Intelligent Patient Assessment & Monitoring System: Developing an Emotion Recognition Algorithm for Vocal Cues

This project will develop an intelligent Patient Assessment & Monitoring System (iPAMS) consisting of different sensor networks and smart software algorithms with the ultimate goal to monitor and assess patients with TBI in the rehabilitation setting. Cross-sectional study. The study took place...

Full description

Saved in:
Bibliographic Details
Published inArchives of physical medicine and rehabilitation Vol. 105; no. 4; pp. e54 - e55
Main Authors Lofitou, Kalia, Theocharides, Theocharis, Constantinidou, Fofi, Pettemeridou, Eva
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0003-9993
DOI10.1016/j.apmr.2024.02.151

Cover

Abstract This project will develop an intelligent Patient Assessment & Monitoring System (iPAMS) consisting of different sensor networks and smart software algorithms with the ultimate goal to monitor and assess patients with TBI in the rehabilitation setting. Cross-sectional study. The study took place at the Centre for Applied Neuroscience, University of Cyprus. The algorithm developed was tested on a set of data collected from 24 neurotypical participants (male = 8; female = 16), with an age range of 18-51 (M = 27.08; SD = 7.34). The data set of the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) was used to create the algorithm of the Online Speech Emotion Recognition using Python 3.7.6. The code of speech expressions included happy, sad, angry, fearful, disgust, surprise, and neutral. The gender differentiation was also inserted to detect the different emotions between men and women. The output is a real-time speech emotion recognition. Not applicable. A sophisticated online algorithm has been developed to detect and classify vocal signals into different emotions. The speech recognition algorithm developed and implemented was shown to effectively detect and classify all targeted emotions, in men and women. Most importantly, this speech recognition technique can be applied in real-time emotion detection. These findings suggest that real-time voice processing algorithms could contribute towards the understanding of the emotional state of patients, more efficiently, prior to the presence of any disruptive behavior. The idea behind this is that this software algorithm could specifically identify a potential behavioral alert through a personalized patient profile and notify the rehabilitation facility and the patient with TBI with real-time feedback. None disclosed.
AbstractList This project will develop an intelligent Patient Assessment & Monitoring System (iPAMS) consisting of different sensor networks and smart software algorithms with the ultimate goal to monitor and assess patients with TBI in the rehabilitation setting. Cross-sectional study. The study took place at the Centre for Applied Neuroscience, University of Cyprus. The algorithm developed was tested on a set of data collected from 24 neurotypical participants (male = 8; female = 16), with an age range of 18-51 (M = 27.08; SD = 7.34). The data set of the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) was used to create the algorithm of the Online Speech Emotion Recognition using Python 3.7.6. The code of speech expressions included happy, sad, angry, fearful, disgust, surprise, and neutral. The gender differentiation was also inserted to detect the different emotions between men and women. The output is a real-time speech emotion recognition. Not applicable. A sophisticated online algorithm has been developed to detect and classify vocal signals into different emotions. The speech recognition algorithm developed and implemented was shown to effectively detect and classify all targeted emotions, in men and women. Most importantly, this speech recognition technique can be applied in real-time emotion detection. These findings suggest that real-time voice processing algorithms could contribute towards the understanding of the emotional state of patients, more efficiently, prior to the presence of any disruptive behavior. The idea behind this is that this software algorithm could specifically identify a potential behavioral alert through a personalized patient profile and notify the rehabilitation facility and the patient with TBI with real-time feedback. None disclosed.
Author Constantinidou, Fofi
Lofitou, Kalia
Theocharides, Theocharis
Pettemeridou, Eva
Author_xml – sequence: 1
  givenname: Kalia
  surname: Lofitou
  fullname: Lofitou, Kalia
– sequence: 2
  givenname: Theocharis
  surname: Theocharides
  fullname: Theocharides, Theocharis
– sequence: 3
  givenname: Fofi
  surname: Constantinidou
  fullname: Constantinidou, Fofi
– sequence: 4
  givenname: Eva
  surname: Pettemeridou
  fullname: Pettemeridou, Eva
BookMark eNqFkE1PAyEQhjnUxLb6Bzxx8rYrsO3Wbbw0tWqTGo1fVwLs7EploQFs0n8vGz150AN5hwnPhHlGaGCdBYTOKMkpoeXFNhe7zueMsElOWE6ndICGhJAiq6qqOEajELbpWk4LOkR2bSMYo1uwET-KqPtchAAhdH15ju-d1dF5bVv8fAgRujm-hj0Yt-tbwuJV56J2Fj-Bcm1629cL0yYkvne4cR6_OSUMXn5COEFHjTABTn9yjF5vVi_Lu2zzcLteLjaZopMZzdKRVFWgmsuCTEAyQkXFGqEEyLKWsqBKEkaElKIsGSH1jDJZ0mldgxRSFMUYse-5yrsQPDR853Un_IFTwntLfMt7S7y3xAnjyVKCrr4hSD_ba_A8qORDQa09qMhrp__G579wZbTVafUPOPwHfwFeuYrT
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.apmr.2024.02.151
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physical Therapy
EndPage e55
ExternalDocumentID 10_1016_j_apmr_2024_02_151
S0003999324002454
GroupedDBID ---
--K
-~X
.1-
.55
.FO
.GJ
07C
0R~
1B1
1CY
1P~
1~5
23N
3O-
4.4
41~
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
AAEDT
AAEDW
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAWTL
AAXUO
AAYWO
ABDQB
ABFRF
ABJNI
ABLJU
ABMAC
ABOCM
ABUFD
ABWVN
ACBNA
ACGFO
ACGUR
ACRPL
ADBBV
ADMUD
ADNMO
ADRMJ
AEFWE
AENEX
AEVXI
AFFNX
AFJKZ
AFRHN
AFTJW
AGNAY
AGQPQ
AI.
AIGII
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
E3Z
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
KOO
L7B
M41
MO0
N4W
NEJ
NQ-
O-3
O9-
OH.
OHT
OK1
OT.
P2P
QTD
QZG
R2-
ROL
RPZ
SEL
SES
SJN
SKT
SSZ
TWZ
UDS
UGJ
UHB
UHS
UPT
UQV
UV1
VH1
WH7
WHG
X7M
XH2
XOL
YQJ
YRY
YZZ
Z5R
ZGI
ZXP
~S-
ADPAM
AFCTW
AGZHU
FRP
RIG
AAYXX
CITATION
ID FETCH-LOGICAL-c1471-471b1c9ecf8304eb201a92facaeb6dbb31cb020abba66200d712b615ddebaba33
ISSN 0003-9993
IngestDate Wed Oct 01 05:11:27 EDT 2025
Sat Dec 28 15:52:17 EST 2024
Tue Oct 14 19:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords intelligent Patient Assessment & Monitoring System
Traumatic Brain Injury
Rehabilitation
iPAMS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1471-471b1c9ecf8304eb201a92facaeb6dbb31cb020abba66200d712b615ddebaba33
ParticipantIDs crossref_primary_10_1016_j_apmr_2024_02_151
elsevier_sciencedirect_doi_10_1016_j_apmr_2024_02_151
elsevier_clinicalkey_doi_10_1016_j_apmr_2024_02_151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Archives of physical medicine and rehabilitation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0006531
Score 2.4392526
Snippet This project will develop an intelligent Patient Assessment & Monitoring System (iPAMS) consisting of different sensor networks and smart software algorithms...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e54
SubjectTerms intelligent Patient Assessment & Monitoring System
iPAMS
Rehabilitation
Traumatic Brain Injury
Title Intelligent Patient Assessment & Monitoring System: Developing an Emotion Recognition Algorithm for Vocal Cues
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0003999324002454
https://dx.doi.org/10.1016/j.apmr.2024.02.151
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0003-9993
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006531
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0003-9993
  databaseCode: AKRWK
  dateStart: 19930501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006531
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyFe-Bggxpf8gHipMiWxExbeqrJpMIEQdLC3yHYc6LSlFXJf-F38QO7NdZwUKj720Ch15UT1Pck9ds49YewZzLdam6zIJjqPpDA6KqRGvUMmTSVTnGOg2uJdfnwq35xlZ6PRj4Fqae30vvm-ta7kKlGFNogrVsn-R2TDQaEB9iG-sIUIw_afYvw6-Gk69NrH0sbJNFhttlGla7YV2ZE5OS4BvOorpeDyPqQ3-SCDJC0R7E8vvkAn9_WylSF-woQ3ma293nCLae2qC3f3rJ506xs24EH7A__ZLdek5bhYhLyANgFYBLaorNcu-e-B9s-IzLpFs6joAEdLqjumu7tzWO7c_QaThOGaRjqUwrQLbV2xzYYWFKdvEfBZsXHzjrMBSuXgVmzJnNpndUtmwL8lDFq7ON9Xq0t0h00lOrgm3gN304j7Y1vIDOdH2W0KWL7GdlLIJfGY7UxPPnw-CQwgz0R4UyN28MVapCv89UzbCdGA5Mxvs5t-dsKnBLU7bGSbXXb9rY_pLrv13seZz8mN4i5rBiDkHoS8ByF_znsIcoLgS94DkKuGewDyAQB5ACAHAPIWgBwBeI-dHh3OZ8eRf4lHZBIgPhF8dGIKa-oDEUurgXCqIq2VUVbnldYiMRqmLEprlcNYxtWLJNVAsyHtaqWVEPfZuFk29gHjdZHXRWEqJfHxM_CoKk6g7QDmJKrOhN1jk24kyxV5tZSdiPG8xHEvcdzLOC1h3PeY6Aa77KqQIW-WgIw_9spCL89RiXv-pd_DK_Z7xG70F8hjNnbf1vYJ0GCnn3rU_QSBUrlz
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Patient+Assessment+%26+Monitoring+System%3A+Developing+an+Emotion+Recognition+Algorithm+for+Vocal+Cues&rft.jtitle=Archives+of+physical+medicine+and+rehabilitation&rft.au=Lofitou%2C+Kalia&rft.au=Theocharides%2C+Theocharis&rft.au=Constantinidou%2C+Fofi&rft.au=Pettemeridou%2C+Eva&rft.date=2024-04-01&rft.pub=Elsevier+Inc&rft.issn=0003-9993&rft.volume=105&rft.issue=4&rft.spage=e54&rft.epage=e55&rft_id=info:doi/10.1016%2Fj.apmr.2024.02.151&rft.externalDocID=S0003999324002454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9993&client=summon