Deep information-extreme machine learning for autonomous UAV based on decursive data structure for semantic segmentation of digital image of a region

The subject of the research is functional categorical models of deep information-extreme machine learning based on linear and hierarchical data structures, methods for optimizing machine learning parameters based on information criteria and constructing a decursive binary data tree for a given alpha...

Full description

Saved in:
Bibliographic Details
Published inRadìoelektronnì ì komp'ûternì sistemi (Online) Vol. 2025; no. 3; pp. 122 - 136
Main Authors Cheranovskyi, Valerii, Myronenko, Mykyta, Kovalevskyi, Serhii, Kraskovskyi, Roman, Otroshchenko, Mykhailo
Format Journal Article
LanguageEnglish
Published National Aerospace University «Kharkiv Aviation Institute 10.09.2025
Subjects
Online AccessGet full text
ISSN1814-4225
2663-2012
2663-2012
DOI10.32620/reks.2025.3.09

Cover

Abstract The subject of the research is functional categorical models of deep information-extreme machine learning based on linear and hierarchical data structures, methods for optimizing machine learning parameters based on information criteria and constructing a decursive binary data tree for a given alphabet of recognition classes. The aim of the research is to improve the accuracy of machine learning for an autonomous UAV for semantic segmentation of a digital image of a region obtained via an optoelectronic observation channel. This goal is achieved by developing a method of deep information-extreme machine learning for an on-board recognition system of an autonomous UAV using a decursive binary data structure. A new method of deep information-extreme machine learning for autonomous UAVs has been developed, based on a hierarchical data structure in the form of a decursive binary tree. The novelty of the method lies in the maximization of the average interclass code distance within a given dimensionality of the Hamming feature space by optimizing the selection level of coordinates of statistically averaged binary realizations of the recognition classes. At the same time, the level of depth of information-extreme machine learning according to the principle of deferred decisions is determined by the number of parameters of the system's functioning that are optimized according to the information criterion. This approach, unlike neural-like structures, provides flexibility for the onboard recognition system during retraining in the event of an expansion of the recognition class alphabet. The Kullback-Leibler information measure modified by the authors serves as a criterion for optimizing machine learning parameters. In addition, the proposed method involves the transformation of the input training matrix into a working binary matrix specified in the Hamming space, which in the process of machine learning adapts to its maximum accuracy. Results: Based on the results of deep information-extreme machine learning, error-free decision rules based on the training matrix were constructed within the framework of a geometric approach. It is shown that the accuracy of the deep information-extreme machine learning is affected by the sequence of optimization of the parameters of the recognition system. The results of functional testing and cross-validation have confirmed the high accuracy of information-extreme machine learning for an autonomous UAV, as demonstrated by semantic segmentation of a digital image of a region. Conclusions: For the first time, a method of deep information-extreme machine learning based on a hierarchical data structure in the form of a decursive binary tree has been developed, which, unlike the known ones, additionally optimizes the level of selection for coordinates of binary averaged vectors of recognition features.
AbstractList The subject of the research is functional categorical models of deep information-extreme machine learning based on linear and hierarchical data structures, methods for optimizing machine learning parameters based on information criteria and constructing a decursive binary data tree for a given alphabet of recognition classes. The aim of the research is to improve the accuracy of machine learning for an autonomous UAV for semantic segmentation of a digital image of a region obtained via an optoelectronic observation channel. This goal is achieved by developing a method of deep information-extreme machine learning for an on-board recognition system of an autonomous UAV using a decursive binary data structure. A new method of deep information-extreme machine learning for autonomous UAVs has been developed, based on a hierarchical data structure in the form of a decursive binary tree. The novelty of the method lies in the maximization of the average interclass code distance within a given dimensionality of the Hamming feature space by optimizing the selection level of coordinates of statistically averaged binary realizations of the recognition classes. At the same time, the level of depth of information-extreme machine learning according to the principle of deferred decisions is determined by the number of parameters of the system's functioning that are optimized according to the information criterion. This approach, unlike neural-like structures, provides flexibility for the onboard recognition system during retraining in the event of an expansion of the recognition class alphabet. The Kullback-Leibler information measure modified by the authors serves as a criterion for optimizing machine learning parameters. In addition, the proposed method involves the transformation of the input training matrix into a working binary matrix specified in the Hamming space, which in the process of machine learning adapts to its maximum accuracy. Results: Based on the results of deep information-extreme machine learning, error-free decision rules based on the training matrix were constructed within the framework of a geometric approach. It is shown that the accuracy of the deep information-extreme machine learning is affected by the sequence of optimization of the parameters of the recognition system. The results of functional testing and cross-validation have confirmed the high accuracy of information-extreme machine learning for an autonomous UAV, as demonstrated by semantic segmentation of a digital image of a region. Conclusions: For the first time, a method of deep information-extreme machine learning based on a hierarchical data structure in the form of a decursive binary tree has been developed, which, unlike the known ones, additionally optimizes the level of selection for coordinates of binary averaged vectors of recognition features.
Author Kovalevskyi, Serhii
Otroshchenko, Mykhailo
Kraskovskyi, Roman
Myronenko, Mykyta
Cheranovskyi, Valerii
Author_xml – sequence: 1
  givenname: Valerii
  orcidid: 0000-0002-2829-8297
  surname: Cheranovskyi
  fullname: Cheranovskyi, Valerii
– sequence: 2
  givenname: Mykyta
  surname: Myronenko
  fullname: Myronenko, Mykyta
– sequence: 3
  givenname: Serhii
  orcidid: 0000-0002-1332-7913
  surname: Kovalevskyi
  fullname: Kovalevskyi, Serhii
– sequence: 4
  givenname: Roman
  orcidid: 0000-0002-2908-7707
  surname: Kraskovskyi
  fullname: Kraskovskyi, Roman
– sequence: 5
  givenname: Mykhailo
  orcidid: 0000-0001-5064-6780
  surname: Otroshchenko
  fullname: Otroshchenko, Mykhailo
BookMark eNqFkc9u1DAQxi1UJJbSM1e_QLb2OE7iY1X-VarUC-VqTeJxcEnslZ0AfRDel-wu4trTjGbm980nfW_ZRUyRGHsvxV5BA-I604-yBwF6r_bCvGI7aBpVgZBwwXayk3VVA-g37KqUJyEEdK2Wbbdjfz4QHXiIPuUZl5BiRb-XTDPxGYfvIRKfCHMMceTbCcd1STHNaS388eYb77GQ4ylyR8OaS_hJ3OGCvCx5HZY10wkqNGNcwrA140xxOf3hyXMXxrDgxMOMIx0HyDON2_Ide-1xKnT1r16yx08fv95-qe4fPt_d3txXg6xbU_W18ACSOuWc7KUzfjCg21pobxC1MuR66gzJRpCD3gEgKNB13_imI4Hqkt2ddV3CJ3vIm5H8bBMGexqkPFrMm_OJrFKyBiOxll7VUg1GCue17l3bCtRtu2mJs9YaD_j8C6fpv6AU9pSSPaZkjylZZYXZkOszMuRUSib_IvEXS0yZ3Q
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.32620/reks.2025.3.09
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2663-2012
EndPage 136
ExternalDocumentID oai_doaj_org_article_3314291a41f3413c910df55bd770a577
10.32620/reks.2025.3.09
10_32620_reks_2025_3_09
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c1479-b40f221e83dd1b1d9fc9257405f9aa539edbe89e160ed2bd22a23254b6f68e0a3
IEDL.DBID DOA
ISSN 1814-4225
2663-2012
IngestDate Tue Oct 28 02:26:21 EDT 2025
Wed Oct 29 12:23:28 EDT 2025
Wed Oct 29 21:17:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1479-b40f221e83dd1b1d9fc9257405f9aa539edbe89e160ed2bd22a23254b6f68e0a3
ORCID 0000-0002-2908-7707
0000-0002-2829-8297
0000-0001-5064-6780
0000-0002-1332-7913
OpenAccessLink https://doaj.org/article/3314291a41f3413c910df55bd770a577
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3314291a41f3413c910df55bd770a577
unpaywall_primary_10_32620_reks_2025_3_09
crossref_primary_10_32620_reks_2025_3_09
PublicationCentury 2000
PublicationDate 2025-09-10
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-10
  day: 10
PublicationDecade 2020
PublicationTitle Radìoelektronnì ì komp'ûternì sistemi (Online)
PublicationYear 2025
Publisher National Aerospace University «Kharkiv Aviation Institute
Publisher_xml – name: National Aerospace University «Kharkiv Aviation Institute
SSID ssj0002875178
ssib044757823
ssib052605930
ssib038076033
Score 2.3053691
Snippet The subject of the research is functional categorical models of deep information-extreme machine learning based on linear and hierarchical data structures,...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 122
SubjectTerms autonomous uav
decursive binary tree
digital image of the region
information criterion
information-extreme machine learning
optimization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge4AeKE-xUJAPHOCQxHbiJD5uC1WFRMWBReUU2bG9LNskq92NEPwP_i8ziVuVXhASt2g0eXlGnm-smW8IeaWYlIbVKsLYFEG-wSKjvY1U7Z0HfOCcwXPID2f56Tx7fy7PQ3s09sK0u2W8-qrH0Tfdt20ykAYiU0SycattEtYzsUgl32k7SCHNEzJOY6YSpG-_TfZyCch8QvbmZx9nXzDnKnkWZWKYwQohKQXn4GJk-kmRkv3GY_4IUgOX_z6507dr_eO7vri4FoBODkhz-elj3ckq7ncmrn_eYHX8X_92n9wLSJXORvUH5JZrH5L9a_yFj8ivt86taeBeRQtHsNXjgSNthhpNR8NQigUFFar7HbZQdP2WzmefKQZQS7uWWjzzxzJ6ivWqdKS07TduuGnrGjD-soaLRRMapVraeWqXCxx4QpcNbIko0BSnTHTtYzI_effp-DQKcx6immeFikzGvBDclam13HCrfK1gJwEo6ZXWMlXOGlcqx3PmrDBWCA04UGYm93npmE6fkEnbte4pobzUqta8BpgDfsdlyQCPSUiKdAlS4afk9aVhq_VI51FBGjT4QIXLXeFyV2nF1JQcoeGv1JCHexB0m0UVTFWlKYeAznXGPcKBGsCX9eD9tiiYlkUxJW-u3OZvL3z2D7rPyV28xsIVzg7JBAzjXgA62pmXwel_A0B_D_U
  priority: 102
  providerName: Unpaywall
Title Deep information-extreme machine learning for autonomous UAV based on decursive data structure for semantic segmentation of digital image of a region
URI https://nti.khai.edu/ojs/index.php/reks/article/download/reks.2025.3.09/2874
https://doaj.org/article/3314291a41f3413c910df55bd770a577
UnpaywallVersion publishedVersion
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2663-2012
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875178
  issn: 2663-2012
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2663-2012
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044757823
  issn: 1814-4225
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemg5oNKHutAiHzi0B4Mdx0l8XCgIVQL10K3oKbLj8WpbNlkBK9Qf0v_bGSescuPSW2I5tuJvMg9n_A1jh1Ya42VjBdkmgfGGFN7FIGwTIaJ_AOBpH_LyqriY5V-vzfWo1BflhPX0wP3CHWutUGUql6tICrdB8xYijh_KUjpTpnPksrKjYAoliVjUi9H_OWK1Q1O4uTfkxT_WAPyVtphKo5LaRouXixylvOcB0kTYfnwLv4naOzNH-ohSF0cmLDH9b7MX63bl_jy4m5uReTp_xXYGv5JP-_fZZc-gfc22R2yDb9jfLwArPjClEh4CFTNtD_JlyqgEPpSQmHPswt36ng48dOs7Ppv-4GTuAu9aHmiHnpLeOWWX8p6Adn0L6aE7WCJUiwYv5svhWFPLu8jDYk7lSfhiiQqMGhynmhBd-5bNzs--n16IoSqDaFReWuFzGbNMQaVDUF4FGxuL3z06ftE6Z7SF4KGyoAoJIfMhyxx6bSb3RSwqkE6_Y1tt18J7xlXlbONUg04JSokyFQKpDYYwrsLWLE7Yp8eFrlc9-UaNQUvCpCZMasKk1rW0E3ZCQGy6EWt2akBZqgdZqp-SpQn7vIHxqQn3_seE--wlDUj5J0p-YFuIGHxEJ-feHyR5PmDPZ1ffpj__AU9e9Ms
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge4AeKE-xUJAPHOCQxHbiJD5uC1WFRMWBReUU2bG9LNskq92NEPwP_i8ziVuVXhASt2g0eXlGnm-smW8IeaWYlIbVKsLYFEG-wSKjvY1U7Z0HfOCcwXPID2f56Tx7fy7PQ3s09sK0u2W8-qrH0Tfdt20ykAYiU0SycattEtYzsUgl32k7SCHNEzJOY6YSpG-_TfZyCch8QvbmZx9nXzDnKnkWZWKYwQohKQXn4GJk-kmRkv3GY_4IUgOX_z6507dr_eO7vri4FoBODkhz-elj3ckq7ncmrn_eYHX8X_92n9wLSJXORvUH5JZrH5L9a_yFj8ivt86taeBeRQtHsNXjgSNthhpNR8NQigUFFar7HbZQdP2WzmefKQZQS7uWWjzzxzJ6ivWqdKS07TduuGnrGjD-soaLRRMapVraeWqXCxx4QpcNbIko0BSnTHTtYzI_effp-DQKcx6immeFikzGvBDclam13HCrfK1gJwEo6ZXWMlXOGlcqx3PmrDBWCA04UGYm93npmE6fkEnbte4pobzUqta8BpgDfsdlyQCPSUiKdAlS4afk9aVhq_VI51FBGjT4QIXLXeFyV2nF1JQcoeGv1JCHexB0m0UVTFWlKYeAznXGPcKBGsCX9eD9tiiYlkUxJW-u3OZvL3z2D7rPyV28xsIVzg7JBAzjXgA62pmXwel_A0B_D_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+information-extreme+machine+learning+for+autonomous+UAV+based+on+decursive+data+structure+for+semantic+segmentation+of+digital+image+of+a+region&rft.jtitle=Rad%C3%ACoelektronn%C3%AC+%C3%AC+komp%27%C3%BBtern%C3%AC+sistemi+%28Online%29&rft.au=Cheranovskyi%2C+Valerii&rft.au=Myronenko%2C+Mykyta&rft.au=Kovalevskyi%2C+Serhii&rft.au=Kraskovskyi%2C+Roman&rft.date=2025-09-10&rft.issn=1814-4225&rft.eissn=2663-2012&rft.volume=2025&rft.issue=3&rft.spage=122&rft.epage=136&rft_id=info:doi/10.32620%2Freks.2025.3.09&rft.externalDBID=n%2Fa&rft.externalDocID=10_32620_reks_2025_3_09
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-4225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-4225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-4225&client=summon