A Comprehensive Evaluation of Rough Sets Clustering in Uncertainty Driven Contexts

This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against...

Full description

Saved in:
Bibliographic Details
Published inStudia Universitatis Babes-Bolyai: Series Informatica Vol. 69; no. 1
Main Author Arnold SZEDERJESI-DRAGOMIR
Format Journal Article
LanguageEnglish
Published Babes-Bolyai University, Cluj-Napoca 10.06.2024
Subjects
Online AccessGet full text
ISSN1224-869X
2065-9601
2065-9601
DOI10.24193/subbi.2024.1.03

Cover

Abstract This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against a range of supervised and unsupervised learning algorithms. This comparison considers various internal and external performance measures to evaluate the quality of clustering. The results highlight the ABARC algorithm’s capability to effectively manage vague data and outliers, showcasing its advantage in handling uncertainty in data. Furthermore, they also emphasize the importance of choosing appropriate performance metrics, especially when evaluating clustering algorithms in scenarios with unclear or inconsistent data. Received by the editors: 5 March 2024. 2010 Mathematics Subject Classification. 68T37, 68T99. 1998 CR Categories and Descriptors. I.5.3 Pattern Recognition.: Clustering – Algorithms; I.5.3 Pattern Recognition.: Clustering – Similarity measures.
AbstractList This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against a range of supervised and unsupervised learning algorithms. This comparison considers various internal and external performance measures to evaluate the quality of clustering. The results highlight the ABARC algorithm’s capability to effectively manage vague data and outliers, showcasing its advantage in handling uncertainty in data. Furthermore, they also emphasize the importance of choosing appropriate performance metrics, especially when evaluating clustering algorithms in scenarios with unclear or inconsistent data. Received by the editors: 5 March 2024. 2010 Mathematics Subject Classification. 68T37, 68T99. 1998 CR Categories and Descriptors. I.5.3 Pattern Recognition.: Clustering – Algorithms; I.5.3 Pattern Recognition.: Clustering – Similarity measures.
Author Arnold SZEDERJESI-DRAGOMIR
Author_xml – sequence: 1
  fullname: Arnold SZEDERJESI-DRAGOMIR
  organization: Department of Computer Science, Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: arnold.szederjesi@ubbcluj.ro
BookMark eNo90E1LAzEQgOEgFay1d4_5A1vztdnNsaxVCwWhWvAWkuykjWyzZT-q_feurXgaGGaew3uLRrGOgNA9JTMmqOIPbW9tmDHCxIzOCL9CY0ZkmihJ6AiNKWMiyaX6uEHTtg2WMKmy4SAbo_UcF_X-0MAOYhuOgBdHU_WmC3XEtcfrut_u8Bt0LS6qvu2gCXGLQ8Sb6KDpTIjdCT82w2McnNjBd9feoWtvqhamf3OCNk-L9-IlWb0-L4v5KnFUKJ4wcJ7mVhHqOQWSEgp55oX0qeGloNZSoE6p1HvIXEm8LInLfc6Yt-BySfgELS9uWZtPfWjC3jQnXZugz4u62WrTdMFVoMEz460BCYKJDJhyhiswhqQslc7DYNGL1ceDOX2ZqvoHKdHnxvrcWP821lQTzn8AjkZ0Sw
ContentType Journal Article
DBID ADTOC
UNPAY
DOA
DOI 10.24193/subbi.2024.1.03
DatabaseName Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2065-9601
ExternalDocumentID oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe
10.24193/subbi.2024.1.03
GroupedDBID 29Q
2WC
ADBBV
ADTOC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
E3Z
EN8
EOJEC
GROUPED_DOAJ
IPNFZ
KQ8
MK~
ML~
OBODZ
OK1
OVT
RIG
RNS
UNPAY
5VS
ID FETCH-LOGICAL-c1493-2ecf18b901f31e0501e87f46f5a3d41bb1e1c995ffe7cd0f6d0c8f822fbec8603
IEDL.DBID DOA
ISSN 1224-869X
2065-9601
IngestDate Fri Oct 03 12:51:06 EDT 2025
Tue Aug 19 18:43:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1493-2ecf18b901f31e0501e87f46f5a3d41bb1e1c995ffe7cd0f6d0c8f822fbec8603
OpenAccessLink https://doaj.org/article/ef2afbae6e4247e29ca39eaa05256cfe
ParticipantIDs doaj_primary_oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe
unpaywall_primary_10_24193_subbi_2024_1_03
PublicationCentury 2000
PublicationDate 2024-06-10
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-10
  day: 10
PublicationDecade 2020
PublicationTitle Studia Universitatis Babes-Bolyai: Series Informatica
PublicationYear 2024
Publisher Babes-Bolyai University, Cluj-Napoca
Publisher_xml – name: Babes-Bolyai University, Cluj-Napoca
SSID ssib026972067
Score 2.2607892
Snippet This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering...
SourceID doaj
unpaywall
SourceType Open Website
Open Access Repository
SubjectTerms clustering
metrics
rough sets
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kPagH6xPf7MGTkLKbxzY51hdFsEi1UE9hdzOLxRKlTfHx651JYhHxoLewSYYws5P5Znf2G8ZOtIgyTaU4maQWZkJYL_Ft5KnIaJNhQBbl8bGbvuoNw-tRNKrXO-gszLf9e4wtSYD2MGaMeZwftmWbaD2bKkLU3WDNYf-2-0D5FEYhL1bJiPrIYUT18LasdiR_FVGz86-y5Xn-ot9f9WTyLaRctSp-o1nJREiVJE_teWHa9uMHT-NfvnadrdW4kneribDBliDfZK2vng28duEtNuhyGpzCY1W5zi8XdN_82fEBNe3hd1DM-PlkTiQKGNr4OOdDfLssHije-cWUfpG8JLZ6K2bbbHh1eX_e8-q-Cp7FfCjwfLBOxgaRgAskiEhIiDsuVC7SQRZKYyRImySRc9CxmXAqEzZ2iCQcGjxWIthhjfw5h13Gw9gZDbGfhQhLMuJ6QbiJGAsd2xkFbo-dka7Tl4o6IyUy63IAtZbWvpGC8zWJURD6YQf8xOogAa2pxZ6yDvbY6cJSC0mYvJQqT0uVp6TyVKYi2P_Pwwdsha6p9EuKQ9YopnM4QpBRmON6fn0CkEzNMg
  priority: 102
  providerName: Unpaywall
Title A Comprehensive Evaluation of Rough Sets Clustering in Uncertainty Driven Contexts
URI https://doi.org/10.24193/subbi.2024.1.03
https://doaj.org/article/ef2afbae6e4247e29ca39eaa05256cfe
UnpaywallVersion publishedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SD-pBFBXrR8nBk7A12Y_s7rFWSxEsUi3U05JkJ1go29Ju0f57Z3ZL6c2L1z1kw5skb4ZM3mPsToso19SKk0uyMBPCeqlvI09FRpscCVlUz8deB6o_Cl_G0XjH6ot6wmp54Bq4B3C-dkaDgtAPY_BTq4MUtCb_NWUd0OkrknSnmMKV5Ks0Jl3y-l4SSSoNMLDGTLAg9MO2bJNHVqXRf8QOVsVcr7_1dLpDLL0TdrzJCHmnnskp24PijA07nHbqAr7qBnP-vFXl5jPHh-Stw9-hXPLudEVaB8hAfFLwEcawuuMv1_xpQScZr_SnfsrlORv1nj-6fW9jf-BZLFsCzwfrZGKQsF0gQURCQhK7ULlIB3kojZEgbZpGzkFsc-FULmzikPAdxiVRIrhgjWJWwCXjYUIQJn4eYvaQkyQLZoWYCuH-c0aBa7JHAiOb1woXGWlOVx8wEtkmEtlfkWiy-y2U25Gwxqjgzyr4M4I_k5kIrv7jj9fskAakzi0pblijXKzgFnOE0rSq5dBi-6PBW-fzF1p0v3M
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kPagH6xPf7MGTkLKbxzY51hdFsEi1UE9hdzOLxRKlTfHx651JYhHxoLewSYYws5P5Znf2G8ZOtIgyTaU4maQWZkJYL_Ft5KnIaJNhQBbl8bGbvuoNw-tRNKrXO-gszLf9e4wtSYD2MGaMeZwftmWbaD2bKkLU3WDNYf-2-0D5FEYhL1bJiPrIYUT18LasdiR_FVGz86-y5Xn-ot9f9WTyLaRctSp-o1nJREiVJE_teWHa9uMHT-NfvnadrdW4kneribDBliDfZK2vng28duEtNuhyGpzCY1W5zi8XdN_82fEBNe3hd1DM-PlkTiQKGNr4OOdDfLssHije-cWUfpG8JLZ6K2bbbHh1eX_e8-q-Cp7FfCjwfLBOxgaRgAskiEhIiDsuVC7SQRZKYyRImySRc9CxmXAqEzZ2iCQcGjxWIthhjfw5h13Gw9gZDbGfhQhLMuJ6QbiJGAsd2xkFbo-dka7Tl4o6IyUy63IAtZbWvpGC8zWJURD6YQf8xOogAa2pxZ6yDvbY6cJSC0mYvJQqT0uVp6TyVKYi2P_Pwwdsha6p9EuKQ9YopnM4QpBRmON6fn0CkEzNMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Evaluation+of+Rough+Sets+Clustering+in+Uncertainty+Driven+Contexts&rft.jtitle=Studia+Universitatis+Babes-Bolyai%3A+Series+Informatica&rft.au=Arnold+SZEDERJESI-DRAGOMIR&rft.date=2024-06-10&rft.pub=Babes-Bolyai+University%2C+Cluj-Napoca&rft.eissn=2065-9601&rft.volume=69&rft.issue=1&rft_id=info:doi/10.24193%2Fsubbi.2024.1.03&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1224-869X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1224-869X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1224-869X&client=summon