Spectral Neural Network for Specific Emitter Identification

The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements whe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radar systems Vol. 3; pp. 695 - 708
Main Authors Yan, Wenjun, Ling, Qing, Zhang, Limin, Yu, Keyuan
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2832-7357
2832-7357
DOI10.1109/TRS.2025.3539677

Cover

Abstract The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements when unbalanced and weakly labeled samples are present. This study uses the characteristics of radar emitter signals and proposes an approach for SEI based on frequency-domain pooling, fast Fourier transform (FFT) pooling, and wavelet transform pooling. First, a detailed mathematical derivation of FFT pooling and wavelet transform pooling was performed. Next, low-frequency (LF) and high recognition accuracy (HRA) selection criteria were used to select the corresponding retained frequency components. Finally, the new pooling method and frequency-component selection criteria were employed to construct a spectral neural network (SNN) framework for recognizing specific radar emitters, using ResNet as the foundation. Experiments were conducted using a real radar radiation-source dataset, and the results indicated that the proposed algorithm improved the recognition performance by nearly 5%, compared to the GAP-based algorithm, under the same conditions. Moreover, the proposed algorithm exhibited superior recognition performance and stronger robustness than the GAP method under the conditions of sample imbalance and few shot.
AbstractList The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements when unbalanced and weakly labeled samples are present. This study uses the characteristics of radar emitter signals and proposes an approach for SEI based on frequency-domain pooling, fast Fourier transform (FFT) pooling, and wavelet transform pooling. First, a detailed mathematical derivation of FFT pooling and wavelet transform pooling was performed. Next, low-frequency (LF) and high recognition accuracy (HRA) selection criteria were used to select the corresponding retained frequency components. Finally, the new pooling method and frequency-component selection criteria were employed to construct a spectral neural network (SNN) framework for recognizing specific radar emitters, using ResNet as the foundation. Experiments were conducted using a real radar radiation-source dataset, and the results indicated that the proposed algorithm improved the recognition performance by nearly 5%, compared to the GAP-based algorithm, under the same conditions. Moreover, the proposed algorithm exhibited superior recognition performance and stronger robustness than the GAP method under the conditions of sample imbalance and few shot.
Author Ling, Qing
Zhang, Limin
Yan, Wenjun
Yu, Keyuan
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0001-9049-9017
  surname: Yan
  fullname: Yan, Wenjun
  organization: Institute of Information Fusion, Naval Aviation University, Yantai, China
– sequence: 2
  givenname: Qing
  orcidid: 0000-0002-4365-7964
  surname: Ling
  fullname: Ling, Qing
  email: linqing19870522@163.com
  organization: Institute of Information Fusion, Naval Aviation University, Yantai, China
– sequence: 3
  givenname: Limin
  orcidid: 0000-0003-2217-1399
  surname: Zhang
  fullname: Zhang, Limin
  organization: Institute of Information Fusion, Naval Aviation University, Yantai, China
– sequence: 4
  givenname: Keyuan
  surname: Yu
  fullname: Yu, Keyuan
  organization: Institute of Information Fusion, Naval Aviation University, Yantai, China
BookMark eNpNj09Lw0AUxBepYK29e_CQL5D4djf7D09Sai0UBVvPYZN9C6ttUjYr4re3IT30NMObmQe_WzJpuxYJuadQUArmcfexLRgwUXDBjVTqikyZ5ixXXKjJhb8h877_AgBmJBUAU_K0PWKTot1nb_gzSvrt4nfmu5gNWfChyZaHkBLGbO2wTcPFptC1d-Ta232P87POyOfLcrd4zTfvq_XieZM3tFQpd7TmNS-9UUpQRwGU0cJyX2vXGF9aajyYUuoavcBSSk6Z8412TNUOjEU-IzD-bWLX9xF9dYzhYONfRaEa-KsTfzXwV2f-0-RhnAREvKhrpbQU_B8l2liI
CODEN ITRSBN
Cites_doi 10.1109/lcomm.2018.2871465
10.1109/CVPR52688.2022.00390
10.1007/978-3-319-10584-0_26
10.1109/CVPR.2017.426
10.1109/tifs.2020.3001721
10.1109/lcomm.2023.3247900
10.1109/cvpr.2016.90
10.1109/tifs.2021.3068010
10.1109/CVPR.2013.477
10.1109/tifs.2020.2988558
10.1155/2020/7646527
10.1109/ICCV.2019.00345
10.1109/TPAMI.2015.2389824
10.1109/tifs.2020.2978620
10.1109/TIP.2015.2475625
10.1109/iccv48922.2021.00082
10.1007/s11042-022-13553-0
10.1016/j.neunet.2016.07.003
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TRS.2025.3539677
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2832-7357
EndPage 708
ExternalDocumentID 10_1109_TRS_2025_3539677
10877865
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371465
  funderid: 10.13039/501100001809
– fundername: Shandong Youth Innovation Team
  grantid: 2022KJ084
– fundername: Shandong Taishan Scholars Special Fund
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c147t-d1b3b34f97751d1007985a3fb8dc9f4a19f09468bef5e466312dfc8d27bd09ae3
IEDL.DBID RIE
ISSN 2832-7357
IngestDate Wed Oct 01 06:26:24 EDT 2025
Wed Aug 27 02:02:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c147t-d1b3b34f97751d1007985a3fb8dc9f4a19f09468bef5e466312dfc8d27bd09ae3
ORCID 0000-0002-4365-7964
0000-0003-2217-1399
0000-0001-9049-9017
PageCount 14
ParticipantIDs crossref_primary_10_1109_TRS_2025_3539677
ieee_primary_10877865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on radar systems
PublicationTitleAbbrev TRS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
Qin (ref5) 2020; 41
ref17
ref16
Zhao (ref2) 2023; 12
Sun (ref3) 2020; 9
Liu (ref26) 2021; 10
ref24
ref23
ref20
ref22
Lee (ref18)
ref21
Zeiler (ref19) 2013; abs/1301.3557
Shi (ref1) 2022; 44
ref8
ref7
ref9
ref4
ref6
Rippel (ref25); 28
References_xml – start-page: 464
  volume-title: Proc. 18th Int. Conf. Artif. Intell. Statist.
  ident: ref18
  article-title: Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
– ident: ref7
  doi: 10.1109/lcomm.2018.2871465
– ident: ref22
  doi: 10.1109/CVPR52688.2022.00390
– volume: 12
  start-page: 713
  issue: 4
  year: 2023
  ident: ref2
  article-title: A review of specific emitter identification based on phase space reconstruction
  publication-title: J. Radars
– ident: ref12
  doi: 10.1007/978-3-319-10584-0_26
– ident: ref24
  doi: 10.1109/CVPR.2017.426
– ident: ref8
  doi: 10.1109/tifs.2020.3001721
– ident: ref9
  doi: 10.1109/lcomm.2023.3247900
– ident: ref16
  doi: 10.1109/cvpr.2016.90
– volume: 9
  start-page: 1014
  issue: 6
  year: 2020
  ident: ref3
  article-title: Overview of radio frequency fingerprint extraction in specific emitter identification
  publication-title: J. Radars
– ident: ref11
  doi: 10.1109/tifs.2021.3068010
– ident: ref13
  doi: 10.1109/CVPR.2013.477
– ident: ref6
  doi: 10.1109/tifs.2020.2988558
– volume: 41
  start-page: 104
  issue: 5
  year: 2020
  ident: ref5
  article-title: Radar emitter identification based on unintentional phase modulation on pulse characteristic
  publication-title: J. Commun.
– ident: ref4
  doi: 10.1155/2020/7646527
– ident: ref21
  doi: 10.1109/ICCV.2019.00345
– ident: ref20
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref10
  doi: 10.1109/tifs.2020.2978620
– volume: 44
  start-page: 2216
  issue: 6
  year: 2022
  ident: ref1
  article-title: Specific radar emitter identification: A comprehensive review
  publication-title: J. Electron. Inf. Technol.
– volume: 10
  start-page: 173
  issue: 1
  year: 2021
  ident: ref26
  article-title: Annual progress of the sea-detecting X-band radar and data acquisition program
  publication-title: J. Radars
– ident: ref14
  doi: 10.1109/TIP.2015.2475625
– ident: ref15
  doi: 10.1109/iccv48922.2021.00082
– ident: ref17
  doi: 10.1007/s11042-022-13553-0
– volume: abs/1301.3557
  year: 2013
  ident: ref19
  article-title: Stochastic pooling for regularization of deep convolutional neural networks
  publication-title: ArXiv
– ident: ref23
  doi: 10.1016/j.neunet.2016.07.003
– volume: 28
  start-page: 2449
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Spectral representations for convolutional neural networks
SSID ssj0002961500
Score 2.2813234
Snippet The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 695
SubjectTerms Accuracy
Data mining
Fast Fourier transform (FFT) pooling
Fast Fourier transforms
Feature extraction
frequency components
Frequency modulation
global average pooling (GAP)
Neural networks
Radar
Radio frequency
spectral neural network (SNN)
Transforms
wavelet transform pooling
Wavelet transforms
Title Spectral Neural Network for Specific Emitter Identification
URI https://ieeexplore.ieee.org/document/10877865
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2832-7357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961500
  issn: 2832-7357
  databaseCode: RIE
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT158YMX6Yg9ePGxM9pHdxZOIpQj2oC30FrLZXShiK5Je_PXuI5UqCJ4mhASWbxPmm9mZ-QCupHPK8wKBc04MZooWuGaEYVrnTriy1CJqHT5NyvGMPc75vGtWj70w1tpYfGazcBnP8s2qWYdUmf_DZRh3xnvQ8yY1a30nVIgKs83zzVFkrm6mzy8-ACQ8o5yqUogfrmdLSyW6ktE-TDaLSBUkr9m61Vnz-Ws-479XeQB7HalEd-krOIQduzyC2yAtH_IYKAzgiCZWfCNPU1GUnXeLBj28LUI_D0oNu67L4A1gNnqY3o9xJ5WAm4KJFptCU02Z82yOFyZUPijJa-q0NI1yrC6U83FcKbV13DLPMgpiXCMNEdrkqrb0GPrL1dKeABKae68e5Iu8FbXUxLMWv53cEWKZ0UO43qBYvaeJGFWMJHJVecSrgHjVIT6EQcBn67kEzekf989gN7yeUhzn0G8_1vbCO_1WX8bN_gL0z6jT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HvTiAyvW5x68eNh1N49NgieRlqptD9pCb8tmk0ARW5HtxV9vHlupguApy7KE8GXDfDOZmQ_gihsjLC9gcUqRionAWVwSRGJcpoaZPJfMax0OR3l_Qh6ndNoUq_taGK21Tz7TiXv0d_lqUS1dqMyecO7andFN2KKEEBrKtb5DKki47ubp6jIyFTfj5xfrAiKaYIpFztgP47OmpuKNSW8PRqtlhByS12RZy6T6_NWh8d_r3IfdhlZGd-E_OIANPT-EWycu7yIZkWvB4Qef8x1Zohp54Xkzq6Lu28xV9EShZNc0Mbw2THrd8X0_bsQS4iojrI5VJrHExFg-RzPlch8EpyU2kqtKGFJmwlhPLudSG6qJ5RkZUqbiCjGpUlFqfASt-WKujyFiklq77gSM7MhKLpHlLXZDqUFIEyU7cL1CsXgPPTEK70ukorCIFw7xokG8A22Hz9p3AZqTP95fwnZ_PBwUg4fR0ynsuKlCwOMMWvXHUp9bClDLC7_xX_6wrCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Neural+Network+for+Specific+Emitter+Identification&rft.jtitle=IEEE+transactions+on+radar+systems&rft.au=Yan%2C+Wenjun&rft.au=Ling%2C+Qing&rft.au=Zhang%2C+Limin&rft.au=Yu%2C+Keyuan&rft.date=2025&rft.pub=IEEE&rft.eissn=2832-7357&rft.volume=3&rft.spage=695&rft.epage=708&rft_id=info:doi/10.1109%2FTRS.2025.3539677&rft.externalDocID=10877865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-7357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-7357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-7357&client=summon