Research on Olympic medal prediction based on GA-BP and logistic regression model [version 2; peer review: 1 approved with reservations]

Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Metho...

Full description

Saved in:
Bibliographic Details
Published inF1000 research Vol. 14; p. 245
Main Authors Zhao, Sanglin, Cao, Jikang, Steve, Jackon
Format Journal Article
LanguageEnglish
Published 2025
Subjects
Online AccessGet full text
ISSN2046-1402
2046-1402
DOI10.12688/f1000research.161865.2

Cover

Abstract Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Method This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis. Result The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes' performance. Conclusion This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games.
AbstractList Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Method This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis. Result The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes' performance. Conclusion This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games.
Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Method This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis. Result The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes’ performance. Conclusion This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games.
Author Steve, Jackon
Cao, Jikang
Zhao, Sanglin
Author_xml – sequence: 1
  givenname: Sanglin
  orcidid: 0009-0004-4616-7129
  surname: Zhao
  fullname: Zhao, Sanglin
  email: 202205640108@mails.hufe.edu.cn
  organization: School of Engineering Management, Hunan University of Finance and Economics, Changsha, Hunan, China
– sequence: 2
  givenname: Jikang
  surname: Cao
  fullname: Cao, Jikang
  organization: School of Engineering Management, Hunan University of Finance and Economics, Changsha, Hunan, China
– sequence: 3
  givenname: Jackon
  orcidid: 0009-0003-0046-768X
  surname: Steve
  fullname: Steve, Jackon
  organization: School of Management, University of Khartoum, Khartoum, Khartoum, Sudan
BookMark eNqVkN1KwzAUx4NMcM49g3mBziT9St3VHDqFgSJ6JVJO02SrpB8kXUffwMe2XQfqlXiVE87vd87hf45GRVlIhC4pmVEWcH6lKCHESCvBiO2MBpQH_oydoDEjXuBQj7DRj_oMTa396AwSRW7AwjH6fD66uCzwo27zKhM4lyloXBmZZqLOukYCVqY9sVo4N08YihTrcpPZuoON3HT7bY_lZSo1fmukOXzZHFdSmo5oMrm_xhRDVZmy6Ubts3qL-7NNA_0G-36BThVoK6fHd4Je725flvfO-nH1sFysHUG9iDkhdYEqN2QscaMgYSLhIvS5UpQzGkrwOSMsEongoFI3AaFcX_h-oMDzE0kjd4L4MHdXVNDuQeu4MlkOpo0piQ-hxr9CjYdQY9ap4aAKU1prpPqHOR9MBWKn67an4m_sD_sLEhmV4g
Cites_doi 10.1016/j.enconman.2025.119638
10.1038/s41598-024-84375-3
10.3389/fenvs.2024.1497941
10.6084/m9.figshare.28382315.v1
10.1111/j.0038-4941.2004.00254.x
10.3389/fdata.2024.1520605
10.3390/machines13010024
10.1371/journal.pone.0317277
10.6084/m9.figshare.28374260.v4
10.3389/fmech.2024.1496377
10.1016/j.engfailanal.2025.109331
10.6084/m9.figshare.28307321.v2
10.1162/003465304774201824
10.1016/j.mtcomm.2025.111778
ContentType Journal Article
Copyright Copyright: © 2025 Zhao S et al.
Copyright_xml – notice: Copyright: © 2025 Zhao S et al.
DBID C-E
CH4
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.12688/f1000research.161865.2
DatabaseName F1000Research
Faculty of 1000
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID 10.12688/f1000research.161865.2
10_12688_f1000research_161865_2
GroupedDBID 53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
AAFWJ
ABUWG
ACGOD
ACPRK
ADBBV
ADRAZ
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CCPQU
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
W2D
AAYXX
CITATION
PHGZM
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c1492-713a1f3722b396b2cb8c758ff18217ea582029cbc8afd3bacf35c556fa45be193
IEDL.DBID M48
ISSN 2046-1402
IngestDate Mon Sep 15 10:20:33 EDT 2025
Wed Oct 01 05:22:59 EDT 2025
Sat Mar 29 03:07:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Logistic regression
Virtual control group
Genetic algorithm
Coach effect
Olympic medals
Language English
License https://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1492-713a1f3722b396b2cb8c758ff18217ea582029cbc8afd3bacf35c556fa45be193
Notes new_version
ORCID 0009-0003-0046-768X
0009-0004-4616-7129
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.12688/f1000research.161865.2
ParticipantIDs unpaywall_primary_10_12688_f1000research_161865_2
crossref_primary_10_12688_f1000research_161865_2
faculty1000_research_10_12688_f1000research_161865_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle F1000 research
PublicationYear 2025
References J Steve (ref6) 2025
Q Guo (ref10) 2025; 13
Z Xiong (ref16) 2025; 7
X Bian (ref4) 2015; 7
G Yao (ref13) 2025; 22
S Li (ref17) 2025; 34
S Zhao (ref19) 2025
S Zhao (ref20) 2025
Z Li (ref7) 2024
Y Shao (ref18) 2025; 15
D Ning (ref11) 2025; 329
S Zhao (ref21) 2025
S Zhao (ref5) 2024; 12
A Bernard (ref2) 2004; 86
L Ziqiang (ref12) 2025; 10
X Zhu (ref15) 2025; 43
(ref1) 2024
J Li (ref14) 2025; 170
D Johnson (ref3) 2004; 85
S Zhao (ref8) 2024
X Wang (ref9) 2025; 20
References_xml – volume: 329
  start-page: 119638
  year: 2025
  ident: ref11
  article-title: Experimental analysis and multi-objective optimization of heavy-duty hydrogen SI engine performance and emissions based on GA-BP-MOGWO.
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2025.119638
– volume: 15
  start-page: 304-304
  year: 2025
  ident: ref18
  article-title: Irregular seeds DEM parameters prediction based on 3D point cloud and GA-BP-GA optimization.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-84375-3
– volume: 12
  start-page: 1497941
  year: 2024
  ident: ref5
  article-title: Spatial-temporal evolution characteristics and driving factors of carbon emission prediction in China-research on ARIMA-BP neural network algorithm.
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2024.1497941
– year: 2025
  ident: ref6
  article-title: Relationship between purposeful rumination and post-traumatic growth of college students who experienced childhood trauma: a regulated intermediary model.
  publication-title: F1000Research.
– year: 2025
  ident: ref20
  doi: 10.6084/m9.figshare.28382315.v1
– year: 2024
  ident: ref8
  article-title: Analysis of Spatiotemporal Evolution Characteristics and Driving Factors of Carbon Emission Prediction in China—A Study Based on ARIMA-BP Neural Network Algorithm.
  publication-title: Statistics and Application.
– year: 2024
  ident: ref7
  article-title: Research on Crop Planting Strategy Problem Based on Optimization Greedy Algorithm.
  publication-title: Transactions on Environment, Energy and Earth Sciences.
– volume: 85
  start-page: 974-993
  year: 2004
  ident: ref3
  article-title: A tale of two seasons: Participation and medal counts at the Summer and Winter Olympic Games.
  publication-title: Soc. Sci. Q.
  doi: 10.1111/j.0038-4941.2004.00254.x
– volume: 7
  start-page: 1520605
  year: 2025
  ident: ref16
  article-title: Multi-source data recognition and fusion algorithm based on a two-layer genetic algorithm–back propagation model.
  publication-title: Front. Big Data.
  doi: 10.3389/fdata.2024.1520605
– volume: 13
  start-page: 24
  year: 2025
  ident: ref10
  article-title: Optimization of the Screw Conveyor Device Based on a GA-BP Neural Network.
  publication-title: Machines.
  doi: 10.3390/machines13010024
– volume: 20
  year: 2025
  ident: ref9
  article-title: The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0317277
– year: 2025
  ident: ref21
  doi: 10.6084/m9.figshare.28374260.v4
– volume: 10
  start-page: 1496377
  year: 2025
  ident: ref12
  article-title: A GA-BP neural network algorithm for fault detection of transmission tower bolts.
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2024.1496377
– volume: 22
  start-page: e04253
  year: 2025
  ident: ref13
  article-title: Strength prediction and failure mode classification for SRC shear beams using GA-BP ANN method.
  publication-title: Case Stud. Constr. Mater.
– year: 2024
  ident: ref1
  article-title: Medal count and statistics.
– volume: 170
  start-page: 109331
  year: 2025
  ident: ref14
  article-title: Prediction of scuffing failure in grease-lubricated ball bearing based on GA-BP neural network.
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2025.109331
– year: 2025
  ident: ref19
  doi: 10.6084/m9.figshare.28307321.v2
– volume: 7
  start-page: 150-170
  year: 2015
  ident: ref4
  article-title: National strategies and Olympic success: Comparative analysis of swimming and gymnastics.
  publication-title: Int. J. Sport Policy Politics.
– volume: 86
  start-page: 413-417
  year: 2004
  ident: ref2
  article-title: Who wins the Olympic Games: Economic resources and medal totals.
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/003465304774201824
– volume: 43
  start-page: 111778
  year: 2025
  ident: ref15
  article-title: Optimization of forming quality using GA-BP neural network and the influence of arc pulses on microstructure and properties of 5087 Al alloy CMT-P wire + arc additive manufacturing.
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2025.111778
– volume: 34
  start-page: 1-24
  year: 2025
  ident: ref17
  article-title: Evaluation and Analysis of Particle Oxidation of HVOF Thermal Spraying Based on GA-BP Neural Network Algorithm.
  publication-title: J. Therm. Spray Technol.
SSID ssj0000993627
Score 2.316725
Snippet Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not...
Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not...
SourceID unpaywall
crossref
faculty1000
SourceType Open Access Repository
Index Database
Publisher
StartPage 245
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QSDQeUFEjxsceTDwV-9q2HNGIxATERBI8NbvbXTViaRBi8Nc724eCF9RzZ7btzHZnvu7sNwCnQeQHnJs-ghzhGXqVxE-K-UZkcUVlZEqRsut3e15n4N4M6bAE58VZmMX9e9tDdKb0D-ic-OapkdK70wauuRVP7yiVoTLo9VsPuoUcIj3DSut1TlZoL8WgDcU0ycVcS27A-ixO2PydjUYLYaa9Cf3iAbPqkpfGbMob4uMHd-Mf3mALqnnKSVrZHNmGkoxrsNbNN9VrUE27WJ69kbymcAfuino8Mo7J7Wj-mjwLgmETR0kmWk97k-gAGGmJ65Zx0Scsjkh2ngiFJ_IxK7CNSdprZxcG7av7y46R914wBGImTLoth1nK8W2bO02P24IHAqGFUohHLF8yipmD3RRcBExFDmdCOVRQ6inmUi4xK9yDcjyO5T4QJfQYyhQeQkkeuYyjnKkUF5ZvMkvUwSy8ESYZxUaooYk2XrhkvDAzXmjXwV3wWvh9fZWa9eXe397q4B86h1CeTmbyCNOVKT_Op-gn_HPlQA
  priority: 102
  providerName: Unpaywall
Title Research on Olympic medal prediction based on GA-BP and logistic regression model [version 2; peer review: 1 approved with reservations]
URI http://dx.doi.org/10.12688/f1000research.161865.2
https://doi.org/10.12688/f1000research.161865.2
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M48
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4MJCoPRFEjXrAPJj6NrBvb4MEYNAIxATFxCT4tbdd6CY7JJbp_72k3BBIT9GUvO-2W08v5vvZcEDqvh16dMdMDksNdQ-2SsKSoZ4SESUeEpuA6u36353b82t3AGSwi6zIFTn6ldqqelD8eVr8-kitY8Jc6N4ILDE6qQ-osOc5LVaeAd6qwL-fBPFlqqnczzP-WQiLYtFUYtQXc0CDaw-dsTV8rVqsgqUqLkSjJAtqaRTFNPulwuGSYWjuomCFK3EynwC7aEFEJbXazO_MSKuoilRcTnLkM7qGHubsdHkX4fpi8x68cg1WEXuKxaqcGCyv7FiqJdtO47mMahTgNFwLhsXhO_WcjrEvp7CO_dft40zGy0goGB0oEmJrYlEjbsyxmN1xmcVbnwBykBLpBPEEdAAZWgzNepzK0GeXSdrjjuJLWHCYA9B2gXDSKxCHCkqs-pMldYIosrFEGcqaUjBPPpISXkTlXXRCnGTQCxTyUtoMVbQeptgOrjGpLKg4W79c1Iz9j8ddPHf3_747RtqWKAOtzmBOUm45n4hSQyZRVNKOHZ3tAKnrWVVDe7_WbT98lruBp
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QSDQeUFEjxsceTDwV-9q2HNGIxATERBI8NbvbXTViaRBi8Nc724eCF9RzZ7btzHZnvu7sNwCnQeQHnJs-ghzhGXqVxE-K-UZkcUVlZEqRsut3e15n4N4M6bAE58VZmMX9e9tDdKb0D-ic-OapkdK70wauuRVP7yiVoTLo9VsPuoUcIj3DSut1TlZoL8WgDcU0ycVcS27A-ixO2PydjUYLYaa9Cf3iAbPqkpfGbMob4uMHd-Mf3mALqnnKSVrZHNmGkoxrsNbNN9VrUE27WJ69kbymcAfuino8Mo7J7Wj-mjwLgmETR0kmWk97k-gAGGmJ65Zx0Scsjkh2ngiFJ_IxK7CNSdprZxcG7av7y46R914wBGImTLoth1nK8W2bO02P24IHAqGFUohHLF8yipmD3RRcBExFDmdCOVRQ6inmUi4xK9yDcjyO5T4QJfQYyhQeQkkeuYyjnKkUF5ZvMkvUwSy8ESYZxUaooYk2XrhkvDAzXmjXwV3wWvh9fZWa9eXe397q4B86h1CeTmbyCNOVKT_Op-gn_HPlQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Olympic+medal+prediction+based+on+GA-BP+and+logistic+regression+model&rft.jtitle=F1000+research&rft.au=Zhao%2C+Sanglin&rft.au=Cao%2C+Jikang&rft.au=Steve%2C+Jackon&rft.date=2025&rft.issn=2046-1402&rft.eissn=2046-1402&rft.volume=14&rft.spage=245&rft_id=info:doi/10.12688%2Ff1000research.161865.2&rft.externalDBID=n%2Fa&rft.externalDocID=10_12688_f1000research_161865_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon