJzsHIn4QtTeheCV_g_4AZ9IaWk | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.30630/joiv.7.4.1865 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2549-9904 | 
    
| ExternalDocumentID | 10.30630/joiv.7.4.1865 10_30630_joiv_7_4_1865  | 
    
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1495-3cb3ed193d662760fbc76615bfa21aafbe65861f9107df6a3166012b8c4882343 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2549-9610 2549-9904  | 
    
| IngestDate | Tue Aug 19 20:14:44 EDT 2025 Tue Jul 01 02:12:22 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-sa/4.0 cc-by-sa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1495-3cb3ed193d662760fbc76615bfa21aafbe65861f9107df6a3166012b8c4882343 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.30630/joiv.7.4.1865 | 
    
| ParticipantIDs | unpaywall_primary_10_30630_joiv_7_4_1865 crossref_primary_10_30630_joiv_7_4_1865  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-27 | 
    
| PublicationDateYYYYMMDD | 2023-12-27 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | JOIV : international journal on informatics visualization Online | 
    
| PublicationYear | 2023 | 
    
| SSID | ssj0002874731 ssib059109950  | 
    
| Score | 2.2585871 | 
    
| Snippet | A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| Title | A Prediction Model of Power Consumption in Smart City Using Hybrid Deep Learning Algorithm | 
    
| URI | https://doi.org/10.30630/joiv.7.4.1865 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2549-9904 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0002874731 issn: 2549-9904 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2549-9904 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib059109950 issn: 2549-9610 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20PejF-on1o8xB0Etim002yTFUaxEsBS1ULyGb7NZqmpSSKvXXu5OkUkXQWw5LWGY_5j125j1CzizXEU1u5uYuiqDI0NIcIR0tEirZScoD18De4bse6w7M26E1LAtksRdm5f2eohzU5Us6ftNt3dRbDrPWSZVZCnNXSHXQ63uP6BynCI7mslx2oPh2m2ahzvjLD75ln415Mg0W70Ecr6SUTo3cLCdTVJK86vOM6-HHD53Gv2e7TbZKVAlesQ12yJpIdklt6dgA5QHeI08e9Gf4NIPLAeiDFkMqoY9WadDOuzHzKwTGCdxP1K6CtkLpkNcVQHeB3V1wJcQUSlnWEXjxKJ2Ns-fJPhl0rh_aXa10V9BCZEUaDTkVkcJvEWrAs6bkoa2StcVlYLSCQHKhwAlrSYUn7EiygLaYIm8Gd0J15g1q0gNSSdJEHBKQzERZRS4tSRUBotyJnIi6nMkmEzYP6-R8GXV_Woho-Ip85CHzMWS-7Zs-hqxOLr4W5Y-hR_8fekw20SUeq1AM-4RUstlcnCoskfFGzsEb5Xb6BPGYxMc | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20PejF-on1izkIeklss8kmOYZqLYKloIXqJWST3VpNk1JSpf56d5JUqgj1lsMSltmPeY-deY-Qc8t1RIObubmLIigytDRHSEeLhEp2kvLANbB3-L7LOn3zbmANygJZ7IVZer-nKAd19ZqO3nVbN_Wmw6x1UmWWwtwVUu13e94TOscpgqO5LJcdKL7dhlmoM_7xgx_ZZ2OWTIL5RxDHSymlXSO3i8kUlSRv-izjevj5S6dx9Wy3yVaJKsErtsEOWRPJLqktHBugPMB75NmD3hSfZnA5AH3QYkgl9NAqDVp5N2Z-hcAogYex2lXQUigd8roC6MyxuwuuhZhAKcs6BC8eptNR9jLeJ_32zWOro5XuClqIrEijIaciUvgtQg141pA8tFWytrgMjGYQSC4UOGFNqfCEHUkW0CZT5M3gTqjOvEFNekAqSZqIQwKSmSiryKUlqSJAlDuRE1GXM9lgwuZhnVwsou5PChENX5GPPGQ-hsy3fdPHkNXJ5feirBh69P-hx2QTXeKxCsWwT0glm87EqcISGT8rN9IXWn3D0g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Model+of+Power+Consumption+in+Smart+City+Using+Hybrid+Deep+Learning+Algorithm&rft.jtitle=JOIV+%3A+international+journal+on+informatics+visualization+Online&rft.au=Noaman%2C+Salam+Abdulkhaleq&rft.au=Ahmed%2C+Ali+Mohammed+Saleh&rft.au=Salman%2C+Aseel+Dawod&rft.date=2023-12-27&rft.issn=2549-9610&rft.eissn=2549-9904&rft.volume=7&rft.issue=4&rft_id=info:doi/10.30630%2Fjoiv.7.4.1865&rft.externalDBID=n%2Fa&rft.externalDocID=10_30630_joiv_7_4_1865 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2549-9610&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2549-9610&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2549-9610&client=summon |