Analysis of Contrast and Correlation Between Deep Learning Algorithms for Diagnosis of COVID-19 from Lung Ultrasonography

Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approac...

Full description

Saved in:
Bibliographic Details
Published inECS transactions Vol. 107; no. 1; pp. 1877 - 1895
Main Authors Rajagopal, Sivakumar, Goswami, Radha Debal, Tiwari, Rajat, Sabhapandit, Eshan, Soangra, Rahul
Format Journal Article
LanguageEnglish
Published The Electrochemical Society, Inc 24.04.2022
Online AccessGet full text
ISSN1938-5862
1938-6737
DOI10.1149/10701.1877ecst

Cover

Abstract Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approach that showed promising ways to diagnose pulmonary states that are a profitable and safer alternative to CT scan. Deep learning techniques for computerized study of Lung Ultrasound (LUS) images offer promising opportunities for identifying and diagnosing COVID-19. This paper aims to bring up a Convolution Neural Networking (CNN) model, which accurately predicts the condition of COVID-19 via the output produced lung ultrasound. Three models were developed using various parameters and were tested on the same dataset in order to compare each on standard statistical procedures. The best model achieved an accuracy of 94.67%, sensitivity 55%, and specificity of 60% on the test data.
AbstractList Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray radiations and is not a suitable approach for frequent monitoring. Computer analysis of ultrasound pulmonary images is a relatively modern approach that showed promising ways to diagnose pulmonary states that are a profitable and safer alternative to CT scan. Deep learning techniques for computerized study of Lung Ultrasound (LUS) images offer promising opportunities for identifying and diagnosing COVID-19. This paper aims to bring up a Convolution Neural Networking (CNN) model, which accurately predicts the condition of COVID-19 via the output produced lung ultrasound. Three models were developed using various parameters and were tested on the same dataset in order to compare each on standard statistical procedures. The best model achieved an accuracy of 94.67%, sensitivity 55%, and specificity of 60% on the test data.
Author Goswami, Radha Debal
Sabhapandit, Eshan
Soangra, Rahul
Tiwari, Rajat
Rajagopal, Sivakumar
Author_xml – sequence: 1
  givenname: Sivakumar
  surname: Rajagopal
  fullname: Rajagopal, Sivakumar
  organization: Vellore Institute of Technology
– sequence: 2
  givenname: Radha Debal
  surname: Goswami
  fullname: Goswami, Radha Debal
  organization: Vellore Institute of Technology
– sequence: 3
  givenname: Rajat
  surname: Tiwari
  fullname: Tiwari, Rajat
  organization: Vellore Institute of Technology
– sequence: 4
  givenname: Eshan
  surname: Sabhapandit
  fullname: Sabhapandit, Eshan
  organization: Vellore Institute of Technology
– sequence: 5
  givenname: Rahul
  surname: Soangra
  fullname: Soangra, Rahul
  organization: Crean College of Health and Behavioral Sciences, Chapman University
BookMark eNp1kD1vwjAURa2KSqW0a2fPlULtOInjkUI_kCKxlK6R4zwHo2BHdlCVf99QYOz07pPuucO5RxPrLCD0RMmc0kS8UMIJndOcc1Chv0FTKlgeZZzxySWneRbfofsQ9oRkI8OnaFhY2Q7BBOw0Xjrbexl6LG09Pt5DK3vjLH6F_gfA4hVAhwuQ3hrb4EXbOG_63SFg7TxeGdlYd53afK9XERVYe3fAxXGsb9vTuLOu8bLbDQ_oVss2wOPlztD2_e1r-RkVm4_1clFEiiZJH6WQEaaqjFZMxJWoWS1SDTGPGauBSpGSXGS5FrEWSaZynqY6zgkFwqsapFJshubnXeVdCB502XlzkH4oKSlP4so_ceVV3Ag8nwHjunLvjn40FP4r_wIG9nHc
ContentType Journal Article
Copyright 2022 ECS - The Electrochemical Society
Copyright_xml – notice: 2022 ECS - The Electrochemical Society
DBID AAYXX
CITATION
DOI 10.1149/10701.1877ecst
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1938-6737
EndPage 1895
ExternalDocumentID 10_1149_10701_1877ecst
10.1149/10701.1877ecst
GroupedDBID 0R~
29G
AATNI
ABDNZ
ABJNI
ACHIP
ADNWM
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
EBS
EJD
IOP
JGOPE
KOT
MV1
N5L
NFQFE
REC
RHI
RNS
ROL
RPA
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c144t-5e603cb61b392b9d3d95fe27233de1a9508968f92f946c8755f2801e07bdeacc3
IEDL.DBID IOP
ISSN 1938-5862
IngestDate Tue Jul 01 03:47:26 EDT 2025
Wed Aug 21 03:33:27 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c144t-5e603cb61b392b9d3d95fe27233de1a9508968f92f946c8755f2801e07bdeacc3
PageCount 19
ParticipantIDs iop_journals_10_1149_10701_1877ecst
crossref_primary_10_1149_10701_1877ecst
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220424
PublicationDateYYYYMMDD 2022-04-24
PublicationDate_xml – month: 04
  year: 2022
  text: 20220424
  day: 24
PublicationDecade 2020
PublicationTitle ECS transactions
PublicationTitleAlternate ECS Trans
PublicationYear 2022
Publisher The Electrochemical Society, Inc
Publisher_xml – name: The Electrochemical Society, Inc
SSID ssj0061147
Score 2.2698963
Snippet Identification of COVID-19 in patients from chest Computed Tomography (CT) scan has been the most prevalent approach, but it exposes the patient to X-ray...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 1877
Title Analysis of Contrast and Correlation Between Deep Learning Algorithms for Diagnosis of COVID-19 from Lung Ultrasonography
URI https://iopscience.iop.org/article/10.1149/10701.1877ecst
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1938-6737
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0061147
  issn: 1938-5862
  databaseCode: IOP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HPTi27i-0kQTTxBoefW47mrUqOvBNcYLoQ9Wo8IG2IP-eqe2JKvGxHgCkqE0A3z9Bma-QeiQ5iJnWaAcJogOUAAHeehRR0mexRnnMVH6e8fVdXQ2DC7uw_upVl9P5dhCvwu7RijYuNAK2zLYxp7v-kkcK1E3s2ieJkCLde3e4KYF4QgsY_NDWRcWRcTqNf48_8t6NAvXnFpeTpfRQzsxk1Xy7E4a7or3b5qN_5r5ClqypBN3jeEqmlHFGlrotb3e1tFbq02CyxxrwaoqqxucFRIOqsrmy-Fjk9OF-0qNsRVmHeHuy6isnprH1xoDAcZ9k7tnhxrcnfcdn2FdxYIvAVjw8EUPXhZWKnsDDU9Pbntnjm3K4AiIvRonVJFHBY98DsyKM0klC3NFYkKpVH6mm8qyKMkZyVkQCYiGwpzAKqi8mEsAeUE30VxRFmoLYckToDcc4DjjARcJE1zJgHk0yTMvkEkHHbW3Jh0b7Y3U1FGz9NOVaevKDjoAn6f29at_sdr-k9UOWiS6xMELHBLsormmmqg9IB4N3_98xD4A2hzUYg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT4NAEN54JPrkbaznJpr4ROWGfaytjbd9sKZvhL2qsUID-KC_3ll2STxiYnwCkslABvh2Bub7BqEjTzJJUl9YhLmqQAEcpIHtWYLTNEopjVyhvnfc3IbnQ_9yFIxMb07NhcmnBvrbsKuFgnUIjbAtgW1kO20njiLByupkyuUsmq9VShR_727QAHEI1pH-qazIRaFrNBt_-viyJs3CeT8tMf1lPUe1rJUJVWfJc_u1om32_k238d9Xv4KWTPKJO9p4Fc2IbA0tdpuZb-vordEowbnESriqSMsKpxmHg6IwfXP4VPd24Z4QU2wEWse4MxnnxVP1-FJiSIRxT_fwGVd3Dxc9yyFYsVnwNQAMHk6U8zwzktkbaNg_u--eW2Y4g8WgBqusQIS2x2joUMiwKOEeJ4EUbuR6HhdOqobLkjCWxJXEDxlURYF0YTUUdkQ5gD3zNtFclmdiC2FOY0hzKMBySn3KYsKo4D6xvVimts_jFjpubk8y1RocieZTk6QOZ9KEs4UOIe6JeQ3LX6y2_2R1gBYGvX5yfXF7taOqedvWFMRdNFcVr2IPcpGK7tdP3AfarNm2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Contrast+and+Correlation+Between+Deep+Learning+Algorithms+for+Diagnosis+of+COVID-19+from+Lung+Ultrasonography&rft.jtitle=ECS+transactions&rft.au=Rajagopal%2C+Sivakumar&rft.au=Goswami%2C+Radha+Debal&rft.au=Tiwari%2C+Rajat&rft.au=Sabhapandit%2C+Eshan&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=1877&rft.epage=1895&rft_id=info:doi/10.1149%2F10701.1877ecst&rft.externalDocID=10.1149%2F10701.1877ecst
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon