Analysis of Contrast and Correlation Between Deep Learning Algorithms for Diagnosis of COVID-19 from Lung Ultrasonography
Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approac...
Saved in:
| Published in | ECS transactions Vol. 107; no. 1; pp. 1877 - 1895 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
The Electrochemical Society, Inc
24.04.2022
|
| Online Access | Get full text |
| ISSN | 1938-5862 1938-6737 |
| DOI | 10.1149/10701.1877ecst |
Cover
| Abstract | Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approach that showed promising ways to diagnose pulmonary states that are a profitable and safer alternative to CT scan. Deep learning techniques for computerized study of Lung Ultrasound (LUS) images offer promising opportunities for identifying and diagnosing COVID-19. This paper aims to bring up a Convolution Neural Networking (CNN) model, which accurately predicts the condition of COVID-19 via the output produced lung ultrasound. Three models were developed using various parameters and were tested on the same dataset in order to compare each on standard statistical procedures. The best model achieved an accuracy of 94.67%, sensitivity 55%, and specificity of 60% on the test data. |
|---|---|
| AbstractList | Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approach that showed promising ways to diagnose pulmonary states that are a profitable and safer alternative to CT scan. Deep learning techniques for computerized study of Lung Ultrasound (LUS) images offer promising opportunities for identifying and diagnosing COVID-19. This paper aims to bring up a Convolution Neural Networking (CNN) model, which accurately predicts the condition of COVID-19 via the output produced lung ultrasound. Three models were developed using various parameters and were tested on the same dataset in order to compare each on standard statistical procedures. The best model achieved an accuracy of 94.67%, sensitivity 55%, and specificity of 60% on the test data. |
| Author | Goswami, Radha Debal Sabhapandit, Eshan Soangra, Rahul Tiwari, Rajat Rajagopal, Sivakumar |
| Author_xml | – sequence: 1 givenname: Sivakumar surname: Rajagopal fullname: Rajagopal, Sivakumar organization: Vellore Institute of Technology – sequence: 2 givenname: Radha Debal surname: Goswami fullname: Goswami, Radha Debal organization: Vellore Institute of Technology – sequence: 3 givenname: Rajat surname: Tiwari fullname: Tiwari, Rajat organization: Vellore Institute of Technology – sequence: 4 givenname: Eshan surname: Sabhapandit fullname: Sabhapandit, Eshan organization: Vellore Institute of Technology – sequence: 5 givenname: Rahul surname: Soangra fullname: Soangra, Rahul organization: Crean College of Health and Behavioral Sciences, Chapman University |
| BookMark | eNp1kD1vwjAURa2KSqW0a2fPlULtOInjkUI_kCKxlK6R4zwHo2BHdlCVf99QYOz07pPuucO5RxPrLCD0RMmc0kS8UMIJndOcc1Chv0FTKlgeZZzxySWneRbfofsQ9oRkI8OnaFhY2Q7BBOw0Xjrbexl6LG09Pt5DK3vjLH6F_gfA4hVAhwuQ3hrb4EXbOG_63SFg7TxeGdlYd53afK9XERVYe3fAxXGsb9vTuLOu8bLbDQ_oVss2wOPlztD2_e1r-RkVm4_1clFEiiZJH6WQEaaqjFZMxJWoWS1SDTGPGauBSpGSXGS5FrEWSaZynqY6zgkFwqsapFJshubnXeVdCB502XlzkH4oKSlP4so_ceVV3Ag8nwHjunLvjn40FP4r_wIG9nHc |
| ContentType | Journal Article |
| Copyright | 2022 ECS - The Electrochemical Society |
| Copyright_xml | – notice: 2022 ECS - The Electrochemical Society |
| DBID | AAYXX CITATION |
| DOI | 10.1149/10701.1877ecst |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1938-6737 |
| EndPage | 1895 |
| ExternalDocumentID | 10_1149_10701_1877ecst 10.1149/10701.1877ecst |
| GroupedDBID | 0R~ 29G AATNI ABDNZ ABJNI ACHIP ADNWM AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CJUJL EBS EJD IOP JGOPE KOT MV1 N5L NFQFE REC RHI RNS ROL RPA AAYXX ADEQX CITATION |
| ID | FETCH-LOGICAL-c144t-5e603cb61b392b9d3d95fe27233de1a9508968f92f946c8755f2801e07bdeacc3 |
| IEDL.DBID | IOP |
| ISSN | 1938-5862 |
| IngestDate | Tue Jul 01 03:47:26 EDT 2025 Wed Aug 21 03:33:27 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c144t-5e603cb61b392b9d3d95fe27233de1a9508968f92f946c8755f2801e07bdeacc3 |
| PageCount | 19 |
| ParticipantIDs | iop_journals_10_1149_10701_1877ecst crossref_primary_10_1149_10701_1877ecst |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220424 |
| PublicationDateYYYYMMDD | 2022-04-24 |
| PublicationDate_xml | – month: 04 year: 2022 text: 20220424 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | ECS transactions |
| PublicationTitleAlternate | ECS Trans |
| PublicationYear | 2022 |
| Publisher | The Electrochemical Society, Inc |
| Publisher_xml | – name: The Electrochemical Society, Inc |
| SSID | ssj0061147 |
| Score | 2.2698963 |
| Snippet | Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray... |
| SourceID | crossref iop |
| SourceType | Index Database Publisher |
| StartPage | 1877 |
| Title | Analysis of Contrast and Correlation Between Deep Learning Algorithms for Diagnosis of COVID-19 from Lung Ultrasonography |
| URI | https://iopscience.iop.org/article/10.1149/10701.1877ecst |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1938-6737 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0061147 issn: 1938-5862 databaseCode: IOP dateStart: 20060101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HPTi27i-0kQTTxBoefW47mrUqOvBNcYLoQ9Wo8IG2IP-eqe2JKvGxHgCkqE0A3z9Bma-QeiQ5iJnWaAcJogOUAAHeehRR0mexRnnMVH6e8fVdXQ2DC7uw_upVl9P5dhCvwu7RijYuNAK2zLYxp7v-kkcK1E3s2ieJkCLde3e4KYF4QgsY_NDWRcWRcTqNf48_8t6NAvXnFpeTpfRQzsxk1Xy7E4a7or3b5qN_5r5ClqypBN3jeEqmlHFGlrotb3e1tFbq02CyxxrwaoqqxucFRIOqsrmy-Fjk9OF-0qNsRVmHeHuy6isnprH1xoDAcZ9k7tnhxrcnfcdn2FdxYIvAVjw8EUPXhZWKnsDDU9Pbntnjm3K4AiIvRonVJFHBY98DsyKM0klC3NFYkKpVH6mm8qyKMkZyVkQCYiGwpzAKqi8mEsAeUE30VxRFmoLYckToDcc4DjjARcJE1zJgHk0yTMvkEkHHbW3Jh0b7Y3U1FGz9NOVaevKDjoAn6f29at_sdr-k9UOWiS6xMELHBLsormmmqg9IB4N3_98xD4A2hzUYg |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT4NAEN54JPrkbaznJpr4ROWGfaytjbd9sKZvhL2qsUID-KC_3ll2STxiYnwCkslABvh2Bub7BqEjTzJJUl9YhLmqQAEcpIHtWYLTNEopjVyhvnfc3IbnQ_9yFIxMb07NhcmnBvrbsKuFgnUIjbAtgW1kO20njiLByupkyuUsmq9VShR_727QAHEI1pH-qazIRaFrNBt_-viyJs3CeT8tMf1lPUe1rJUJVWfJc_u1om32_k238d9Xv4KWTPKJO9p4Fc2IbA0tdpuZb-vordEowbnESriqSMsKpxmHg6IwfXP4VPd24Z4QU2wEWse4MxnnxVP1-FJiSIRxT_fwGVd3Dxc9yyFYsVnwNQAMHk6U8zwzktkbaNg_u--eW2Y4g8WgBqusQIS2x2joUMiwKOEeJ4EUbuR6HhdOqobLkjCWxJXEDxlURYF0YTUUdkQ5gD3zNtFclmdiC2FOY0hzKMBySn3KYsKo4D6xvVimts_jFjpubk8y1RocieZTk6QOZ9KEs4UOIe6JeQ3LX6y2_2R1gBYGvX5yfXF7taOqedvWFMRdNFcVr2IPcpGK7tdP3AfarNm2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Contrast+and+Correlation+Between+Deep+Learning+Algorithms+for+Diagnosis+of+COVID-19+from+Lung+Ultrasonography&rft.jtitle=ECS+transactions&rft.au=Rajagopal%2C+Sivakumar&rft.au=Goswami%2C+Radha+Debal&rft.au=Tiwari%2C+Rajat&rft.au=Sabhapandit%2C+Eshan&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=1877&rft.epage=1895&rft_id=info:doi/10.1149%2F10701.1877ecst&rft.externalDocID=10.1149%2F10701.1877ecst |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon |