A Comprehensive Evaluation of Rough Sets Clustering in Uncertainty Driven Contexts
This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against...
Saved in:
| Published in | Studia Universitatis Babes-Bolyai: Series Informatica Vol. 69; no. 1 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Babes-Bolyai University, Cluj-Napoca
10.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1224-869X 2065-9601 2065-9601 |
| DOI | 10.24193/subbi.2024.1.03 |
Cover
| Abstract | This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against a range of supervised and unsupervised learning algorithms. This comparison considers various internal and external performance measures to evaluate the quality of clustering. The results highlight the ABARC algorithm’s capability to effectively manage vague data and outliers, showcasing its advantage in handling uncertainty in data. Furthermore, they also emphasize the importance of choosing appropriate performance metrics, especially when evaluating clustering algorithms in scenarios with unclear or inconsistent data. Received by the editors: 5 March 2024. 2010 Mathematics Subject Classification. 68T37, 68T99. 1998 CR Categories and Descriptors. I.5.3 Pattern Recognition.: Clustering – Algorithms; I.5.3 Pattern Recognition.: Clustering – Similarity measures. |
|---|---|
| AbstractList | This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against a range of supervised and unsupervised learning algorithms. This comparison considers various internal and external performance measures to evaluate the quality of clustering. The results highlight the ABARC algorithm’s capability to effectively manage vague data and outliers, showcasing its advantage in handling uncertainty in data. Furthermore, they also emphasize the importance of choosing appropriate performance metrics, especially when evaluating clustering algorithms in scenarios with unclear or inconsistent data. Received by the editors: 5 March 2024. 2010 Mathematics Subject Classification. 68T37, 68T99. 1998 CR Categories and Descriptors. I.5.3 Pattern Recognition.: Clustering – Algorithms; I.5.3 Pattern Recognition.: Clustering – Similarity measures. |
| Author | Arnold SZEDERJESI-DRAGOMIR |
| Author_xml | – sequence: 1 fullname: Arnold SZEDERJESI-DRAGOMIR organization: Department of Computer Science, Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: arnold.szederjesi@ubbcluj.ro |
| BookMark | eNo90E1LAzEQgOEgFay1d4_5A1vztdnNsaxVCwWhWvAWkuykjWyzZT-q_feurXgaGGaew3uLRrGOgNA9JTMmqOIPbW9tmDHCxIzOCL9CY0ZkmihJ6AiNKWMiyaX6uEHTtg2WMKmy4SAbo_UcF_X-0MAOYhuOgBdHU_WmC3XEtcfrut_u8Bt0LS6qvu2gCXGLQ8Sb6KDpTIjdCT82w2McnNjBd9feoWtvqhamf3OCNk-L9-IlWb0-L4v5KnFUKJ4wcJ7mVhHqOQWSEgp55oX0qeGloNZSoE6p1HvIXEm8LInLfc6Yt-BySfgELS9uWZtPfWjC3jQnXZugz4u62WrTdMFVoMEz460BCYKJDJhyhiswhqQslc7DYNGL1ceDOX2ZqvoHKdHnxvrcWP821lQTzn8AjkZ0Sw |
| ContentType | Journal Article |
| DBID | ADTOC UNPAY DOA |
| DOI | 10.24193/subbi.2024.1.03 |
| DatabaseName | Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2065-9601 |
| ExternalDocumentID | oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe 10.24193/subbi.2024.1.03 |
| GroupedDBID | 29Q 2WC ADBBV ADTOC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV E3Z EN8 EOJEC GROUPED_DOAJ IPNFZ KQ8 MK~ ML~ OBODZ OK1 OVT RIG RNS UNPAY 5VS |
| ID | FETCH-LOGICAL-c1493-2ecf18b901f31e0501e87f46f5a3d41bb1e1c995ffe7cd0f6d0c8f822fbec8603 |
| IEDL.DBID | DOA |
| ISSN | 1224-869X 2065-9601 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Tue Aug 19 18:43:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1493-2ecf18b901f31e0501e87f46f5a3d41bb1e1c995ffe7cd0f6d0c8f822fbec8603 |
| OpenAccessLink | https://doaj.org/article/ef2afbae6e4247e29ca39eaa05256cfe |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe unpaywall_primary_10_24193_subbi_2024_1_03 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-10 |
| PublicationDateYYYYMMDD | 2024-06-10 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Studia Universitatis Babes-Bolyai: Series Informatica |
| PublicationYear | 2024 |
| Publisher | Babes-Bolyai University, Cluj-Napoca |
| Publisher_xml | – name: Babes-Bolyai University, Cluj-Napoca |
| SSID | ssib026972067 |
| Score | 2.2607892 |
| Snippet | This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering... |
| SourceID | doaj unpaywall |
| SourceType | Open Website Open Access Repository |
| SubjectTerms | clustering metrics rough sets |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kPagH6xPf7MGTkLKbxzY51hdFsEi1UE9hdzOLxRKlTfHx651JYhHxoLewSYYws5P5Znf2G8ZOtIgyTaU4maQWZkJYL_Ft5KnIaJNhQBbl8bGbvuoNw-tRNKrXO-gszLf9e4wtSYD2MGaMeZwftmWbaD2bKkLU3WDNYf-2-0D5FEYhL1bJiPrIYUT18LasdiR_FVGz86-y5Xn-ot9f9WTyLaRctSp-o1nJREiVJE_teWHa9uMHT-NfvnadrdW4kneribDBliDfZK2vng28duEtNuhyGpzCY1W5zi8XdN_82fEBNe3hd1DM-PlkTiQKGNr4OOdDfLssHije-cWUfpG8JLZ6K2bbbHh1eX_e8-q-Cp7FfCjwfLBOxgaRgAskiEhIiDsuVC7SQRZKYyRImySRc9CxmXAqEzZ2iCQcGjxWIthhjfw5h13Gw9gZDbGfhQhLMuJ6QbiJGAsd2xkFbo-dka7Tl4o6IyUy63IAtZbWvpGC8zWJURD6YQf8xOogAa2pxZ6yDvbY6cJSC0mYvJQqT0uVp6TyVKYi2P_Pwwdsha6p9EuKQ9YopnM4QpBRmON6fn0CkEzNMg priority: 102 providerName: Unpaywall |
| Title | A Comprehensive Evaluation of Rough Sets Clustering in Uncertainty Driven Contexts |
| URI | https://doi.org/10.24193/subbi.2024.1.03 https://doaj.org/article/ef2afbae6e4247e29ca39eaa05256cfe |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SD-pBFBXrR8nBk7A12Y_s7rFWSxEsUi3U05JkJ1go29Ju0f57Z3ZL6c2L1z1kw5skb4ZM3mPsToso19SKk0uyMBPCeqlvI09FRpscCVlUz8deB6o_Cl_G0XjH6ot6wmp54Bq4B3C-dkaDgtAPY_BTq4MUtCb_NWUd0OkrknSnmMKV5Ks0Jl3y-l4SSSoNMLDGTLAg9MO2bJNHVqXRf8QOVsVcr7_1dLpDLL0TdrzJCHmnnskp24PijA07nHbqAr7qBnP-vFXl5jPHh-Stw9-hXPLudEVaB8hAfFLwEcawuuMv1_xpQScZr_SnfsrlORv1nj-6fW9jf-BZLFsCzwfrZGKQsF0gQURCQhK7ULlIB3kojZEgbZpGzkFsc-FULmzikPAdxiVRIrhgjWJWwCXjYUIQJn4eYvaQkyQLZoWYCuH-c0aBa7JHAiOb1woXGWlOVx8wEtkmEtlfkWiy-y2U25Gwxqjgzyr4M4I_k5kIrv7jj9fskAakzi0pblijXKzgFnOE0rSq5dBi-6PBW-fzF1p0v3M |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kPagH6xPf7MGTkLKbxzY51hdFsEi1UE9hdzOLxRKlTfHx651JYhHxoLewSYYws5P5Znf2G8ZOtIgyTaU4maQWZkJYL_Ft5KnIaJNhQBbl8bGbvuoNw-tRNKrXO-gszLf9e4wtSYD2MGaMeZwftmWbaD2bKkLU3WDNYf-2-0D5FEYhL1bJiPrIYUT18LasdiR_FVGz86-y5Xn-ot9f9WTyLaRctSp-o1nJREiVJE_teWHa9uMHT-NfvnadrdW4kneribDBliDfZK2vng28duEtNuhyGpzCY1W5zi8XdN_82fEBNe3hd1DM-PlkTiQKGNr4OOdDfLssHije-cWUfpG8JLZ6K2bbbHh1eX_e8-q-Cp7FfCjwfLBOxgaRgAskiEhIiDsuVC7SQRZKYyRImySRc9CxmXAqEzZ2iCQcGjxWIthhjfw5h13Gw9gZDbGfhQhLMuJ6QbiJGAsd2xkFbo-dka7Tl4o6IyUy63IAtZbWvpGC8zWJURD6YQf8xOogAa2pxZ6yDvbY6cJSC0mYvJQqT0uVp6TyVKYi2P_Pwwdsha6p9EuKQ9YopnM4QpBRmON6fn0CkEzNMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Evaluation+of+Rough+Sets+Clustering+in+Uncertainty+Driven+Contexts&rft.jtitle=Studia+Universitatis+Babes-Bolyai%3A+Series+Informatica&rft.au=Arnold+SZEDERJESI-DRAGOMIR&rft.date=2024-06-10&rft.pub=Babes-Bolyai+University%2C+Cluj-Napoca&rft.eissn=2065-9601&rft.volume=69&rft.issue=1&rft_id=info:doi/10.24193%2Fsubbi.2024.1.03&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef2afbae6e4247e29ca39eaa05256cfe |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1224-869X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1224-869X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1224-869X&client=summon |