Biomass-derived activated carbon and ZnCo2O4 nanoparticles for high-performance supercapacitors

The rapid depletion of fossil fuels and rising energy demands have intensified the search for high-performance energy storage systems such as supercapacitors, which offer superior power density and faster charge–discharge rates compared to conventional batteries. In this study, ZnCo₂O₄ nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrochemical science Vol. 20; no. 11; p. 101172
Main Authors Franklin, J. Bosco, Paul, J. Fredrick Jean, Venkatesan, J., Harini, S., Fathima, J. Preethi Rency, Sundaram, S. John, Kaviyarasu, Kasinathan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN1452-3981
1452-3981
DOI10.1016/j.ijoes.2025.101172

Cover

Abstract The rapid depletion of fossil fuels and rising energy demands have intensified the search for high-performance energy storage systems such as supercapacitors, which offer superior power density and faster charge–discharge rates compared to conventional batteries. In this study, ZnCo₂O₄ nanoparticles were synthesized via the sol–gel method and further integrated with biomass-derived activated carbon obtained from waste coconut shells. The ZnCo₂O₄/AC composite exhibited a high specific surface area of 463 m²/g with a pore diameter of 2.3 nm, which is significantly higher than the pristine ZnCo₂O₄ that showed 120 m²/g and a pore diameter of 40.3 nm. Electrochemical investigations revealed that the composite delivered an enhanced specific capacitance of 692 F/g at 1 A/g, outperforming ZnCo₂O₄ which recorded 398 F/g. The composite also demonstrated a higher energy density of 221 Wh/kg compared to 127 Wh/kg for ZnCo₂O₄, along with superior cyclic stability by retaining 88 % of its capacitance after 5000 cycles, whereas the pristine material retained 84 %. These improvements are attributed to the synergistic contribution of faradaic and electric double-layer capacitance, facilitated by the uniform dispersion of ZnCo₂O₄ within the porous activated carbon framework. The results highlight the promise of sustainable activated carbon-supported metal oxide composites as advanced electrode materials for next-generation supercapacitor applications. [Display omitted] •A porous structure suitable for the transport of ions, as well as a circular economy product by recycling coconut shells.•The ZnCo2O4/AC composite demonstrated enhanced electrochemical performance because of the combination of faradaic redox reactions from ZnCo2O4 and electric double-layer capacitance from AC.•Biomass-derived activated carbon and ZnCo2O4 nanoparticles for high-performance pseudocapacitive behavior.•As a result of the combined input mass of both components, the overall yield of the ZnCo2O4/AC composite was approximately 90 %.
AbstractList The rapid depletion of fossil fuels and rising energy demands have intensified the search for high-performance energy storage systems such as supercapacitors, which offer superior power density and faster charge–discharge rates compared to conventional batteries. In this study, ZnCo₂O₄ nanoparticles were synthesized via the sol–gel method and further integrated with biomass-derived activated carbon obtained from waste coconut shells. The ZnCo₂O₄/AC composite exhibited a high specific surface area of 463 m²/g with a pore diameter of 2.3 nm, which is significantly higher than the pristine ZnCo₂O₄ that showed 120 m²/g and a pore diameter of 40.3 nm. Electrochemical investigations revealed that the composite delivered an enhanced specific capacitance of 692 F/g at 1 A/g, outperforming ZnCo₂O₄ which recorded 398 F/g. The composite also demonstrated a higher energy density of 221 Wh/kg compared to 127 Wh/kg for ZnCo₂O₄, along with superior cyclic stability by retaining 88 % of its capacitance after 5000 cycles, whereas the pristine material retained 84 %. These improvements are attributed to the synergistic contribution of faradaic and electric double-layer capacitance, facilitated by the uniform dispersion of ZnCo₂O₄ within the porous activated carbon framework. The results highlight the promise of sustainable activated carbon-supported metal oxide composites as advanced electrode materials for next-generation supercapacitor applications. [Display omitted] •A porous structure suitable for the transport of ions, as well as a circular economy product by recycling coconut shells.•The ZnCo2O4/AC composite demonstrated enhanced electrochemical performance because of the combination of faradaic redox reactions from ZnCo2O4 and electric double-layer capacitance from AC.•Biomass-derived activated carbon and ZnCo2O4 nanoparticles for high-performance pseudocapacitive behavior.•As a result of the combined input mass of both components, the overall yield of the ZnCo2O4/AC composite was approximately 90 %.
ArticleNumber 101172
Author Harini, S.
Venkatesan, J.
Kaviyarasu, Kasinathan
Paul, J. Fredrick Jean
Franklin, J. Bosco
Fathima, J. Preethi Rency
Sundaram, S. John
Author_xml – sequence: 1
  givenname: J. Bosco
  surname: Franklin
  fullname: Franklin, J. Bosco
  organization: PG and Department of Physics, Sacred Heart College (Autonomous), Tirupattur - 635601, (Affiliated to Thiruvalluvar University), Serkadu, Vellore, Tamil Nadu 632115, India
– sequence: 2
  givenname: J. Fredrick Jean
  surname: Paul
  fullname: Paul, J. Fredrick Jean
  organization: Intermetallics and Non-Linear Optics Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
– sequence: 3
  givenname: J.
  surname: Venkatesan
  fullname: Venkatesan, J.
  organization: PG and Department of Physics, Sacred Heart College (Autonomous), Tirupattur - 635601, (Affiliated to Thiruvalluvar University), Serkadu, Vellore, Tamil Nadu 632115, India
– sequence: 4
  givenname: S.
  surname: Harini
  fullname: Harini, S.
  organization: Department of Physics, Loyola College (Autonomous), Chennai, Tamil Nadu 600034, India
– sequence: 5
  givenname: J. Preethi Rency
  surname: Fathima
  fullname: Fathima, J. Preethi Rency
  organization: Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha institute of, Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
– sequence: 6
  givenname: S. John
  surname: Sundaram
  fullname: Sundaram, S. John
  email: johnsundaram@shctpt.edu
  organization: PG and Department of Physics, Sacred Heart College (Autonomous), Tirupattur - 635601, (Affiliated to Thiruvalluvar University), Serkadu, Vellore, Tamil Nadu 632115, India
– sequence: 7
  givenname: Kasinathan
  surname: Kaviyarasu
  fullname: Kaviyarasu, Kasinathan
  email: kasink@unisa.ac.za
  organization: Institute for Catalysis & Energy Solutions (ICES), College of Science, Engineering & Technology, University of South Africa, Unisa Science Campus, P.O 1709, Roodepoort, South Africa
BookMark eNp9kMtOw0AMRUeoSJTSL2CTH0iZV5LOggVUvKRK3cCGzchxHDpROxPNhEr8PSllwQpvfG3pWtfnkk188MTYteALwUV50y1cFygtJJfFcSMqecamQhcyV2YpJn_0BZun1PGxtFG6qqbM3ruwh5TyhqI7UJMBDu4Aw6gQYh18Br7J3v0qyI3OPPjQQxwc7ihlbYjZ1n1s857iqPfgkbL0OU4IPaAbQkxX7LyFXaL5b5-xt8eH19Vzvt48vazu1jkKrWRudKWFIKxbkIZz0qC5RtNUiFIhX1LJqZAFLZVoa0llXZqyMmhUDQSy0mrG1OkuxpBSpNb20e0hflnB7RGT7ewPJnvEZE-YRtftyUVjtIOjaBM6Gt9oXCQcbBPcv_5v1wN0cw
Cites_doi 10.1039/D2TA02357A
10.1039/C9CS00880B
10.1016/j.est.2023.109886
10.1016/j.jallcom.2023.170042
10.1016/j.est.2023.108149
10.1038/s41598-024-58822-0
10.1016/0927-6513(94)00055-Z
10.1016/j.est.2023.109780
10.1007/s12034-019-1950-x
10.1021/acs.est.3c03370
10.1039/C3CE41768A
10.1016/j.matlet.2021.130039
10.1039/C4NR06336H
10.1039/C3EE43525C
10.1016/j.est.2023.110034
10.1039/C9CP03327K
10.1016/j.carbon.2017.08.022
10.1007/s12598-025-03278-y
10.1016/j.cej.2024.155903
10.1016/j.jallcom.2019.152456
10.1038/s41598-022-06764-w
10.1007/s12598-022-02142-7
10.1007/s10008-018-4035-7
10.1007/s10854-024-12807-x
10.1039/D4DT01133C
10.4209/aaqr.2013.03.0089
10.1016/j.est.2024.112189
10.1039/c3ta11926b
10.1021/acsomega.3c01065
10.3390/en14154546
10.1002/bio.70043
10.1016/j.micromeso.2021.111563
10.1016/j.mseb.2013.12.004
10.1016/j.jhazmat.2007.09.014
10.1016/j.fuel.2022.127125
10.1002/asia.202400202
10.1016/j.pnsc.2014.05.012
10.1007/s11837-024-06563-w
10.1021/ar300167h
10.1016/j.vacuum.2019.06.020
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijoes.2025.101172
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1452-3981
ExternalDocumentID 10_1016_j_ijoes_2025_101172
S1452398125002470
GroupedDBID .DC
0R~
29J
2WC
5GY
6I.
AAFTH
AALRI
AAXUO
AAYWO
ACGFO
ACVFH
ADCNI
ADVLN
AENEX
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
C1A
E3Z
EBS
FDB
GROUPED_DOAJ
GX1
HH5
M~E
OK1
OVT
RNS
TR2
AAYXX
CITATION
ID FETCH-LOGICAL-c1432-947411ecbfa2900e4a404c9d7cc23c08e60e525e831fb2e6b69679c93baea2743
ISSN 1452-3981
IngestDate Thu Sep 18 00:38:36 EDT 2025
Sat Sep 27 17:13:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Electrochemical performance
Energy storage materials
Supercapacitor electrodes
Biomass - derived activated carbon
ZnCo2O4 nanoparticles
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1432-947411ecbfa2900e4a404c9d7cc23c08e60e525e831fb2e6b69679c93baea2743
OpenAccessLink https://dx.doi.org/10.1016/j.ijoes.2025.101172
ParticipantIDs crossref_primary_10_1016_j_ijoes_2025_101172
elsevier_sciencedirect_doi_10_1016_j_ijoes_2025_101172
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle International journal of electrochemical science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alshammari, Ahmed, Alahmari, Abdullah, Aman, Ahmad, Henaish, Ahmad, Farid, El-Bahy (bib2) 2024; 75
Haripriya, Manimekala, Dharmalingam, Minakshi, Sundaram, Sivasubramanian (bib35) 2024
Kamble, Kashale, Dhanayat, Kolekar, Ghule (bib39) 2019; 42
Wen, Li, Chen, Zhou, Xiang (bib1) 2025
Franklin, Saravanan, Suruthi, Bincy, Sundaram, Dhas, Wadaan, Kumar, Mythili (bib24) 2024; 39
Schmidt, Stöcker, Hansen, Akporiaye, Ellestad (bib29) 1995; 3
Kumar, Roy, Ramachandran, Assiri, Rao, Moniruzzaman, Joo (bib23) 2024; 53
Sahoo, Kumar, Joanni, Singh, Shim (bib6) 2022; 10
Calzaferri, Gallagher, Brühwiler (bib30) 2022; 330
Abdullah, John, Jabbour, Ahmad, Khan, Waheed, Albaqami, Sheikh, Ehsan, Ashiq (bib4) 2024; 78
Sun, Miao, Wang, Han, Xu, Zhu, Chen (bib10) 2024; 92
Dolla, Lawal, Kifle, Jikamo, Matthews, Maxakato, Liu, Mathe, Billing, Ndungu (bib21) 2024; 14
Ai, Zhao, Li, Bi, Zhang, Li, Wang, Qiu (bib13) 2024; 499
Guo, Tang, Deng, Liu, Zhou, Wan, Meng, Chen (bib5) 2025; 44
Franklin, Sachin, Sundaram, Anand, Raj, Kaviyarasu (bib17) 2024; 7
Wang, Zhang, Yan, Wen, Zhang, Shi, Zhong (bib33) 2013; 1
Kong, Zhong, Shuang, Xu, Bu (bib28) 2020; 49
Lee, Lim, Hong, Chong, Tiong, Pan, Huang (bib43) 2021; 14
Le Van, Thi (bib41) 2014; 24
Alshammari, Ahmed, Alahmari, Abdullah, Aman, Ahmad, Henaish, Ahmad, Farid, El-Bahy (bib18) 2024; 75
Chen, Peng, Lin, Yang, Huang (bib27) 2014; 14
Jain, Tripathi (bib42) 2014; 183
Zhang, Su, Chen, Huang, Lou (bib14) 2023; 42
Wang, Chen, Li, Wang, Cao, Cheng, Yu, Liu, Chen, Yue, Ma (bib19) 2023; 57
Tiwari, Kadam, Kulkarni (bib37) 2021; 298
John Sundaram, Bosco Franklin, Sachin, Dhayal Raj (bib3) 2024
Li, Gao, Sun, Li, Xu, Ge, Cao (bib8) 2018; 22
Sevilla, Mokaya (bib12) 2014; 7
Iakunkov, Skrypnychuk, Nordenström, Shilayeva, Korobov, Prodana, Enachescu, Larsson (bib25) 2019; 21
Franklin, Priyadharshini, Sundaram, Pandi, Raj (bib16) 2024; 163
Zahra, Alotaibi, Alrowaily, Alyousef, Al-Sehemi, Aman (bib22) 2024; 35
Ahmad, Gondal, Hassan, Iqbal, Ullah, Alzahrani, Memon, Mabood, Melhi (bib40) 2023; 8
Jheng, Chiu, Yang, Tong (bib9) 2022; 12
Kumar, Thangappan (bib31) 2023; 70
Priya, Premkumar, Vasantharani, Sivakumar (bib26) 2019; 167
Tan, Ahmad, Hameed (bib15) 2008; 153
Wu, Lou, Yang, Shen (bib36) 2015; 7
Hussain, El Maati, Alomar (bib44) 2024; 76
Zhao, Li, Zhang, Zhang, Wang, Sun, Wang, Xie, Lu, Lu, Yao (bib11) 2017; 123
Sivakumar, Kulandaivel, Park, Raj, Manikandan, Jung (bib7) 2023; 952
Rauda, Augustyn, Dunn, Tolbert (bib45) 2013; 46
Bhat, Kumar, Kumar, Atabani, Badruddin, Chae (bib20) 2023; 337
An, Wang, Huang, Xu, Xu, Jiao, Yuan (bib32) 2014; 16
Bhagwan, Hussain, Yu (bib38) 2020; 815
Sun, Miao, Wang, Han, Wang, Zhang, Luo, Liu, Xu, Chen (bib34) 2024; 76
Sivakumar (10.1016/j.ijoes.2025.101172_bib7) 2023; 952
Bhat (10.1016/j.ijoes.2025.101172_bib20) 2023; 337
Sun (10.1016/j.ijoes.2025.101172_bib34) 2024; 76
Chen (10.1016/j.ijoes.2025.101172_bib27) 2014; 14
Le Van (10.1016/j.ijoes.2025.101172_bib41) 2014; 24
Jheng (10.1016/j.ijoes.2025.101172_bib9) 2022; 12
Tan (10.1016/j.ijoes.2025.101172_bib15) 2008; 153
Franklin (10.1016/j.ijoes.2025.101172_bib17) 2024; 7
Wu (10.1016/j.ijoes.2025.101172_bib36) 2015; 7
Wang (10.1016/j.ijoes.2025.101172_bib33) 2013; 1
John Sundaram (10.1016/j.ijoes.2025.101172_bib3) 2024
Calzaferri (10.1016/j.ijoes.2025.101172_bib30) 2022; 330
Hussain (10.1016/j.ijoes.2025.101172_bib44) 2024; 76
Zhao (10.1016/j.ijoes.2025.101172_bib11) 2017; 123
Ahmad (10.1016/j.ijoes.2025.101172_bib40) 2023; 8
Guo (10.1016/j.ijoes.2025.101172_bib5) 2025; 44
Kong (10.1016/j.ijoes.2025.101172_bib28) 2020; 49
Alshammari (10.1016/j.ijoes.2025.101172_bib18) 2024; 75
Kumar (10.1016/j.ijoes.2025.101172_bib23) 2024; 53
Haripriya (10.1016/j.ijoes.2025.101172_bib35) 2024
Wang (10.1016/j.ijoes.2025.101172_bib19) 2023; 57
Tiwari (10.1016/j.ijoes.2025.101172_bib37) 2021; 298
Priya (10.1016/j.ijoes.2025.101172_bib26) 2019; 167
Abdullah (10.1016/j.ijoes.2025.101172_bib4) 2024; 78
Bhagwan (10.1016/j.ijoes.2025.101172_bib38) 2020; 815
Lee (10.1016/j.ijoes.2025.101172_bib43) 2021; 14
An (10.1016/j.ijoes.2025.101172_bib32) 2014; 16
Rauda (10.1016/j.ijoes.2025.101172_bib45) 2013; 46
Kamble (10.1016/j.ijoes.2025.101172_bib39) 2019; 42
Wen (10.1016/j.ijoes.2025.101172_bib1) 2025
Ai (10.1016/j.ijoes.2025.101172_bib13) 2024; 499
Jain (10.1016/j.ijoes.2025.101172_bib42) 2014; 183
Alshammari (10.1016/j.ijoes.2025.101172_bib2) 2024; 75
Dolla (10.1016/j.ijoes.2025.101172_bib21) 2024; 14
Sahoo (10.1016/j.ijoes.2025.101172_bib6) 2022; 10
Sun (10.1016/j.ijoes.2025.101172_bib10) 2024; 92
Zahra (10.1016/j.ijoes.2025.101172_bib22) 2024; 35
Sevilla (10.1016/j.ijoes.2025.101172_bib12) 2014; 7
Zhang (10.1016/j.ijoes.2025.101172_bib14) 2023; 42
Franklin (10.1016/j.ijoes.2025.101172_bib16) 2024; 163
Franklin (10.1016/j.ijoes.2025.101172_bib24) 2024; 39
Li (10.1016/j.ijoes.2025.101172_bib8) 2018; 22
Kumar (10.1016/j.ijoes.2025.101172_bib31) 2023; 70
Schmidt (10.1016/j.ijoes.2025.101172_bib29) 1995; 3
Iakunkov (10.1016/j.ijoes.2025.101172_bib25) 2019; 21
References_xml – volume: 39
  year: 2024
  ident: bib24
  article-title: Impact of shock compression on the photovoltaic performance of NiCo₂O₄ nanoparticles
  publication-title: Luminescence
– year: 2024
  ident: bib35
  article-title: Asymmetric supercapacitors based on ZnCo₂O₄ nanohexagons and Orange peel derived porous carbon electrodes
  publication-title: Chem. Asian J.
– volume: 3
  start-page: 443
  year: 1995
  end-page: 448
  ident: bib29
  article-title: MCM-41: a model system for adsorption studies on mesoporous materials
  publication-title: Microporous Mater.
– volume: 1
  start-page: 11778
  year: 2013
  end-page: 11789
  ident: bib33
  article-title: Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization
  publication-title: J. Mater. Chem. A
– volume: 815
  year: 2020
  ident: bib38
  article-title: Aqueous asymmetric supercapacitors based on ZnCo₂O₄ nanoparticles via facile combustion method
  publication-title: J. Alloy. Compd.
– volume: 46
  start-page: 1113
  year: 2013
  end-page: 1124
  ident: bib45
  article-title: Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials
  publication-title: Acc. Chem. Res.
– volume: 76
  start-page: 4587
  year: 2024
  end-page: 4597
  ident: bib44
  article-title: Enhancement of capacitive properties of Ce-doped MnAl₂O₄ electrode for high performance energy storage applications
  publication-title: JOM
– volume: 14
  year: 2024
  ident: bib21
  article-title: Mesoporous Mn-substituted MnxZn1−xCo₂O₄ ternary spinel microspheres with enhanced electrochemical performance for supercapacitor applications
  publication-title: Sci. Rep.
– volume: 70
  year: 2023
  ident: bib31
  article-title: Synergetic effect on enhanced electrochemical properties of MnO₂ nanorods on g-C₃N₄/rGO nanosheet ternary composites for pouch-type flexible asymmetric supercapattery device
  publication-title: J. Energy Storage
– volume: 75
  year: 2024
  ident: bib18
  article-title: Electrochemical investigation of niobium doped nickel selenide nanostructure for supercapacitor devices
  publication-title: J. Energy Storage
– volume: 330
  year: 2022
  ident: bib30
  article-title: Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents
  publication-title: Microporous Mesoporous Mater.
– volume: 10
  start-page: 13190
  year: 2022
  end-page: 13240
  ident: bib6
  article-title: Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1250
  year: 2014
  end-page: 1280
  ident: bib12
  article-title: Energy storage applications of activated carbons: supercapacitors and hydrogen storage
  publication-title: Energy Environ. Sci.
– volume: 75
  year: 2024
  ident: bib2
  article-title: Electrochemical investigation of niobium doped nickel selenide nanostructure for supercapacitor devices
  publication-title: J. Energy Storage
– volume: 7
  start-page: 1921
  year: 2015
  end-page: 1926
  ident: bib36
  article-title: A flexible spiral-type supercapacitor based on ZnCo₂O₄ nanorod electrodes
  publication-title: Nanoscale
– volume: 183
  start-page: 54
  year: 2014
  end-page: 60
  ident: bib42
  article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode
  publication-title: Mater. Sci. Eng. B
– volume: 14
  start-page: 4546
  year: 2021
  ident: bib43
  article-title: Coconut shell-derived activated carbon for high-performance solid-state supercapacitors
  publication-title: Energies
– start-page: 367
  year: 2024
  end-page: 389
  ident: bib3
  article-title: In the construction of energy storage supercapacitors, nanostructures play a key role
  publication-title: New Technologies for Energy Transition Based on Sustainable Development Goals: Factors Contributing to Global Warming
– volume: 14
  start-page: 916
  year: 2014
  end-page: 927
  ident: bib27
  article-title: Facile preparation of nitrogen-doped activated carbon for carbon dioxide adsorption
  publication-title: Aerosol Air Qual. Res.
– volume: 16
  start-page: 385
  year: 2014
  end-page: 392
  ident: bib32
  article-title: Novel three-dimensional NiCo₂O₄ hierarchitectures: solvothermal synthesis and electrochemical properties
  publication-title: CrystEngComm
– volume: 76
  year: 2024
  ident: bib34
  article-title: Sonochemical synthesis of battery-type ZnCo₂O₄ electrode material with huge specific surface area for advanced hybrid supercapacitors
  publication-title: J. Energy Storage
– volume: 337
  year: 2023
  ident: bib20
  article-title: Supercapacitors production from waste: a new window for sustainable energy and waste management
  publication-title: Fuel
– volume: 8
  start-page: 21653
  year: 2023
  end-page: 21663
  ident: bib40
  article-title: Preparation and characterization of physically activated carbon and its energetic application for all-solid-state supercapacitors: a case study
  publication-title: ACS Omega
– volume: 42
  start-page: 272
  year: 2019
  ident: bib39
  article-title: Binder-free synthesis of high-quality nanocrystalline ZnCo₂O₄ thin film electrodes for supercapacitor application
  publication-title: Bull. Mater. Sci.
– volume: 42
  start-page: 769
  year: 2023
  end-page: 796
  ident: bib14
  article-title: Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor
  publication-title: Rare Met
– volume: 35
  start-page: 1086
  year: 2024
  ident: bib22
  article-title: Boosting the energy-storing performance of hydrothermally synthesized ZnO by MnTe for supercapacitor applications
  publication-title: J. Mater. Sci. Mater. Electron
– volume: 53
  start-page: 12410
  year: 2024
  end-page: 12433
  ident: bib23
  article-title: Revolutionizing energy storage: exploring the nanoscale frontier of all-solid-state batteries
  publication-title: Dalton Trans.
– volume: 22
  start-page: 3197
  year: 2018
  end-page: 3207
  ident: bib8
  article-title: Tuning morphology and conductivity in two-step synthesis of zinc–cobalt oxide and sulfide hybrid nanoclusters as highly-performed electrodes for hybrid supercapacitors
  publication-title: J. Solid State Electrochem
– volume: 153
  start-page: 709
  year: 2008
  end-page: 717
  ident: bib15
  article-title: Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 17901
  year: 2019
  end-page: 17912
  ident: bib25
  article-title: A.V. Talyzin, activated graphene as a material for supercapacitor electrodes: effects of surface area, pore size distribution and hydrophilicity
  publication-title: Phys. Chem. Chem. Phys.
– volume: 163
  year: 2024
  ident: bib16
  article-title: Intrinsic pseudocapacitive enhancement of NiCo₂O₄/activated carbon composites for high-performance supercapacitors
  publication-title: Inorg. Chem. Commun.
– volume: 7
  start-page: 91
  year: 2024
  end-page: 98
  ident: bib17
  article-title: Investigation on copper cobaltite (CuCo₂O₄) and its composite with activated carbon (AC) for supercapacitor applications
  publication-title: Mater. Sci. Energy Technol.
– volume: 12
  start-page: 2921
  year: 2022
  ident: bib9
  article-title: Using ZnCo₂O₄ nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells
  publication-title: Sci. Rep.
– volume: 123
  start-page: 676
  year: 2017
  end-page: 682
  ident: bib11
  article-title: All-solid-state hybrid supercapacitors based on ZnCo₂O₄ nanowire arrays and carbon nanorod electrode materials
  publication-title: Carbon
– volume: 499
  year: 2024
  ident: bib13
  article-title: Stress-relieved hollow porous carbon nanoring structures anchored with ZnCo₂O₄ nanoparticles towards super stable lithium storage
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 2378
  year: 2020
  end-page: 2407
  ident: bib28
  article-title: Electrochemically active sites inside crystalline porous materials for energy storage and conversion
  publication-title: Chem. Soc. Rev.
– volume: 167
  start-page: 307
  year: 2019
  end-page: 312
  ident: bib26
  article-title: Structural and electrochemical properties of ZnCo₂O₄ nanoparticles synthesized by hydrothermal method
  publication-title: Vacuum
– volume: 92
  year: 2024
  ident: bib10
  article-title: Battery-type ZnCo₂O₄ nanosheets and nanowires as advanced cathode materials for hybrid supercapacitors with ultra-long cycling stability
  publication-title: J. Energy Storage
– volume: 57
  start-page: 10478
  year: 2023
  end-page: 10488
  ident: bib19
  article-title: Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 191
  year: 2014
  end-page: 198
  ident: bib41
  article-title: Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor
  publication-title: Prog. Nat. Sci. Mater. Int.
– volume: 952
  year: 2023
  ident: bib7
  article-title: MOF-derived flower-like ZnCo₂O₄/ZnO nanoarchitecture as a high-performance battery-type redox-active electrode material for hybrid supercapacitor applications
  publication-title: J. Alloy. Compd.
– volume: 78
  year: 2024
  ident: bib4
  article-title: Improvement in capacitive performance of ZnS with MnO₂ via composite (ZnS/MnO₂) strategy developed by hydrothermal technique
  publication-title: J. Energy Storage
– volume: 298
  year: 2021
  ident: bib37
  article-title: Synthesis and characterization of ZnCo₂O₄ electrode for high-performance supercapacitor application
  publication-title: Mater. Lett.
– start-page: 1
  year: 2025
  end-page: 2
  ident: bib1
  article-title: Zn₃V₃O₈ nanorods with outstanding electrochemical kinetics as novel anode for aqueous ammonium-ion batteries
  publication-title: Rare Met
– volume: 44
  start-page: 4631
  year: 2025
  end-page: 4641
  ident: bib5
  article-title: CuxO as an ultra-stable voltage plateaus and long-life cathode material in aqueous ammonium-ion batteries
  publication-title: Rare Met
– start-page: 1
  year: 2025
  ident: 10.1016/j.ijoes.2025.101172_bib1
  article-title: Zn₃V₃O₈ nanorods with outstanding electrochemical kinetics as novel anode for aqueous ammonium-ion batteries
  publication-title: Rare Met
– volume: 10
  start-page: 13190
  year: 2022
  ident: 10.1016/j.ijoes.2025.101172_bib6
  article-title: Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02357A
– volume: 49
  start-page: 2378
  year: 2020
  ident: 10.1016/j.ijoes.2025.101172_bib28
  article-title: Electrochemically active sites inside crystalline porous materials for energy storage and conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00880B
– volume: 75
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib2
  article-title: Electrochemical investigation of niobium doped nickel selenide nanostructure for supercapacitor devices
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109886
– volume: 952
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib7
  article-title: MOF-derived flower-like ZnCo₂O₄/ZnO nanoarchitecture as a high-performance battery-type redox-active electrode material for hybrid supercapacitor applications
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.170042
– volume: 70
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib31
  article-title: Synergetic effect on enhanced electrochemical properties of MnO₂ nanorods on g-C₃N₄/rGO nanosheet ternary composites for pouch-type flexible asymmetric supercapattery device
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108149
– volume: 14
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib21
  article-title: Mesoporous Mn-substituted MnxZn1−xCo₂O₄ ternary spinel microspheres with enhanced electrochemical performance for supercapacitor applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-58822-0
– volume: 3
  start-page: 443
  year: 1995
  ident: 10.1016/j.ijoes.2025.101172_bib29
  article-title: MCM-41: a model system for adsorption studies on mesoporous materials
  publication-title: Microporous Mater.
  doi: 10.1016/0927-6513(94)00055-Z
– volume: 163
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib16
  article-title: Intrinsic pseudocapacitive enhancement of NiCo₂O₄/activated carbon composites for high-performance supercapacitors
  publication-title: Inorg. Chem. Commun.
– volume: 76
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib34
  article-title: Sonochemical synthesis of battery-type ZnCo₂O₄ electrode material with huge specific surface area for advanced hybrid supercapacitors
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109780
– volume: 42
  start-page: 272
  year: 2019
  ident: 10.1016/j.ijoes.2025.101172_bib39
  article-title: Binder-free synthesis of high-quality nanocrystalline ZnCo₂O₄ thin film electrodes for supercapacitor application
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-019-1950-x
– volume: 57
  start-page: 10478
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib19
  article-title: Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c03370
– volume: 16
  start-page: 385
  year: 2014
  ident: 10.1016/j.ijoes.2025.101172_bib32
  article-title: Novel three-dimensional NiCo₂O₄ hierarchitectures: solvothermal synthesis and electrochemical properties
  publication-title: CrystEngComm
  doi: 10.1039/C3CE41768A
– volume: 298
  year: 2021
  ident: 10.1016/j.ijoes.2025.101172_bib37
  article-title: Synthesis and characterization of ZnCo₂O₄ electrode for high-performance supercapacitor application
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130039
– volume: 7
  start-page: 1921
  year: 2015
  ident: 10.1016/j.ijoes.2025.101172_bib36
  article-title: A flexible spiral-type supercapacitor based on ZnCo₂O₄ nanorod electrodes
  publication-title: Nanoscale
  doi: 10.1039/C4NR06336H
– volume: 7
  start-page: 1250
  year: 2014
  ident: 10.1016/j.ijoes.2025.101172_bib12
  article-title: Energy storage applications of activated carbons: supercapacitors and hydrogen storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43525C
– start-page: 367
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib3
  article-title: In the construction of energy storage supercapacitors, nanostructures play a key role
– volume: 78
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib4
  article-title: Improvement in capacitive performance of ZnS with MnO₂ via composite (ZnS/MnO₂) strategy developed by hydrothermal technique
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.110034
– volume: 21
  start-page: 17901
  year: 2019
  ident: 10.1016/j.ijoes.2025.101172_bib25
  article-title: A.V. Talyzin, activated graphene as a material for supercapacitor electrodes: effects of surface area, pore size distribution and hydrophilicity
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03327K
– volume: 123
  start-page: 676
  year: 2017
  ident: 10.1016/j.ijoes.2025.101172_bib11
  article-title: All-solid-state hybrid supercapacitors based on ZnCo₂O₄ nanowire arrays and carbon nanorod electrode materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.022
– volume: 75
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib18
  article-title: Electrochemical investigation of niobium doped nickel selenide nanostructure for supercapacitor devices
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109886
– volume: 44
  start-page: 4631
  year: 2025
  ident: 10.1016/j.ijoes.2025.101172_bib5
  article-title: CuxO as an ultra-stable voltage plateaus and long-life cathode material in aqueous ammonium-ion batteries
  publication-title: Rare Met
  doi: 10.1007/s12598-025-03278-y
– volume: 499
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib13
  article-title: Stress-relieved hollow porous carbon nanoring structures anchored with ZnCo₂O₄ nanoparticles towards super stable lithium storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.155903
– volume: 815
  year: 2020
  ident: 10.1016/j.ijoes.2025.101172_bib38
  article-title: Aqueous asymmetric supercapacitors based on ZnCo₂O₄ nanoparticles via facile combustion method
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.152456
– volume: 12
  start-page: 2921
  year: 2022
  ident: 10.1016/j.ijoes.2025.101172_bib9
  article-title: Using ZnCo₂O₄ nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06764-w
– volume: 42
  start-page: 769
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib14
  article-title: Recent progress of transition metal-based biomass-derived carbon composites for supercapacitor
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02142-7
– volume: 22
  start-page: 3197
  year: 2018
  ident: 10.1016/j.ijoes.2025.101172_bib8
  article-title: Tuning morphology and conductivity in two-step synthesis of zinc–cobalt oxide and sulfide hybrid nanoclusters as highly-performed electrodes for hybrid supercapacitors
  publication-title: J. Solid State Electrochem
  doi: 10.1007/s10008-018-4035-7
– volume: 35
  start-page: 1086
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib22
  article-title: Boosting the energy-storing performance of hydrothermally synthesized ZnO by MnTe for supercapacitor applications
  publication-title: J. Mater. Sci. Mater. Electron
  doi: 10.1007/s10854-024-12807-x
– volume: 53
  start-page: 12410
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib23
  article-title: Revolutionizing energy storage: exploring the nanoscale frontier of all-solid-state batteries
  publication-title: Dalton Trans.
  doi: 10.1039/D4DT01133C
– volume: 14
  start-page: 916
  year: 2014
  ident: 10.1016/j.ijoes.2025.101172_bib27
  article-title: Facile preparation of nitrogen-doped activated carbon for carbon dioxide adsorption
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2013.03.0089
– volume: 7
  start-page: 91
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib17
  article-title: Investigation on copper cobaltite (CuCo₂O₄) and its composite with activated carbon (AC) for supercapacitor applications
  publication-title: Mater. Sci. Energy Technol.
– volume: 92
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib10
  article-title: Battery-type ZnCo₂O₄ nanosheets and nanowires as advanced cathode materials for hybrid supercapacitors with ultra-long cycling stability
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112189
– volume: 1
  start-page: 11778
  year: 2013
  ident: 10.1016/j.ijoes.2025.101172_bib33
  article-title: Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11926b
– volume: 8
  start-page: 21653
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib40
  article-title: Preparation and characterization of physically activated carbon and its energetic application for all-solid-state supercapacitors: a case study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c01065
– volume: 14
  start-page: 4546
  year: 2021
  ident: 10.1016/j.ijoes.2025.101172_bib43
  article-title: Coconut shell-derived activated carbon for high-performance solid-state supercapacitors
  publication-title: Energies
  doi: 10.3390/en14154546
– volume: 39
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib24
  article-title: Impact of shock compression on the photovoltaic performance of NiCo₂O₄ nanoparticles
  publication-title: Luminescence
  doi: 10.1002/bio.70043
– volume: 330
  year: 2022
  ident: 10.1016/j.ijoes.2025.101172_bib30
  article-title: Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111563
– volume: 183
  start-page: 54
  year: 2014
  ident: 10.1016/j.ijoes.2025.101172_bib42
  article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2013.12.004
– volume: 153
  start-page: 709
  year: 2008
  ident: 10.1016/j.ijoes.2025.101172_bib15
  article-title: Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.09.014
– volume: 337
  year: 2023
  ident: 10.1016/j.ijoes.2025.101172_bib20
  article-title: Supercapacitors production from waste: a new window for sustainable energy and waste management
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127125
– year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib35
  article-title: Asymmetric supercapacitors based on ZnCo₂O₄ nanohexagons and Orange peel derived porous carbon electrodes
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202400202
– volume: 24
  start-page: 191
  year: 2014
  ident: 10.1016/j.ijoes.2025.101172_bib41
  article-title: Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2014.05.012
– volume: 76
  start-page: 4587
  year: 2024
  ident: 10.1016/j.ijoes.2025.101172_bib44
  article-title: Enhancement of capacitive properties of Ce-doped MnAl₂O₄ electrode for high performance energy storage applications
  publication-title: JOM
  doi: 10.1007/s11837-024-06563-w
– volume: 46
  start-page: 1113
  year: 2013
  ident: 10.1016/j.ijoes.2025.101172_bib45
  article-title: Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300167h
– volume: 167
  start-page: 307
  year: 2019
  ident: 10.1016/j.ijoes.2025.101172_bib26
  article-title: Structural and electrochemical properties of ZnCo₂O₄ nanoparticles synthesized by hydrothermal method
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2019.06.020
SSID ssj0000493477
Score 2.4165573
Snippet The rapid depletion of fossil fuels and rising energy demands have intensified the search for high-performance energy storage systems such as supercapacitors,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101172
SubjectTerms Biomass - derived activated carbon
Electrochemical performance
Energy storage materials
Supercapacitor electrodes
ZnCo2O4 nanoparticles
Title Biomass-derived activated carbon and ZnCo2O4 nanoparticles for high-performance supercapacitors
URI https://dx.doi.org/10.1016/j.ijoes.2025.101172
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbzaG9lD5p-kKH3rYytiTL1jFZGsIGWihJG3oxkqzAbood9pFDf1N_ZEe2bGu3S2h6MbvClnc9H6NP45lvEPogYkslTRmxSqbE6ZMQbRQlpaQqy4QSQjUJsp_F6QWfXaaXo9HvIGtps9aR-bW3ruR_rApjYFdXJXsPy_aTwgB8BvvCESwMx3-y8fHcZfesSAk3uwXm6IoUbpXjkEYttc8z_lFNa_qFTypVwQbZ58E12YVOqpjcBJUDqw18M7B8mrlrwhMS1-3IYaA34fvomE54wC-pPS6CpvCzaHJcr0w9vLba_PTjJ0tbOoH-ycwOcP1mq2tHhZW_evCW7rVTE7eNwqgFTX353uBoeUoJk227lsjuGfPemcYhCpPA1yZOzo7uXQbaiMQimi9q6zTZaRoNZ2-Lbu8shn2KYpf9tiiaSQo3SdFO8gAd0AyY2hgdHJ19_X7Wx_Rgt8V40-yz_yud0FWTUvjXz9lPhgKCc_4EPfY7E3zUIuQpGtnqGXo47RoCPkfFDtxwDzfcwg0D3LCHG96CGwaI4V244R24vUAXJ5_Op6fE9-cgBlg2JZIDHU2s0VeKyji2XPGYG1lmxlBm4tyCI0hpanOWXGlqhRZSZNJIppVVFKjrSzSu6sq-QjjVcCZTMheWc5g3p6UudZ64qKRhzB6ij92DKm5aGZbiDgsdItE9zMLDvmWIBSDkrgtf3-8-b9CjAdxv0Xi93Nh3QFLX-r3Hxh8XcJOX
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass-derived+activated+carbon+and+ZnCo2O4+nanoparticles+for+high-performance+supercapacitors&rft.jtitle=International+journal+of+electrochemical+science&rft.au=Franklin%2C+J.+Bosco&rft.au=Paul%2C+J.+Fredrick+Jean&rft.au=Venkatesan%2C+J.&rft.au=Harini%2C+S.&rft.date=2025-11-01&rft.issn=1452-3981&rft.eissn=1452-3981&rft.volume=20&rft.issue=11&rft.spage=101172&rft_id=info:doi/10.1016%2Fj.ijoes.2025.101172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijoes_2025_101172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1452-3981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1452-3981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1452-3981&client=summon