A Prediction Model of Power Consumption in Smart City Using Hybrid Deep Learning Algorithm

A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made i...

Full description

Saved in:
Bibliographic Details
Published inJOIV : international journal on informatics visualization Online Vol. 7; no. 4
Main Authors Noaman, Salam Abdulkhaleq, Ahmed, Ali Mohammed Saleh, Salman, Aseel Dawod
Format Journal Article
LanguageEnglish
Published 27.12.2023
Online AccessGet full text
ISSN2549-9610
2549-9904
2549-9904
DOI10.30630/joiv.7.4.1865

Cover

Abstract A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made in the development of measuring infrastructure have garnered considerable interest in short-term power consumption forecasting. In reality, predicting future power demands has shown to be a crucial factor in preventing energy waste and developing successful power management techniques. In addition, historical time series data on energy consumption may be considered necessary to derive all relevant knowledge and estimate future use. This research paper aims to construct and compare with original deep learning algorithms for forecasting power consumption over time. The proposed model, LSTM-GRU-PPCM, combines the Long -Short-Term -Memory (LSTM) and Gated- Recurrent- Unit (GRU) Prediction Power Consumption Model. Power consumption data will be utilized as the time series dataset, and predictions will be generated using the developed model. This research avoids consumption peaks by using the proposed LSTM-GRU-PPCM neural network to forecast future load demand. In order to conduct a thorough assessment of the method, a series of experiments were carried out using actual power consumption data from various cities in India. The experiment results show that the LSTM-GRU-PPCM model improves the original LSTM forecasting algorithms evaluated by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for various time series. The proposed model achieved a minimum error prediction of MAE=0.004 and RMSE=0.032, which are excellent values compared to the original LSTM. Significant implications for power quality management and equipment maintenance may be expected from the LSTM-GRU-PPCM approach, as its forecasts will allow for proactive decision-making and lead to load shedding when power consumption exceeds the allowed level
AbstractList A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made in the development of measuring infrastructure have garnered considerable interest in short-term power consumption forecasting. In reality, predicting future power demands has shown to be a crucial factor in preventing energy waste and developing successful power management techniques. In addition, historical time series data on energy consumption may be considered necessary to derive all relevant knowledge and estimate future use. This research paper aims to construct and compare with original deep learning algorithms for forecasting power consumption over time. The proposed model, LSTM-GRU-PPCM, combines the Long -Short-Term -Memory (LSTM) and Gated- Recurrent- Unit (GRU) Prediction Power Consumption Model. Power consumption data will be utilized as the time series dataset, and predictions will be generated using the developed model. This research avoids consumption peaks by using the proposed LSTM-GRU-PPCM neural network to forecast future load demand. In order to conduct a thorough assessment of the method, a series of experiments were carried out using actual power consumption data from various cities in India. The experiment results show that the LSTM-GRU-PPCM model improves the original LSTM forecasting algorithms evaluated by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for various time series. The proposed model achieved a minimum error prediction of MAE=0.004 and RMSE=0.032, which are excellent values compared to the original LSTM. Significant implications for power quality management and equipment maintenance may be expected from the LSTM-GRU-PPCM approach, as its forecasts will allow for proactive decision-making and lead to load shedding when power consumption exceeds the allowed level
Author Salman, Aseel Dawod
Noaman, Salam Abdulkhaleq
Ahmed, Ali Mohammed Saleh
Author_xml – sequence: 1
  givenname: Salam Abdulkhaleq
  surname: Noaman
  fullname: Noaman, Salam Abdulkhaleq
– sequence: 2
  givenname: Ali Mohammed Saleh
  surname: Ahmed
  fullname: Ahmed, Ali Mohammed Saleh
– sequence: 3
  givenname: Aseel Dawod
  surname: Salman
  fullname: Salman, Aseel Dawod
BookMark eNqFkMtOwzAQRS1UJErplrV_IKkdO3ayjMKjSEVUgm7YWE5iF1eJHdkpVf6ePmDNakYzOldX5xZMrLMKgHuMYoIYQYudM98xj2mMM5ZegWmS0jzKc0QnfzvD6AbMQ9ghhJKMU07wFHwWcO1VY-rBOAtfXaNa6DRcu4PysHQ27Lv-_DIWvnfSD7A0wwg3wdgtXI6VNw18UKqHKyW9PR2Lduu8Gb66O3CtZRvU_HfOwObp8aNcRqu355eyWEU1pnkakboiqsE5aRhLOEO6qjljOK20TLCUulIszRjWOUa80UwSzBjCSZXVNMsSQskMLC65e9vL8SDbVvTeHLuOAiNxtiNOdgQXVJzsHIn4QtTeheCV_g_4AZ9IaWk
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.30630/joiv.7.4.1865
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2549-9904
ExternalDocumentID 10.30630/joiv.7.4.1865
10_30630_joiv_7_4_1865
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c1495-3cb3ed193d662760fbc76615bfa21aafbe65861f9107df6a3166012b8c4882343
IEDL.DBID UNPAY
ISSN 2549-9610
2549-9904
IngestDate Tue Aug 19 20:14:44 EDT 2025
Tue Jul 01 02:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1495-3cb3ed193d662760fbc76615bfa21aafbe65861f9107df6a3166012b8c4882343
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.30630/joiv.7.4.1865
ParticipantIDs unpaywall_primary_10_30630_joiv_7_4_1865
crossref_primary_10_30630_joiv_7_4_1865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-27
PublicationDateYYYYMMDD 2023-12-27
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-27
  day: 27
PublicationDecade 2020
PublicationTitle JOIV : international journal on informatics visualization Online
PublicationYear 2023
SSID ssj0002874731
ssib059109950
Score 2.2585871
Snippet A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title A Prediction Model of Power Consumption in Smart City Using Hybrid Deep Learning Algorithm
URI https://doi.org/10.30630/joiv.7.4.1865
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2549-9904
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0002874731
  issn: 2549-9904
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2549-9904
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib059109950
  issn: 2549-9610
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20PejF-on1o8xB0Etim002yTFUaxEsBS1ULyGb7NZqmpSSKvXXu5OkUkXQWw5LWGY_5j125j1CzizXEU1u5uYuiqDI0NIcIR0tEirZScoD18De4bse6w7M26E1LAtksRdm5f2eohzU5Us6ftNt3dRbDrPWSZVZCnNXSHXQ63uP6BynCI7mslx2oPh2m2ahzvjLD75ln415Mg0W70Ecr6SUTo3cLCdTVJK86vOM6-HHD53Gv2e7TbZKVAlesQ12yJpIdklt6dgA5QHeI08e9Gf4NIPLAeiDFkMqoY9WadDOuzHzKwTGCdxP1K6CtkLpkNcVQHeB3V1wJcQUSlnWEXjxKJ2Ns-fJPhl0rh_aXa10V9BCZEUaDTkVkcJvEWrAs6bkoa2StcVlYLSCQHKhwAlrSYUn7EiygLaYIm8Gd0J15g1q0gNSSdJEHBKQzERZRS4tSRUBotyJnIi6nMkmEzYP6-R8GXV_Woho-Ip85CHzMWS-7Zs-hqxOLr4W5Y-hR_8fekw20SUeq1AM-4RUstlcnCoskfFGzsEb5Xb6BPGYxMc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20PejF-on1izkIeklss8kmOYZqLYKloIXqJWST3VpNk1JSpf56d5JUqgj1lsMSltmPeY-deY-Qc8t1RIObubmLIigytDRHSEeLhEp2kvLANbB3-L7LOn3zbmANygJZ7IVZer-nKAd19ZqO3nVbN_Wmw6x1UmWWwtwVUu13e94TOscpgqO5LJcdKL7dhlmoM_7xgx_ZZ2OWTIL5RxDHSymlXSO3i8kUlSRv-izjevj5S6dx9Wy3yVaJKsErtsEOWRPJLqktHBugPMB75NmD3hSfZnA5AH3QYkgl9NAqDVp5N2Z-hcAogYex2lXQUigd8roC6MyxuwuuhZhAKcs6BC8eptNR9jLeJ_32zWOro5XuClqIrEijIaciUvgtQg141pA8tFWytrgMjGYQSC4UOGFNqfCEHUkW0CZT5M3gTqjOvEFNekAqSZqIQwKSmSiryKUlqSJAlDuRE1GXM9lgwuZhnVwsou5PChENX5GPPGQ-hsy3fdPHkNXJ5feirBh69P-hx2QTXeKxCsWwT0glm87EqcISGT8rN9IXWn3D0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Model+of+Power+Consumption+in+Smart+City+Using+Hybrid+Deep+Learning+Algorithm&rft.jtitle=JOIV+%3A+international+journal+on+informatics+visualization+Online&rft.au=Noaman%2C+Salam+Abdulkhaleq&rft.au=Ahmed%2C+Ali+Mohammed+Saleh&rft.au=Salman%2C+Aseel+Dawod&rft.date=2023-12-27&rft.issn=2549-9610&rft.eissn=2549-9904&rft.volume=7&rft.issue=4&rft_id=info:doi/10.30630%2Fjoiv.7.4.1865&rft.externalDBID=n%2Fa&rft.externalDocID=10_30630_joiv_7_4_1865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2549-9610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2549-9610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2549-9610&client=summon