Spectral Neural Network for Specific Emitter Identification
The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements whe...
Saved in:
| Published in | IEEE transactions on radar systems Vol. 3; pp. 695 - 708 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2832-7357 2832-7357 |
| DOI | 10.1109/TRS.2025.3539677 |
Cover
| Abstract | The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements when unbalanced and weakly labeled samples are present. This study uses the characteristics of radar emitter signals and proposes an approach for SEI based on frequency-domain pooling, fast Fourier transform (FFT) pooling, and wavelet transform pooling. First, a detailed mathematical derivation of FFT pooling and wavelet transform pooling was performed. Next, low-frequency (LF) and high recognition accuracy (HRA) selection criteria were used to select the corresponding retained frequency components. Finally, the new pooling method and frequency-component selection criteria were employed to construct a spectral neural network (SNN) framework for recognizing specific radar emitters, using ResNet as the foundation. Experiments were conducted using a real radar radiation-source dataset, and the results indicated that the proposed algorithm improved the recognition performance by nearly 5%, compared to the GAP-based algorithm, under the same conditions. Moreover, the proposed algorithm exhibited superior recognition performance and stronger robustness than the GAP method under the conditions of sample imbalance and few shot. |
|---|---|
| AbstractList | The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this results in a substantial loss of key subtle information. In particular, the recognition performance often fails to meet SEI requirements when unbalanced and weakly labeled samples are present. This study uses the characteristics of radar emitter signals and proposes an approach for SEI based on frequency-domain pooling, fast Fourier transform (FFT) pooling, and wavelet transform pooling. First, a detailed mathematical derivation of FFT pooling and wavelet transform pooling was performed. Next, low-frequency (LF) and high recognition accuracy (HRA) selection criteria were used to select the corresponding retained frequency components. Finally, the new pooling method and frequency-component selection criteria were employed to construct a spectral neural network (SNN) framework for recognizing specific radar emitters, using ResNet as the foundation. Experiments were conducted using a real radar radiation-source dataset, and the results indicated that the proposed algorithm improved the recognition performance by nearly 5%, compared to the GAP-based algorithm, under the same conditions. Moreover, the proposed algorithm exhibited superior recognition performance and stronger robustness than the GAP method under the conditions of sample imbalance and few shot. |
| Author | Ling, Qing Zhang, Limin Yan, Wenjun Yu, Keyuan |
| Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0001-9049-9017 surname: Yan fullname: Yan, Wenjun organization: Institute of Information Fusion, Naval Aviation University, Yantai, China – sequence: 2 givenname: Qing orcidid: 0000-0002-4365-7964 surname: Ling fullname: Ling, Qing email: linqing19870522@163.com organization: Institute of Information Fusion, Naval Aviation University, Yantai, China – sequence: 3 givenname: Limin orcidid: 0000-0003-2217-1399 surname: Zhang fullname: Zhang, Limin organization: Institute of Information Fusion, Naval Aviation University, Yantai, China – sequence: 4 givenname: Keyuan surname: Yu fullname: Yu, Keyuan organization: Institute of Information Fusion, Naval Aviation University, Yantai, China |
| BookMark | eNpNj09Lw0AUxBepYK29e_CQL5D4djf7D09Sai0UBVvPYZN9C6ttUjYr4re3IT30NMObmQe_WzJpuxYJuadQUArmcfexLRgwUXDBjVTqikyZ5ixXXKjJhb8h877_AgBmJBUAU_K0PWKTot1nb_gzSvrt4nfmu5gNWfChyZaHkBLGbO2wTcPFptC1d-Ta232P87POyOfLcrd4zTfvq_XieZM3tFQpd7TmNS-9UUpQRwGU0cJyX2vXGF9aajyYUuoavcBSSk6Z8412TNUOjEU-IzD-bWLX9xF9dYzhYONfRaEa-KsTfzXwV2f-0-RhnAREvKhrpbQU_B8l2liI |
| CODEN | ITRSBN |
| Cites_doi | 10.1109/lcomm.2018.2871465 10.1109/CVPR52688.2022.00390 10.1007/978-3-319-10584-0_26 10.1109/CVPR.2017.426 10.1109/tifs.2020.3001721 10.1109/lcomm.2023.3247900 10.1109/cvpr.2016.90 10.1109/tifs.2021.3068010 10.1109/CVPR.2013.477 10.1109/tifs.2020.2988558 10.1155/2020/7646527 10.1109/ICCV.2019.00345 10.1109/TPAMI.2015.2389824 10.1109/tifs.2020.2978620 10.1109/TIP.2015.2475625 10.1109/iccv48922.2021.00082 10.1007/s11042-022-13553-0 10.1016/j.neunet.2016.07.003 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TRS.2025.3539677 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2832-7357 |
| EndPage | 708 |
| ExternalDocumentID | 10_1109_TRS_2025_3539677 10877865 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62371465 funderid: 10.13039/501100001809 – fundername: Shandong Youth Innovation Team grantid: 2022KJ084 – fundername: Shandong Taishan Scholars Special Fund |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c147t-d1b3b34f97751d1007985a3fb8dc9f4a19f09468bef5e466312dfc8d27bd09ae3 |
| IEDL.DBID | RIE |
| ISSN | 2832-7357 |
| IngestDate | Wed Oct 01 06:26:24 EDT 2025 Wed Aug 27 02:02:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c147t-d1b3b34f97751d1007985a3fb8dc9f4a19f09468bef5e466312dfc8d27bd09ae3 |
| ORCID | 0000-0002-4365-7964 0000-0003-2217-1399 0000-0001-9049-9017 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TRS_2025_3539677 ieee_primary_10877865 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on radar systems |
| PublicationTitleAbbrev | TRS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 Qin (ref5) 2020; 41 ref17 ref16 Zhao (ref2) 2023; 12 Sun (ref3) 2020; 9 Liu (ref26) 2021; 10 ref24 ref23 ref20 ref22 Lee (ref18) ref21 Zeiler (ref19) 2013; abs/1301.3557 Shi (ref1) 2022; 44 ref8 ref7 ref9 ref4 ref6 Rippel (ref25); 28 |
| References_xml | – start-page: 464 volume-title: Proc. 18th Int. Conf. Artif. Intell. Statist. ident: ref18 article-title: Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree – ident: ref7 doi: 10.1109/lcomm.2018.2871465 – ident: ref22 doi: 10.1109/CVPR52688.2022.00390 – volume: 12 start-page: 713 issue: 4 year: 2023 ident: ref2 article-title: A review of specific emitter identification based on phase space reconstruction publication-title: J. Radars – ident: ref12 doi: 10.1007/978-3-319-10584-0_26 – ident: ref24 doi: 10.1109/CVPR.2017.426 – ident: ref8 doi: 10.1109/tifs.2020.3001721 – ident: ref9 doi: 10.1109/lcomm.2023.3247900 – ident: ref16 doi: 10.1109/cvpr.2016.90 – volume: 9 start-page: 1014 issue: 6 year: 2020 ident: ref3 article-title: Overview of radio frequency fingerprint extraction in specific emitter identification publication-title: J. Radars – ident: ref11 doi: 10.1109/tifs.2021.3068010 – ident: ref13 doi: 10.1109/CVPR.2013.477 – ident: ref6 doi: 10.1109/tifs.2020.2988558 – volume: 41 start-page: 104 issue: 5 year: 2020 ident: ref5 article-title: Radar emitter identification based on unintentional phase modulation on pulse characteristic publication-title: J. Commun. – ident: ref4 doi: 10.1155/2020/7646527 – ident: ref21 doi: 10.1109/ICCV.2019.00345 – ident: ref20 doi: 10.1109/TPAMI.2015.2389824 – ident: ref10 doi: 10.1109/tifs.2020.2978620 – volume: 44 start-page: 2216 issue: 6 year: 2022 ident: ref1 article-title: Specific radar emitter identification: A comprehensive review publication-title: J. Electron. Inf. Technol. – volume: 10 start-page: 173 issue: 1 year: 2021 ident: ref26 article-title: Annual progress of the sea-detecting X-band radar and data acquisition program publication-title: J. Radars – ident: ref14 doi: 10.1109/TIP.2015.2475625 – ident: ref15 doi: 10.1109/iccv48922.2021.00082 – ident: ref17 doi: 10.1007/s11042-022-13553-0 – volume: abs/1301.3557 year: 2013 ident: ref19 article-title: Stochastic pooling for regularization of deep convolutional neural networks publication-title: ArXiv – ident: ref23 doi: 10.1016/j.neunet.2016.07.003 – volume: 28 start-page: 2449 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Spectral representations for convolutional neural networks |
| SSID | ssj0002961500 |
| Score | 2.2813234 |
| Snippet | The existing ResNet models used in specific emitter identification (SEI) typically use global average pooling (GAP) to reduce feature dimensions. However, this... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 695 |
| SubjectTerms | Accuracy Data mining Fast Fourier transform (FFT) pooling Fast Fourier transforms Feature extraction frequency components Frequency modulation global average pooling (GAP) Neural networks Radar Radio frequency spectral neural network (SNN) Transforms wavelet transform pooling Wavelet transforms |
| Title | Spectral Neural Network for Specific Emitter Identification |
| URI | https://ieeexplore.ieee.org/document/10877865 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2832-7357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961500 issn: 2832-7357 databaseCode: RIE dateStart: 20230101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT158YMX6Yg9ePGxM9pHdxZOIpQj2oC30FrLZXShiK5Je_PXuI5UqCJ4mhASWbxPmm9mZ-QCupHPK8wKBc04MZooWuGaEYVrnTriy1CJqHT5NyvGMPc75vGtWj70w1tpYfGazcBnP8s2qWYdUmf_DZRh3xnvQ8yY1a30nVIgKs83zzVFkrm6mzy8-ACQ8o5yqUogfrmdLSyW6ktE-TDaLSBUkr9m61Vnz-Ws-479XeQB7HalEd-krOIQduzyC2yAtH_IYKAzgiCZWfCNPU1GUnXeLBj28LUI_D0oNu67L4A1gNnqY3o9xJ5WAm4KJFptCU02Z82yOFyZUPijJa-q0NI1yrC6U83FcKbV13DLPMgpiXCMNEdrkqrb0GPrL1dKeABKae68e5Iu8FbXUxLMWv53cEWKZ0UO43qBYvaeJGFWMJHJVecSrgHjVIT6EQcBn67kEzekf989gN7yeUhzn0G8_1vbCO_1WX8bN_gL0z6jT |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HvTiAyvW5x68eNh1N49NgieRlqptD9pCb8tmk0ARW5HtxV9vHlupguApy7KE8GXDfDOZmQ_gihsjLC9gcUqRionAWVwSRGJcpoaZPJfMax0OR3l_Qh6ndNoUq_taGK21Tz7TiXv0d_lqUS1dqMyecO7andFN2KKEEBrKtb5DKki47ubp6jIyFTfj5xfrAiKaYIpFztgP47OmpuKNSW8PRqtlhByS12RZy6T6_NWh8d_r3IfdhlZGd-E_OIANPT-EWycu7yIZkWvB4Qef8x1Zohp54Xkzq6Lu28xV9EShZNc0Mbw2THrd8X0_bsQS4iojrI5VJrHExFg-RzPlch8EpyU2kqtKGFJmwlhPLudSG6qJ5RkZUqbiCjGpUlFqfASt-WKujyFiklq77gSM7MhKLpHlLXZDqUFIEyU7cL1CsXgPPTEK70ukorCIFw7xokG8A22Hz9p3AZqTP95fwnZ_PBwUg4fR0ynsuKlCwOMMWvXHUp9bClDLC7_xX_6wrCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Neural+Network+for+Specific+Emitter+Identification&rft.jtitle=IEEE+transactions+on+radar+systems&rft.au=Yan%2C+Wenjun&rft.au=Ling%2C+Qing&rft.au=Zhang%2C+Limin&rft.au=Yu%2C+Keyuan&rft.date=2025&rft.pub=IEEE&rft.eissn=2832-7357&rft.volume=3&rft.spage=695&rft.epage=708&rft_id=info:doi/10.1109%2FTRS.2025.3539677&rft.externalDocID=10877865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-7357&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-7357&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-7357&client=summon |