Research on Olympic medal prediction based on GA-BP and logistic regression model [version 2; peer review: 1 approved with reservations]
Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Metho...
Saved in:
Published in | F1000 research Vol. 14; p. 245 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2046-1402 2046-1402 |
DOI | 10.12688/f1000research.161865.2 |
Cover
Abstract | Background
Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects.
Method
This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis.
Result
The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes' performance.
Conclusion
This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games. |
---|---|
AbstractList | Background
Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects.
Method
This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis.
Result
The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes' performance.
Conclusion
This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games. Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not easy and requires comprehensive consideration of multiple factors such as historical data, athlete performance, and host country effects. Method This article uses the GA-BP algorithm model, combined with genetic algorithm (GA) and backpropagation neural network (BPNN), to optimize the weights and bias parameters of the BP neural network using the global search capability of genetic algorithm, thereby improving training efficiency and prediction performance. By estimating the number of Olympic gold medals and total medals, verifying the accuracy of the model, and predicting the medal table for the 2028 Los Angeles Olympics. Meanwhile, based on the synthetic control model, Estonia and China were selected as research subjects to construct a virtual control group and two experimental groups for analysis. Result The experimental results showed that Estonia and China won more medals with a head coach than without one. In 1992, Estonia won 1 gold medal and 2 bronze medals under the guidance of excellent coaches, indicating the significant role of head coaches in improving athletes’ performance. Conclusion This study provides valuable insights for the decision-making of the Olympic Committee, revealing key factors in medal distribution, optimizing the allocation of national strategic resources, and predicting the performance of countries at future Olympic Games. |
Author | Steve, Jackon Cao, Jikang Zhao, Sanglin |
Author_xml | – sequence: 1 givenname: Sanglin orcidid: 0009-0004-4616-7129 surname: Zhao fullname: Zhao, Sanglin email: 202205640108@mails.hufe.edu.cn organization: School of Engineering Management, Hunan University of Finance and Economics, Changsha, Hunan, China – sequence: 2 givenname: Jikang surname: Cao fullname: Cao, Jikang organization: School of Engineering Management, Hunan University of Finance and Economics, Changsha, Hunan, China – sequence: 3 givenname: Jackon orcidid: 0009-0003-0046-768X surname: Steve fullname: Steve, Jackon organization: School of Management, University of Khartoum, Khartoum, Khartoum, Sudan |
BookMark | eNqVkN1KwzAUx4NMcM49g3mBziT9St3VHDqFgSJ6JVJO02SrpB8kXUffwMe2XQfqlXiVE87vd87hf45GRVlIhC4pmVEWcH6lKCHESCvBiO2MBpQH_oydoDEjXuBQj7DRj_oMTa396AwSRW7AwjH6fD66uCzwo27zKhM4lyloXBmZZqLOukYCVqY9sVo4N08YihTrcpPZuoON3HT7bY_lZSo1fmukOXzZHFdSmo5oMrm_xhRDVZmy6Ubts3qL-7NNA_0G-36BThVoK6fHd4Je725flvfO-nH1sFysHUG9iDkhdYEqN2QscaMgYSLhIvS5UpQzGkrwOSMsEongoFI3AaFcX_h-oMDzE0kjd4L4MHdXVNDuQeu4MlkOpo0piQ-hxr9CjYdQY9ap4aAKU1prpPqHOR9MBWKn67an4m_sD_sLEhmV4g |
Cites_doi | 10.1016/j.enconman.2025.119638 10.1038/s41598-024-84375-3 10.3389/fenvs.2024.1497941 10.6084/m9.figshare.28382315.v1 10.1111/j.0038-4941.2004.00254.x 10.3389/fdata.2024.1520605 10.3390/machines13010024 10.1371/journal.pone.0317277 10.6084/m9.figshare.28374260.v4 10.3389/fmech.2024.1496377 10.1016/j.engfailanal.2025.109331 10.6084/m9.figshare.28307321.v2 10.1162/003465304774201824 10.1016/j.mtcomm.2025.111778 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Zhao S et al. |
Copyright_xml | – notice: Copyright: © 2025 Zhao S et al. |
DBID | C-E CH4 AAYXX CITATION ADTOC UNPAY |
DOI | 10.12688/f1000research.161865.2 |
DatabaseName | F1000Research Faculty of 1000 CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Women's Studies |
EISSN | 2046-1402 |
ExternalDocumentID | 10.12688/f1000research.161865.2 10_12688_f1000research_161865_2 |
GroupedDBID | 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ AAFWJ ABUWG ACGOD ACPRK ADBBV ADRAZ AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C-E CCPQU CH4 DIK DWQXO FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 LK8 M2P M48 M7P M~E OK1 PGMZT PHGZT PIMPY PQQKQ PROAC RPM UKHRP W2D AAYXX CITATION PHGZM PQGLB PUEGO ADTOC UNPAY |
ID | FETCH-LOGICAL-c1492-713a1f3722b396b2cb8c758ff18217ea582029cbc8afd3bacf35c556fa45be193 |
IEDL.DBID | M48 |
ISSN | 2046-1402 |
IngestDate | Mon Sep 15 10:20:33 EDT 2025 Wed Oct 01 05:22:59 EDT 2025 Sat Mar 29 03:07:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Logistic regression Virtual control group Genetic algorithm Coach effect Olympic medals |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1492-713a1f3722b396b2cb8c758ff18217ea582029cbc8afd3bacf35c556fa45be193 |
Notes | new_version |
ORCID | 0009-0003-0046-768X 0009-0004-4616-7129 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.12688/f1000research.161865.2 |
ParticipantIDs | unpaywall_primary_10_12688_f1000research_161865_2 crossref_primary_10_12688_f1000research_161865_2 faculty1000_research_10_12688_f1000research_161865_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | F1000 research |
PublicationYear | 2025 |
References | J Steve (ref6) 2025 Q Guo (ref10) 2025; 13 Z Xiong (ref16) 2025; 7 X Bian (ref4) 2015; 7 G Yao (ref13) 2025; 22 S Li (ref17) 2025; 34 S Zhao (ref19) 2025 S Zhao (ref20) 2025 Z Li (ref7) 2024 Y Shao (ref18) 2025; 15 D Ning (ref11) 2025; 329 S Zhao (ref21) 2025 S Zhao (ref5) 2024; 12 A Bernard (ref2) 2004; 86 L Ziqiang (ref12) 2025; 10 X Zhu (ref15) 2025; 43 (ref1) 2024 J Li (ref14) 2025; 170 D Johnson (ref3) 2004; 85 S Zhao (ref8) 2024 X Wang (ref9) 2025; 20 |
References_xml | – volume: 329 start-page: 119638 year: 2025 ident: ref11 article-title: Experimental analysis and multi-objective optimization of heavy-duty hydrogen SI engine performance and emissions based on GA-BP-MOGWO. publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2025.119638 – volume: 15 start-page: 304-304 year: 2025 ident: ref18 article-title: Irregular seeds DEM parameters prediction based on 3D point cloud and GA-BP-GA optimization. publication-title: Sci. Rep. doi: 10.1038/s41598-024-84375-3 – volume: 12 start-page: 1497941 year: 2024 ident: ref5 article-title: Spatial-temporal evolution characteristics and driving factors of carbon emission prediction in China-research on ARIMA-BP neural network algorithm. publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2024.1497941 – year: 2025 ident: ref6 article-title: Relationship between purposeful rumination and post-traumatic growth of college students who experienced childhood trauma: a regulated intermediary model. publication-title: F1000Research. – year: 2025 ident: ref20 doi: 10.6084/m9.figshare.28382315.v1 – year: 2024 ident: ref8 article-title: Analysis of Spatiotemporal Evolution Characteristics and Driving Factors of Carbon Emission Prediction in China—A Study Based on ARIMA-BP Neural Network Algorithm. publication-title: Statistics and Application. – year: 2024 ident: ref7 article-title: Research on Crop Planting Strategy Problem Based on Optimization Greedy Algorithm. publication-title: Transactions on Environment, Energy and Earth Sciences. – volume: 85 start-page: 974-993 year: 2004 ident: ref3 article-title: A tale of two seasons: Participation and medal counts at the Summer and Winter Olympic Games. publication-title: Soc. Sci. Q. doi: 10.1111/j.0038-4941.2004.00254.x – volume: 7 start-page: 1520605 year: 2025 ident: ref16 article-title: Multi-source data recognition and fusion algorithm based on a two-layer genetic algorithm–back propagation model. publication-title: Front. Big Data. doi: 10.3389/fdata.2024.1520605 – volume: 13 start-page: 24 year: 2025 ident: ref10 article-title: Optimization of the Screw Conveyor Device Based on a GA-BP Neural Network. publication-title: Machines. doi: 10.3390/machines13010024 – volume: 20 year: 2025 ident: ref9 article-title: The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture. publication-title: PLoS One. doi: 10.1371/journal.pone.0317277 – year: 2025 ident: ref21 doi: 10.6084/m9.figshare.28374260.v4 – volume: 10 start-page: 1496377 year: 2025 ident: ref12 article-title: A GA-BP neural network algorithm for fault detection of transmission tower bolts. publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2024.1496377 – volume: 22 start-page: e04253 year: 2025 ident: ref13 article-title: Strength prediction and failure mode classification for SRC shear beams using GA-BP ANN method. publication-title: Case Stud. Constr. Mater. – year: 2024 ident: ref1 article-title: Medal count and statistics. – volume: 170 start-page: 109331 year: 2025 ident: ref14 article-title: Prediction of scuffing failure in grease-lubricated ball bearing based on GA-BP neural network. publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2025.109331 – year: 2025 ident: ref19 doi: 10.6084/m9.figshare.28307321.v2 – volume: 7 start-page: 150-170 year: 2015 ident: ref4 article-title: National strategies and Olympic success: Comparative analysis of swimming and gymnastics. publication-title: Int. J. Sport Policy Politics. – volume: 86 start-page: 413-417 year: 2004 ident: ref2 article-title: Who wins the Olympic Games: Economic resources and medal totals. publication-title: Rev. Econ. Stat. doi: 10.1162/003465304774201824 – volume: 43 start-page: 111778 year: 2025 ident: ref15 article-title: Optimization of forming quality using GA-BP neural network and the influence of arc pulses on microstructure and properties of 5087 Al alloy CMT-P wire + arc additive manufacturing. publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2025.111778 – volume: 34 start-page: 1-24 year: 2025 ident: ref17 article-title: Evaluation and Analysis of Particle Oxidation of HVOF Thermal Spraying Based on GA-BP Neural Network Algorithm. publication-title: J. Therm. Spray Technol. |
SSID | ssj0000993627 |
Score | 2.316725 |
Snippet | Background
Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not... Background Predicting the number and distribution of Olympic medals in the future has become a hot topic, but predicting the number of Olympic medals is not... |
SourceID | unpaywall crossref faculty1000 |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 245 |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QSDQeUFEjxsceTDwV-9q2HNGIxATERBI8NbvbXTViaRBi8Nc724eCF9RzZ7btzHZnvu7sNwCnQeQHnJs-ghzhGXqVxE-K-UZkcUVlZEqRsut3e15n4N4M6bAE58VZmMX9e9tDdKb0D-ic-OapkdK70wauuRVP7yiVoTLo9VsPuoUcIj3DSut1TlZoL8WgDcU0ycVcS27A-ixO2PydjUYLYaa9Cf3iAbPqkpfGbMob4uMHd-Mf3mALqnnKSVrZHNmGkoxrsNbNN9VrUE27WJ69kbymcAfuino8Mo7J7Wj-mjwLgmETR0kmWk97k-gAGGmJ65Zx0Scsjkh2ngiFJ_IxK7CNSdprZxcG7av7y46R914wBGImTLoth1nK8W2bO02P24IHAqGFUohHLF8yipmD3RRcBExFDmdCOVRQ6inmUi4xK9yDcjyO5T4QJfQYyhQeQkkeuYyjnKkUF5ZvMkvUwSy8ESYZxUaooYk2XrhkvDAzXmjXwV3wWvh9fZWa9eXe397q4B86h1CeTmbyCNOVKT_Op-gn_HPlQA priority: 102 providerName: Unpaywall |
Title | Research on Olympic medal prediction based on GA-BP and logistic regression model [version 2; peer review: 1 approved with reservations] |
URI | http://dx.doi.org/10.12688/f1000research.161865.2 https://doi.org/10.12688/f1000research.161865.2 |
UnpaywallVersion | publishedVersion |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health Medical collection customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2046-1402 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: M48 dateStart: 20121101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4MJCoPRFEjXrAPJj6NrBvb4MEYNAIxATFxCT4tbdd6CY7JJbp_72k3BBIT9GUvO-2W08v5vvZcEDqvh16dMdMDksNdQ-2SsKSoZ4SESUeEpuA6u36353b82t3AGSwi6zIFTn6ldqqelD8eVr8-kitY8Jc6N4ILDE6qQ-osOc5LVaeAd6qwL-fBPFlqqnczzP-WQiLYtFUYtQXc0CDaw-dsTV8rVqsgqUqLkSjJAtqaRTFNPulwuGSYWjuomCFK3EynwC7aEFEJbXazO_MSKuoilRcTnLkM7qGHubsdHkX4fpi8x68cg1WEXuKxaqcGCyv7FiqJdtO47mMahTgNFwLhsXhO_WcjrEvp7CO_dft40zGy0goGB0oEmJrYlEjbsyxmN1xmcVbnwBykBLpBPEEdAAZWgzNepzK0GeXSdrjjuJLWHCYA9B2gXDSKxCHCkqs-pMldYIosrFEGcqaUjBPPpISXkTlXXRCnGTQCxTyUtoMVbQeptgOrjGpLKg4W79c1Iz9j8ddPHf3_747RtqWKAOtzmBOUm45n4hSQyZRVNKOHZ3tAKnrWVVDe7_WbT98lruBp |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QSDQeUFEjxsceTDwV-9q2HNGIxATERBI8NbvbXTViaRBi8Nc724eCF9RzZ7btzHZnvu7sNwCnQeQHnJs-ghzhGXqVxE-K-UZkcUVlZEqRsut3e15n4N4M6bAE58VZmMX9e9tDdKb0D-ic-OapkdK70wauuRVP7yiVoTLo9VsPuoUcIj3DSut1TlZoL8WgDcU0ycVcS27A-ixO2PydjUYLYaa9Cf3iAbPqkpfGbMob4uMHd-Mf3mALqnnKSVrZHNmGkoxrsNbNN9VrUE27WJ69kbymcAfuino8Mo7J7Wj-mjwLgmETR0kmWk97k-gAGGmJ65Zx0Scsjkh2ngiFJ_IxK7CNSdprZxcG7av7y46R914wBGImTLoth1nK8W2bO02P24IHAqGFUohHLF8yipmD3RRcBExFDmdCOVRQ6inmUi4xK9yDcjyO5T4QJfQYyhQeQkkeuYyjnKkUF5ZvMkvUwSy8ESYZxUaooYk2XrhkvDAzXmjXwV3wWvh9fZWa9eXe397q4B86h1CeTmbyCNOVKT_Op-gn_HPlQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Olympic+medal+prediction+based+on+GA-BP+and+logistic+regression+model&rft.jtitle=F1000+research&rft.au=Zhao%2C+Sanglin&rft.au=Cao%2C+Jikang&rft.au=Steve%2C+Jackon&rft.date=2025&rft.issn=2046-1402&rft.eissn=2046-1402&rft.volume=14&rft.spage=245&rft_id=info:doi/10.12688%2Ff1000research.161865.2&rft.externalDBID=n%2Fa&rft.externalDocID=10_12688_f1000research_161865_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon |