The Implementation of the K-Medoid Clustering for Grouping Hearing Loss Function on Excessive Smartphone Use

During the current pandemic, smartphones have become a means of learning for all students in Indonesia, including high school students. Students use smartphones to send assignments, learn via video calls, and conduct online exams. The prolonged use of smartphones, from the beginning of learning hour...

Full description

Saved in:
Bibliographic Details
Published inJOIV : international journal on informatics visualization Online Vol. 7; no. 4; p. 2523
Main Authors Wahyudi, Eri, Meidelfi, Dwiny, -, Nofrizal, Saam, Zulfan, -, Juandi
Format Journal Article
LanguageEnglish
Published 31.12.2023
Online AccessGet full text
ISSN2549-9610
2549-9904
2549-9904
DOI10.30630/joiv.7.4.1873

Cover

Abstract During the current pandemic, smartphones have become a means of learning for all students in Indonesia, including high school students. Students use smartphones to send assignments, learn via video calls, and conduct online exams. The prolonged use of smartphones, from the beginning of learning hours in the morning to study hours in the evening, has a terrible impact on the ear health of high school students in Padang. Excessive smartphone use caused a decrease in the student's hearing function. Therefore, this study aims to group the audiometry results of high school students in Padang who have a hearing loss function. The audiogram result is only performed as the result of a frequency test of the subject's hearing in both the left and right ear. Conventionally, an otolaryngologist concluded the final decision of hearing loss ability. This research proposed an automatic classification of audiometry results using machine learning methods. The K-Medoids clustering was selected to classify the audiometry data in this research. Of 210 audiometry data, 91 data is confirmed by an otolaryngologist as valid data. By using the K-Medoids clustering, 93 data is classified into Normal hearing, Mild Hearing loss, and Moderate Hearing loss. The proposed model successfully grouped the audiometry data into three categories. The confusion matrix is applied to measure the model performance, which has 28,3% accuracy, 64,3% precision, and 21,4% recall. 
AbstractList During the current pandemic, smartphones have become a means of learning for all students in Indonesia, including high school students. Students use smartphones to send assignments, learn via video calls, and conduct online exams. The prolonged use of smartphones, from the beginning of learning hours in the morning to study hours in the evening, has a terrible impact on the ear health of high school students in Padang. Excessive smartphone use caused a decrease in the student's hearing function. Therefore, this study aims to group the audiometry results of high school students in Padang who have a hearing loss function. The audiogram result is only performed as the result of a frequency test of the subject's hearing in both the left and right ear. Conventionally, an otolaryngologist concluded the final decision of hearing loss ability. This research proposed an automatic classification of audiometry results using machine learning methods. The K-Medoids clustering was selected to classify the audiometry data in this research. Of 210 audiometry data, 91 data is confirmed by an otolaryngologist as valid data. By using the K-Medoids clustering, 93 data is classified into Normal hearing, Mild Hearing loss, and Moderate Hearing loss. The proposed model successfully grouped the audiometry data into three categories. The confusion matrix is applied to measure the model performance, which has 28,3% accuracy, 64,3% precision, and 21,4% recall. 
Author Juandi
Meidelfi, Dwiny
Saam, Zulfan
Nofrizal
Wahyudi, Eri
Author_xml – sequence: 1
  givenname: Eri
  surname: Wahyudi
  fullname: Wahyudi, Eri
– sequence: 2
  givenname: Dwiny
  surname: Meidelfi
  fullname: Meidelfi, Dwiny
– sequence: 3
  givenname: Nofrizal
  surname: -
  fullname: -, Nofrizal
– sequence: 4
  givenname: Zulfan
  surname: Saam
  fullname: Saam, Zulfan
– sequence: 5
  givenname: Juandi
  surname: -
  fullname: -, Juandi
BookMark eNqFkEtPwzAQhC1UJErplbP_QFK_EsdHVPUlijjQni0nsWmq1I7spNB_T9LCmdPujvStZuYRjKyzGoBnjGKKUopmR1edYx6zGGec3oExSZiIhEBs9LenGD2AaQhHhBDJOOMUj0G9O2i4OTW1PmnbqrZyFjoD2159jd506aoSzusutNpX9hMa5-HKu64ZjrVWV3HrQoDLzhY32sLFd6FDqM4afpyUb5tD7xXug34C90bVQU9_5wTsl4vdfB1t31eb-cs2KjATNGKsIELRlGiRYUYSwrNcKJHg3HCjckpMrgxDaZ9OpYwaUuo8VZmhiOUElQmdgNntb2cbdflSdS0bX_VWLhIjee1LDn1JLpkc-uqJ-EYUvg_jtfkP-AEDl3DK
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.30630/joiv.7.4.1873
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2549-9904
ExternalDocumentID 10.30630/joiv.7.4.1873
10_30630_joiv_7_4_1873
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c1493-44c29a362e981425278b9a951bf7fab32fbaf406990a643f2deb6a8f304b20d53
IEDL.DBID UNPAY
ISSN 2549-9610
2549-9904
IngestDate Sun Sep 07 11:09:37 EDT 2025
Tue Jul 01 02:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1493-44c29a362e981425278b9a951bf7fab32fbaf406990a643f2deb6a8f304b20d53
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.30630/joiv.7.4.1873
ParticipantIDs unpaywall_primary_10_30630_joiv_7_4_1873
crossref_primary_10_30630_joiv_7_4_1873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle JOIV : international journal on informatics visualization Online
PublicationYear 2023
SSID ssj0002874731
ssib059109950
Score 2.2727342
Snippet During the current pandemic, smartphones have become a means of learning for all students in Indonesia, including high school students. Students use...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 2523
Title The Implementation of the K-Medoid Clustering for Grouping Hearing Loss Function on Excessive Smartphone Use
URI https://doi.org/10.30630/joiv.7.4.1873
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2549-9904
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0002874731
  issn: 2549-9904
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2549-9904
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib059109950
  issn: 2549-9610
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEG90e9AX52ecH0sfTPQFBFooPC7L5qJuMVGS-URaaBOVsUWHX3-9V2BmGpP5BCSFlt6V-125-x1CJ4BYfe4I21Cuig0agyy4SHzDFUwRKRJKhc53Hgy9fkgvR-6oCpDVuTAL_--JpoM6f5w8vJrMpKbtM7KK6p4LmLuG6uHwpn2vK8eBg2MEXkE7UJ4HFi3ZGf94wA_rs5ZnU_7xxtN0waT0GuhiPpgykuTJzGfCjD9_8TQuH-0m2qhQJW6XarCFVmS2jRrzig24WsA7KAWtwAUh8LjKOcrwRGEAgfjKGEjoKMGdNNfkCWDSMABaXGxO6Ys-rAl9vIYXwz0wh-XdGe6-61QD-Gri2zEoog52lzh8kbso7HXvOn2jqrdgxOAnEYPS2Ak4WDQZ-DasZYf5IuAAwYRiigviKMGVzpQNLA5ARjmJFB73FbGocKzEJXuolkEX-wgnenuEs4TGVFIB7WNAbgQEL6nHbSaa6HQuh2ha0mpE4I4UkxjpSYxYRCM9iU109i2mJU0P_t_0EK3ruvElY-MRqs2ec3kM6GImWoVX3qoU7Asrg8yI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEG90e9AX52ecX-mDib4UGS0UHpdlc1G3mCjJfCIttInK2KLDr7_eKzAzjYk-AUmh5e7K_a70fofQMSBWXziyRbSrY8Ji0IWQiU9cyTVVMmFMmnznwdDrh-xi5I6qDbImF2bh_z01dFBnD5P7F4tbzGr5nC6juucC5q6heji8bt-ZynEQ4JDAK2gHyvPAZiU74y8P-OZ9VvJsKt5fRZouuJReA53PB1PuJHm08pm04o8fPI1_j3YdrVWoErdLM9hASyrbRI15xQZcTeAtlIJV4IIQeFzlHGV4ojGAQHxJBgo6SnAnzQ15Arg0DIAWF4tT5qIPc8Icr-DFcA_cYXl3hrtvJtUAvpr4ZgyGaDa7Kxw-q20U9rq3nT6p6i2QGOIkShiLnUCAR1OB34K57HBfBgIgmNRcC0kdLYU2mbKBLQDIaCdR0hO-pjaTjp24dAfVMuhiF-HELI8InrCYKSahfQzIjYLiFfNEi8smOpnrIZqWtBoRhCOFECMjxIhHLDJCbKLTLzX90XTv_0330aqpG18yNh6g2uwpV4eALmbyqDKtT2XTy5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Implementation+of+the+K-Medoid+Clustering+for+Grouping+Hearing+Loss+Function+on+Excessive+Smartphone+Use&rft.jtitle=JOIV+%3A+international+journal+on+informatics+visualization+Online&rft.au=Wahyudi%2C+Eri&rft.au=Meidelfi%2C+Dwiny&rft.au=-%2C+Nofrizal&rft.au=Saam%2C+Zulfan&rft.date=2023-12-31&rft.issn=2549-9610&rft.eissn=2549-9904&rft.volume=7&rft.issue=4&rft.spage=2523&rft_id=info:doi/10.30630%2Fjoiv.7.4.1873&rft.externalDBID=n%2Fa&rft.externalDocID=10_30630_joiv_7_4_1873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2549-9610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2549-9610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2549-9610&client=summon