ACO+PSO+A: A bi-layer hybrid algorithm for multi-task path planning of an AUV

Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 175; p. 108905
Main Authors Sui, Fuli, Tang, Xiaoke, Dong, Zihao, Gan, Xingjia, Luo, Peng, Sun, Jing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2022.108905

Cover

Abstract Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the multi-task path planning problem of AUV, this paper first proposes a bi-level multi-objective path planning model aimed at minimizing the path length and dangerous distance. Then, a bi-layer hybrid algorithm is developed to solve the above model. In this algorithm, ant colony optimization algorithm (ACO) is adopted to generate a task sequence of the upper level model in the outer layer; particle swarm optimization algorithm (PSO) is employed to produce some waypoints between two adjacent tasks, and A* algorithm is used to generate a collision-free path of the lower level model based on waypoints in the inner layer. After that, the collision-free path in the inner layer is feedback to the ACO in the out layer to update its pheromone, and ACO yield a better task sequence in the next iteration, thus obtaining the shortest collision-free path traversing all tasks. Finally, PSO+A* and A* algorithms, together with the proposed bi-layer hybrid algorithm and some two-stage optimization algorithms are compared, respectively. Empirical results show that the proposed algorithm can produce an optimal collision-free path with shorter length and higher security. •A bi-level programming model of AUV multi-task path planning is constructed.•A bi-layer hybrid algorithm is designed to solve the above model.•The bi-layer algorithm can produce a path with shorter length and higher security.•The bi-layer algorithm has higher competitiveness.
AbstractList Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the multi-task path planning problem of AUV, this paper first proposes a bi-level multi-objective path planning model aimed at minimizing the path length and dangerous distance. Then, a bi-layer hybrid algorithm is developed to solve the above model. In this algorithm, ant colony optimization algorithm (ACO) is adopted to generate a task sequence of the upper level model in the outer layer; particle swarm optimization algorithm (PSO) is employed to produce some waypoints between two adjacent tasks, and A* algorithm is used to generate a collision-free path of the lower level model based on waypoints in the inner layer. After that, the collision-free path in the inner layer is feedback to the ACO in the out layer to update its pheromone, and ACO yield a better task sequence in the next iteration, thus obtaining the shortest collision-free path traversing all tasks. Finally, PSO+A* and A* algorithms, together with the proposed bi-layer hybrid algorithm and some two-stage optimization algorithms are compared, respectively. Empirical results show that the proposed algorithm can produce an optimal collision-free path with shorter length and higher security. •A bi-level programming model of AUV multi-task path planning is constructed.•A bi-layer hybrid algorithm is designed to solve the above model.•The bi-layer algorithm can produce a path with shorter length and higher security.•The bi-layer algorithm has higher competitiveness.
ArticleNumber 108905
Author Sun, Jing
Gan, Xingjia
Dong, Zihao
Luo, Peng
Sui, Fuli
Tang, Xiaoke
Author_xml – sequence: 1
  givenname: Fuli
  surname: Sui
  fullname: Sui, Fuli
  email: 1997000054@jou.edu.cn
  organization: School of Applied Technology, Jiangsu Ocean University, Lianyungang 222005, China
– sequence: 2
  givenname: Xiaoke
  surname: Tang
  fullname: Tang, Xiaoke
  email: 2019122515@jou.edu.cn
  organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China
– sequence: 3
  givenname: Zihao
  surname: Dong
  fullname: Dong, Zihao
  email: 2019122497@jou.edu.cn
  organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China
– sequence: 4
  givenname: Xingjia
  orcidid: 0000-0001-9162-318X
  surname: Gan
  fullname: Gan, Xingjia
  email: xjgan@jou.edu.cn
  organization: School of Computer Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
– sequence: 5
  givenname: Peng
  surname: Luo
  fullname: Luo, Peng
  email: 2020122427@jou.edu.cn
  organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0002-1485-0247
  surname: Sun
  fullname: Sun, Jing
  email: sunj@jou.edu.cn
  organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China
BookMark eNp9kE1LAzEQhoNUsK3-AG-5l62TZNPd6GkpfoFSQes1ZLOzbeo2W7JR6L93Sz156GmYYZ4X3mdEBr71SMg1gykDNrvZTK3DKQfO-z1XIM_IkOWZSkBKGJAhiBkkuZD8goy6bgMAqVRsSF6L-WLy9r6YFLe0oKVLGrPHQNf7MriKmmbVBhfXW1q3gW6_m-iSaLovujNxTXeN8d75FW1rajwtlp-X5Lw2TYdXf3NMlg_3H_On5GXx-DwvXhLLUi4TC6WoBILBOjNpzfIyE2kqjVACmCqRA8oaKqmsRZ7ZmUKTVoqjZBKMLFMxJtkx14a26wLW2rpoomt9DMY1moE-WNGb_o76YEUfrfQk-0fugtuasD_J3B0Z7Cv9OAy661-8xcoFtFFXrTtB_wLsaHpJ
CitedBy_id crossref_primary_10_1016_j_ast_2023_108763
crossref_primary_10_1016_j_oceaneng_2023_116216
crossref_primary_10_1007_s11042_024_19370_x
crossref_primary_10_3390_jmse12020223
crossref_primary_10_3390_drones8110636
crossref_primary_10_3390_electronics13142839
crossref_primary_10_1109_ACCESS_2023_3321104
crossref_primary_10_3390_s25051326
crossref_primary_10_3390_app13042047
crossref_primary_10_3390_jmse13030596
crossref_primary_10_3390_jmse12091683
crossref_primary_10_1007_s10845_024_02541_w
crossref_primary_10_1063_5_0207107
crossref_primary_10_1088_1742_6596_2897_1_012017
crossref_primary_10_1109_ACCESS_2024_3508031
crossref_primary_10_3390_ijgi14010034
crossref_primary_10_1088_1361_6501_ada631
crossref_primary_10_1007_s11227_025_07027_x
crossref_primary_10_1016_j_eswa_2024_125870
crossref_primary_10_1038_s41598_024_59413_9
crossref_primary_10_1115_1_4063013
crossref_primary_10_3233_JIFS_238095
crossref_primary_10_3390_su15064758
crossref_primary_10_1111_exsy_70023
crossref_primary_10_3390_act13010024
crossref_primary_10_1016_j_heliyon_2024_e27753
crossref_primary_10_1016_j_oceaneng_2023_116142
crossref_primary_10_3390_jmse12081446
crossref_primary_10_1109_TIV_2024_3356529
crossref_primary_10_1007_s00607_024_01293_y
crossref_primary_10_1063_5_0196294
crossref_primary_10_3390_jmse12101775
crossref_primary_10_3390_s24041098
crossref_primary_10_1016_j_eswa_2023_120433
crossref_primary_10_1016_j_eswa_2024_126095
crossref_primary_10_3390_jmse11102014
Cites_doi 10.1016/j.asoc.2017.10.025
10.1016/S1474-0346(03)00018-1
10.1109/TEVC.2018.2878221
10.1016/j.oceaneng.2021.109355
10.1016/j.asoc.2021.108086
10.1016/j.cie.2022.108123
10.1109/JSYST.2019.2937346
10.1109/TCDS.2019.2944945
10.1109/TVT.2021.3097203
10.1109/TIV.2020.3029369
10.1016/j.jnca.2019.02.025
10.1016/j.eswa.2021.115505
10.1016/j.ifacol.2019.12.326
10.1016/j.cogsys.2020.03.001
10.1109/JIOT.2022.3155697
10.1016/j.tcs.2005.05.020
10.1109/3477.484436
10.1016/S0167-739X(00)00043-1
10.1016/j.oceaneng.2022.112038
10.1109/TIM.2022.3167784
10.1016/j.asoc.2021.108084
10.1016/j.margeo.2014.03.012
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2022.108905
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2022_108905
S0360835222008932
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c1425-c0b3d3e0aef7a4f18b73445a393019be20e5f0d59cce27c69ea4d92e5150a5b43
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Oct 09 00:35:12 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A algorithm
Autonomous underwater vehicles
Path planning
Bi-lever optimization model
Ant colony algorithm
Particle swarm optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1425-c0b3d3e0aef7a4f18b73445a393019be20e5f0d59cce27c69ea4d92e5150a5b43
ORCID 0000-0002-1485-0247
0000-0001-9162-318X
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2022_108905
crossref_primary_10_1016_j_cie_2022_108905
elsevier_sciencedirect_doi_10_1016_j_cie_2022_108905
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Sha, He, Li (b1) 2021; 235
Xu, Huang, Wu (b23) 2022; 260
Yu, Chen, Hu, Gu (b26) 2020; 1
Dorigo, Blum (b2) 2005; 344
Kennedy, Eberhart (b5) 1995
Thomas, Martine, Ivana (b18) 2021; 9
Wynn, Huvenne, Bas (b21) 2014; 352
Yao, Zhao, Zhu (b24) 2020; 14
Soltani, Tawfik, Goulermas (b15) 2002; 16
MahmoudZadeh, Yazdani, Sammut (b13) 2018; 70
Dorigo, Maniezzo, Colorni (b3) 1996; 26
Khan, Ahmed, Jembre (b6) 2019; 135
Lim, Chen, Shen (b12) 2019; 52
Qu, Chen, Shen (b14) 2021
Wang, Mei, Wang, Yu, Sun, Wang (b19) 2022; 266
Yu, Chen, Gu (b25) 2019; 23
Zhang, J., Liu, M., & Zhang, S., et al. Multi-AUV adaptive path planning and cooperative sampling for ocean scalar field estimation.
Korani, Eydi (b7) 2021; 184
(9), 8529–8544.
Fan, Guo, Yue (b4) 2021; 47
Kumar, Jayaparvathy, Priyanka (b8) 2020; 217
Li, Xia, Bi (b10) 2020; 62
.
Zhu, Zhou, Yang (b28) 2021; 6
Thomas, Holger (b17) 2000; 16
Li, Xu, Geng (b11) 2022; 114
Xi, Yang, Wen, Liu, Li, Song (b22) 2022; 9
Li, Huang, Ding (b9) 2022; 168
Sun, Song, Wang (b16) 2022; 115
Wen, J., Yang, J., & Wang, T. (2021). Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm.
Soltani (10.1016/j.cie.2022.108905_b15) 2002; 16
Korani (10.1016/j.cie.2022.108905_b7) 2021; 184
Li (10.1016/j.cie.2022.108905_b11) 2022; 114
Thomas (10.1016/j.cie.2022.108905_b18) 2021; 9
Li (10.1016/j.cie.2022.108905_b9) 2022; 168
Qu (10.1016/j.cie.2022.108905_b14) 2021
Xu (10.1016/j.cie.2022.108905_b23) 2022; 260
Wynn (10.1016/j.cie.2022.108905_b21) 2014; 352
Sun (10.1016/j.cie.2022.108905_b16) 2022; 115
Li (10.1016/j.cie.2022.108905_b10) 2020; 62
Thomas (10.1016/j.cie.2022.108905_b17) 2000; 16
MahmoudZadeh (10.1016/j.cie.2022.108905_b13) 2018; 70
Dorigo (10.1016/j.cie.2022.108905_b2) 2005; 344
Fan (10.1016/j.cie.2022.108905_b4) 2021; 47
Cheng (10.1016/j.cie.2022.108905_b1) 2021; 235
Kennedy (10.1016/j.cie.2022.108905_b5) 1995
Lim (10.1016/j.cie.2022.108905_b12) 2019; 52
Wang (10.1016/j.cie.2022.108905_b19) 2022; 266
Khan (10.1016/j.cie.2022.108905_b6) 2019; 135
Yu (10.1016/j.cie.2022.108905_b26) 2020; 1
10.1016/j.cie.2022.108905_b27
Dorigo (10.1016/j.cie.2022.108905_b3) 1996; 26
Yao (10.1016/j.cie.2022.108905_b24) 2020; 14
Yu (10.1016/j.cie.2022.108905_b25) 2019; 23
10.1016/j.cie.2022.108905_b20
Xi (10.1016/j.cie.2022.108905_b22) 2022; 9
Kumar (10.1016/j.cie.2022.108905_b8) 2020; 217
Zhu (10.1016/j.cie.2022.108905_b28) 2021; 6
References_xml – volume: 235
  year: 2021
  ident: b1
  article-title: Path planning and obstacle avoidance for AUV: A review
  publication-title: Ocean Engineering
– volume: 47
  start-page: 2412
  year: 2021
  end-page: 2426
  ident: b4
  article-title: Joint configuration and scheduling optimization of dual-trolley quay crane and AGV for container terminal with considering energy saving
  publication-title: Acta Automatica Sinica
– volume: 115
  year: 2022
  ident: b16
  article-title: An adaptive bi-level task planning strategy for multi-USVs target visitation
  publication-title: Applied Soft Computing
– volume: 9
  year: 2021
  ident: b18
  article-title: A survey on mixed-integer programming techniques in bilevel optimization
  publication-title: EURO Journal on Computational Optimization
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b3
  article-title: Ant system:optimizationby a colony of cooperating agents
  publication-title: IEEE Transaction on Systems, Man and Cybernetics-Part B
– volume: 6
  start-page: 333
  year: 2021
  end-page: 342
  ident: b28
  article-title: A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 9
  start-page: 17440
  year: 2022
  end-page: 17451
  ident: b22
  article-title: Comprehensive ocean information enabled AUV path planning via reinforcement learning
  publication-title: IEEE Internet of Things Journal
– reference: Wen, J., Yang, J., & Wang, T. (2021). Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm.
– volume: 266
  year: 2022
  ident: b19
  article-title: Task allocation for multi-AUV system: A review
  publication-title: Ocean Engineering
– volume: 52
  start-page: 315
  year: 2019
  end-page: 322
  ident: b12
  article-title: Constrained path planning of autonomous underwater vehicle using selectively-hybridized partical swarm optimization algorithms
  publication-title: IFAC PapersOnLine
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b5
  article-title: Particle swarm optimization
  publication-title: IEEE international conference on neural networks, Vol. 4
– volume: 14
  start-page: 3185
  year: 2020
  end-page: 3193
  ident: b24
  article-title: Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment
  publication-title: IEEE Systems Journal
– volume: 168
  year: 2022
  ident: b9
  article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots
  publication-title: Computers & Industrial Engineering
– volume: 184
  year: 2021
  ident: b7
  article-title: Bi-level programming model and KKT penalty function solution approach for reliable hub location problem
  publication-title: Expert Systems with Applications
– volume: 260
  year: 2022
  ident: b23
  article-title: A learning method for AUV collision avoidance through deep reinforcement learning
  publication-title: Ocean Engineering
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: b2
  article-title: Ant colony optimization theory: A survey
  publication-title: Theoretical Computer Science
– reference: Zhang, J., Liu, M., & Zhang, S., et al. Multi-AUV adaptive path planning and cooperative sampling for ocean scalar field estimation.
– volume: 217
  year: 2020
  ident: b8
  article-title: Efficient path planning of AUVs for container ship oil spill detection in coastal areas
  publication-title: Ocean Engineering
– volume: 62
  start-page: 1
  year: 2020
  end-page: 9
  ident: b10
  article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism
  publication-title: Cognitive Systems Research
– reference: (9), 8529–8544.
– volume: 1
  start-page: 561
  year: 2020
  end-page: 574
  ident: b26
  article-title: Path planning in multiple-AUV systems for difficult target traveling missions: a hybrid metaheuristic approach
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 1
  year: 2021
  end-page: 7
  ident: b14
  article-title: A three-dimensional path planning system for AUV diving process considering ocean current and energy consumption
  publication-title: OCEANS 2021: San Diego–Porto
– volume: 16
  start-page: 889
  year: 2000
  end-page: 914
  ident: b17
  article-title: MAX-MIN ant system
  publication-title: Future Generation Computer Systems
– reference: .
– volume: 114
  year: 2022
  ident: b11
  article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA
  publication-title: Applied Soft Computing
– volume: 352
  start-page: 451
  year: 2014
  end-page: 468
  ident: b21
  article-title: Automomous underwater vehicle (AUVs): Their past, present and future contributions to the advancement of marine geoscience
  publication-title: Marine Geology
– volume: 23
  start-page: 617
  year: 2019
  end-page: 631
  ident: b25
  article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 70
  start-page: 9292
  year: 2018
  end-page: 9945
  ident: b13
  article-title: Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms
  publication-title: Applied Soft Computing
– volume: 16
  start-page: 291
  year: 2002
  end-page: 303
  ident: b15
  article-title: Path planning in construction sites: performance evaluation of the dijkstra, A*, and ga search algorithms
  publication-title: Advanced Engineering Informatics
– volume: 135
  start-page: 20
  year: 2019
  end-page: 31
  ident: b6
  article-title: An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things
  publication-title: Journal of Network and Computer Applications
– volume: 70
  start-page: 9292
  year: 2018
  ident: 10.1016/j.cie.2022.108905_b13
  article-title: Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.10.025
– volume: 16
  start-page: 291
  issue: 4
  year: 2002
  ident: 10.1016/j.cie.2022.108905_b15
  article-title: Path planning in construction sites: performance evaluation of the dijkstra, A*, and ga search algorithms
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/S1474-0346(03)00018-1
– volume: 23
  start-page: 617
  issue: 4
  year: 2019
  ident: 10.1016/j.cie.2022.108905_b25
  article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2878221
– volume: 235
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b1
  article-title: Path planning and obstacle avoidance for AUV: A review
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.109355
– volume: 217
  year: 2020
  ident: 10.1016/j.cie.2022.108905_b8
  article-title: Efficient path planning of AUVs for container ship oil spill detection in coastal areas
  publication-title: Ocean Engineering
– volume: 115
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b16
  article-title: An adaptive bi-level task planning strategy for multi-USVs target visitation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108086
– volume: 9
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b18
  article-title: A survey on mixed-integer programming techniques in bilevel optimization
  publication-title: EURO Journal on Computational Optimization
– volume: 168
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b9
  article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108123
– volume: 14
  start-page: 3185
  issue: 3
  year: 2020
  ident: 10.1016/j.cie.2022.108905_b24
  article-title: Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2019.2937346
– volume: 266
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b19
  article-title: Task allocation for multi-AUV system: A review
  publication-title: Ocean Engineering
– volume: 1
  start-page: 561
  issue: 3
  year: 2020
  ident: 10.1016/j.cie.2022.108905_b26
  article-title: Path planning in multiple-AUV systems for difficult target traveling missions: a hybrid metaheuristic approach
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2019.2944945
– ident: 10.1016/j.cie.2022.108905_b20
  doi: 10.1109/TVT.2021.3097203
– volume: 6
  start-page: 333
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b28
  article-title: A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2020.3029369
– volume: 135
  start-page: 20
  year: 2019
  ident: 10.1016/j.cie.2022.108905_b6
  article-title: An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2019.02.025
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b14
  article-title: A three-dimensional path planning system for AUV diving process considering ocean current and energy consumption
– volume: 184
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b7
  article-title: Bi-level programming model and KKT penalty function solution approach for reliable hub location problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115505
– volume: 52
  start-page: 315
  issue: 21
  year: 2019
  ident: 10.1016/j.cie.2022.108905_b12
  article-title: Constrained path planning of autonomous underwater vehicle using selectively-hybridized partical swarm optimization algorithms
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.326
– volume: 62
  start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2022.108905_b10
  article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2020.03.001
– volume: 9
  start-page: 17440
  issue: 18
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b22
  article-title: Comprehensive ocean information enabled AUV path planning via reinforcement learning
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2022.3155697
– volume: 344
  start-page: 243
  issue: 2–3
  year: 2005
  ident: 10.1016/j.cie.2022.108905_b2
  article-title: Ant colony optimization theory: A survey
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2005.05.020
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.cie.2022.108905_b3
  article-title: Ant system:optimizationby a colony of cooperating agents
  publication-title: IEEE Transaction on Systems, Man and Cybernetics-Part B
  doi: 10.1109/3477.484436
– start-page: 1942
  year: 1995
  ident: 10.1016/j.cie.2022.108905_b5
  article-title: Particle swarm optimization
– volume: 16
  start-page: 889
  issue: 8
  year: 2000
  ident: 10.1016/j.cie.2022.108905_b17
  article-title: MAX-MIN ant system
  publication-title: Future Generation Computer Systems
  doi: 10.1016/S0167-739X(00)00043-1
– volume: 47
  start-page: 2412
  issue: 10
  year: 2021
  ident: 10.1016/j.cie.2022.108905_b4
  article-title: Joint configuration and scheduling optimization of dual-trolley quay crane and AGV for container terminal with considering energy saving
  publication-title: Acta Automatica Sinica
– volume: 260
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b23
  article-title: A learning method for AUV collision avoidance through deep reinforcement learning
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112038
– ident: 10.1016/j.cie.2022.108905_b27
  doi: 10.1109/TIM.2022.3167784
– volume: 114
  year: 2022
  ident: 10.1016/j.cie.2022.108905_b11
  article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108084
– volume: 352
  start-page: 451
  year: 2014
  ident: 10.1016/j.cie.2022.108905_b21
  article-title: Automomous underwater vehicle (AUVs): Their past, present and future contributions to the advancement of marine geoscience
  publication-title: Marine Geology
  doi: 10.1016/j.margeo.2014.03.012
SSID ssj0004591
Score 2.3742683
Snippet Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108905
SubjectTerms A algorithm
Ant colony algorithm
Autonomous underwater vehicles
Bi-lever optimization model
Particle swarm optimization algorithm
Path planning
Title ACO+PSO+A: A bi-layer hybrid algorithm for multi-task path planning of an AUV
URI https://dx.doi.org/10.1016/j.cie.2022.108905
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE5WpkzgvtqiiKqC2SKWoW2Q7Ng2UtGrLwMJvx04cVCRgYLXuoujiO38X390HwLmUCRMqTUCWL1yVoHAXhYy5COOEBJR4ni11g3Ov73VH5HbsjiugXfbC6LJKE_uLmJ5Ha7PSMtZszdO0NVSxt8AP-gpfwRDdwU58zWJw-WGtTQwvWPOUMNLS5c1mXuOlHqtSRNvWlXahZrD76WxaO286u2DbAEUYFe-yByoiq4EdAxqhccllDWytTRTcB72oPWjeDwfN6ApGkKVoShWmhpN33ZgF6fRptkhXk1eooCrMawnRii5foOYlhnPDXwRnEtIMRqPHAzDqXD-0u8gwJiBuKedDHDMncQSmQvqUSCtgvkOIS51Q-XHIhI2FK3HihpwL2-deKChJQlsoUIOpy4hzCKrZLBNHAFrU8njg6-kxuhQ0CRj2qMf9RDJJHM7qAJe2irkZJ65ZLaZxWTf2rNZFrM0bF-atg4svlXkxS-MvYVJ-gPjbhohVrP9d7fh_aidgU_PIF_9WTkF1tXgTZwptrFgj304NsBHd3HX7n01k0Co
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwLijQcmkKmT2EnDFlWgAi0gQRFbZDs2FEpbtWVg4bdjNw4qEjCwWndRdPGdv4vv7gM40DoTyqQJ2IsUMwmKZDgWgmFCMlrjNAx9bRucW1dho00vHthDCepFL4wtq3SxP4_pk2jtVqrOmtVBp1O9NbE3xw_2Ct_AkBmYpcyPbAZ2_OFNjQzPafOMNLbixdXmpMjLPNfkiL5vS-1iS2H30-E0deCcLcOiQ4ooyV9mBUqqV4ElhxqR88lRBRamRgquQiupXx_d3F4fJScoQaKDu9yAavT0bjuzEO8-9oed8dMrMlgVTYoJ8ZiPXpAlJkYDR2CE-hrxHkra92vQPju9qzewo0zA0jPehyURQRYowpWOONVeTUQBpYwHsXHkWCifKKZJxmIplR_JMFacZrGvDKohnAkarEO51--pDUAe90JZi-z4GFsLmtUECXkoo0wLTQMpNoEUtkqlmyduaS26aVE49mzWVWrNm-bm3YTDL5VBPkzjL2FafID0245ITbD_XW3rf2r7MNe4azXT5vnV5TbMW1L5_EfLDpTHwze1a6DHWOxNttYnT_TRvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACO%2BPSO%2BA%3A+A+bi-layer+hybrid+algorithm+for+multi-task+path+planning+of+an+AUV&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Sui%2C+Fuli&rft.au=Tang%2C+Xiaoke&rft.au=Dong%2C+Zihao&rft.au=Gan%2C+Xingjia&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=175&rft_id=info:doi/10.1016%2Fj.cie.2022.108905&rft.externalDocID=S0360835222008932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon