ACO+PSO+A: A bi-layer hybrid algorithm for multi-task path planning of an AUV
Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the...
Saved in:
| Published in | Computers & industrial engineering Vol. 175; p. 108905 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-8352 1879-0550 |
| DOI | 10.1016/j.cie.2022.108905 |
Cover
| Abstract | Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the multi-task path planning problem of AUV, this paper first proposes a bi-level multi-objective path planning model aimed at minimizing the path length and dangerous distance. Then, a bi-layer hybrid algorithm is developed to solve the above model. In this algorithm, ant colony optimization algorithm (ACO) is adopted to generate a task sequence of the upper level model in the outer layer; particle swarm optimization algorithm (PSO) is employed to produce some waypoints between two adjacent tasks, and A* algorithm is used to generate a collision-free path of the lower level model based on waypoints in the inner layer. After that, the collision-free path in the inner layer is feedback to the ACO in the out layer to update its pheromone, and ACO yield a better task sequence in the next iteration, thus obtaining the shortest collision-free path traversing all tasks. Finally, PSO+A* and A* algorithms, together with the proposed bi-layer hybrid algorithm and some two-stage optimization algorithms are compared, respectively. Empirical results show that the proposed algorithm can produce an optimal collision-free path with shorter length and higher security.
•A bi-level programming model of AUV multi-task path planning is constructed.•A bi-layer hybrid algorithm is designed to solve the above model.•The bi-layer algorithm can produce a path with shorter length and higher security.•The bi-layer algorithm has higher competitiveness. |
|---|---|
| AbstractList | Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil spill detection, AUV should execute multiple tasks, which become more challenging due to the 3D ocean environment with obstacles. To solve the multi-task path planning problem of AUV, this paper first proposes a bi-level multi-objective path planning model aimed at minimizing the path length and dangerous distance. Then, a bi-layer hybrid algorithm is developed to solve the above model. In this algorithm, ant colony optimization algorithm (ACO) is adopted to generate a task sequence of the upper level model in the outer layer; particle swarm optimization algorithm (PSO) is employed to produce some waypoints between two adjacent tasks, and A* algorithm is used to generate a collision-free path of the lower level model based on waypoints in the inner layer. After that, the collision-free path in the inner layer is feedback to the ACO in the out layer to update its pheromone, and ACO yield a better task sequence in the next iteration, thus obtaining the shortest collision-free path traversing all tasks. Finally, PSO+A* and A* algorithms, together with the proposed bi-layer hybrid algorithm and some two-stage optimization algorithms are compared, respectively. Empirical results show that the proposed algorithm can produce an optimal collision-free path with shorter length and higher security.
•A bi-level programming model of AUV multi-task path planning is constructed.•A bi-layer hybrid algorithm is designed to solve the above model.•The bi-layer algorithm can produce a path with shorter length and higher security.•The bi-layer algorithm has higher competitiveness. |
| ArticleNumber | 108905 |
| Author | Sun, Jing Gan, Xingjia Dong, Zihao Luo, Peng Sui, Fuli Tang, Xiaoke |
| Author_xml | – sequence: 1 givenname: Fuli surname: Sui fullname: Sui, Fuli email: 1997000054@jou.edu.cn organization: School of Applied Technology, Jiangsu Ocean University, Lianyungang 222005, China – sequence: 2 givenname: Xiaoke surname: Tang fullname: Tang, Xiaoke email: 2019122515@jou.edu.cn organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China – sequence: 3 givenname: Zihao surname: Dong fullname: Dong, Zihao email: 2019122497@jou.edu.cn organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China – sequence: 4 givenname: Xingjia orcidid: 0000-0001-9162-318X surname: Gan fullname: Gan, Xingjia email: xjgan@jou.edu.cn organization: School of Computer Engineering, Jiangsu Ocean University, Lianyungang, 222005, China – sequence: 5 givenname: Peng surname: Luo fullname: Luo, Peng email: 2020122427@jou.edu.cn organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China – sequence: 6 givenname: Jing orcidid: 0000-0002-1485-0247 surname: Sun fullname: Sun, Jing email: sunj@jou.edu.cn organization: School of Science, Jiangsu Ocean University, Lianyungang 222005, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG-5l62TZNPd6GkpfoFSQes1ZLOzbeo2W7JR6L93Sz156GmYYZ4X3mdEBr71SMg1gykDNrvZTK3DKQfO-z1XIM_IkOWZSkBKGJAhiBkkuZD8goy6bgMAqVRsSF6L-WLy9r6YFLe0oKVLGrPHQNf7MriKmmbVBhfXW1q3gW6_m-iSaLovujNxTXeN8d75FW1rajwtlp-X5Lw2TYdXf3NMlg_3H_On5GXx-DwvXhLLUi4TC6WoBILBOjNpzfIyE2kqjVACmCqRA8oaKqmsRZ7ZmUKTVoqjZBKMLFMxJtkx14a26wLW2rpoomt9DMY1moE-WNGb_o76YEUfrfQk-0fugtuasD_J3B0Z7Cv9OAy661-8xcoFtFFXrTtB_wLsaHpJ |
| CitedBy_id | crossref_primary_10_1016_j_ast_2023_108763 crossref_primary_10_1016_j_oceaneng_2023_116216 crossref_primary_10_1007_s11042_024_19370_x crossref_primary_10_3390_jmse12020223 crossref_primary_10_3390_drones8110636 crossref_primary_10_3390_electronics13142839 crossref_primary_10_1109_ACCESS_2023_3321104 crossref_primary_10_3390_s25051326 crossref_primary_10_3390_app13042047 crossref_primary_10_3390_jmse13030596 crossref_primary_10_3390_jmse12091683 crossref_primary_10_1007_s10845_024_02541_w crossref_primary_10_1063_5_0207107 crossref_primary_10_1088_1742_6596_2897_1_012017 crossref_primary_10_1109_ACCESS_2024_3508031 crossref_primary_10_3390_ijgi14010034 crossref_primary_10_1088_1361_6501_ada631 crossref_primary_10_1007_s11227_025_07027_x crossref_primary_10_1016_j_eswa_2024_125870 crossref_primary_10_1038_s41598_024_59413_9 crossref_primary_10_1115_1_4063013 crossref_primary_10_3233_JIFS_238095 crossref_primary_10_3390_su15064758 crossref_primary_10_1111_exsy_70023 crossref_primary_10_3390_act13010024 crossref_primary_10_1016_j_heliyon_2024_e27753 crossref_primary_10_1016_j_oceaneng_2023_116142 crossref_primary_10_3390_jmse12081446 crossref_primary_10_1109_TIV_2024_3356529 crossref_primary_10_1007_s00607_024_01293_y crossref_primary_10_1063_5_0196294 crossref_primary_10_3390_jmse12101775 crossref_primary_10_3390_s24041098 crossref_primary_10_1016_j_eswa_2023_120433 crossref_primary_10_1016_j_eswa_2024_126095 crossref_primary_10_3390_jmse11102014 |
| Cites_doi | 10.1016/j.asoc.2017.10.025 10.1016/S1474-0346(03)00018-1 10.1109/TEVC.2018.2878221 10.1016/j.oceaneng.2021.109355 10.1016/j.asoc.2021.108086 10.1016/j.cie.2022.108123 10.1109/JSYST.2019.2937346 10.1109/TCDS.2019.2944945 10.1109/TVT.2021.3097203 10.1109/TIV.2020.3029369 10.1016/j.jnca.2019.02.025 10.1016/j.eswa.2021.115505 10.1016/j.ifacol.2019.12.326 10.1016/j.cogsys.2020.03.001 10.1109/JIOT.2022.3155697 10.1016/j.tcs.2005.05.020 10.1109/3477.484436 10.1016/S0167-739X(00)00043-1 10.1016/j.oceaneng.2022.112038 10.1109/TIM.2022.3167784 10.1016/j.asoc.2021.108084 10.1016/j.margeo.2014.03.012 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2022.108905 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2022_108905 S0360835222008932 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c1425-c0b3d3e0aef7a4f18b73445a393019be20e5f0d59cce27c69ea4d92e5150a5b43 |
| IEDL.DBID | .~1 |
| ISSN | 0360-8352 |
| IngestDate | Thu Oct 09 00:35:12 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | A algorithm Autonomous underwater vehicles Path planning Bi-lever optimization model Ant colony algorithm Particle swarm optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1425-c0b3d3e0aef7a4f18b73445a393019be20e5f0d59cce27c69ea4d92e5150a5b43 |
| ORCID | 0000-0002-1485-0247 0000-0001-9162-318X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2022_108905 crossref_primary_10_1016_j_cie_2022_108905 elsevier_sciencedirect_doi_10_1016_j_cie_2022_108905 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cheng, Sha, He, Li (b1) 2021; 235 Xu, Huang, Wu (b23) 2022; 260 Yu, Chen, Hu, Gu (b26) 2020; 1 Dorigo, Blum (b2) 2005; 344 Kennedy, Eberhart (b5) 1995 Thomas, Martine, Ivana (b18) 2021; 9 Wynn, Huvenne, Bas (b21) 2014; 352 Yao, Zhao, Zhu (b24) 2020; 14 Soltani, Tawfik, Goulermas (b15) 2002; 16 MahmoudZadeh, Yazdani, Sammut (b13) 2018; 70 Dorigo, Maniezzo, Colorni (b3) 1996; 26 Khan, Ahmed, Jembre (b6) 2019; 135 Lim, Chen, Shen (b12) 2019; 52 Qu, Chen, Shen (b14) 2021 Wang, Mei, Wang, Yu, Sun, Wang (b19) 2022; 266 Yu, Chen, Gu (b25) 2019; 23 Zhang, J., Liu, M., & Zhang, S., et al. Multi-AUV adaptive path planning and cooperative sampling for ocean scalar field estimation. Korani, Eydi (b7) 2021; 184 (9), 8529–8544. Fan, Guo, Yue (b4) 2021; 47 Kumar, Jayaparvathy, Priyanka (b8) 2020; 217 Li, Xia, Bi (b10) 2020; 62 . Zhu, Zhou, Yang (b28) 2021; 6 Thomas, Holger (b17) 2000; 16 Li, Xu, Geng (b11) 2022; 114 Xi, Yang, Wen, Liu, Li, Song (b22) 2022; 9 Li, Huang, Ding (b9) 2022; 168 Sun, Song, Wang (b16) 2022; 115 Wen, J., Yang, J., & Wang, T. (2021). Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm. Soltani (10.1016/j.cie.2022.108905_b15) 2002; 16 Korani (10.1016/j.cie.2022.108905_b7) 2021; 184 Li (10.1016/j.cie.2022.108905_b11) 2022; 114 Thomas (10.1016/j.cie.2022.108905_b18) 2021; 9 Li (10.1016/j.cie.2022.108905_b9) 2022; 168 Qu (10.1016/j.cie.2022.108905_b14) 2021 Xu (10.1016/j.cie.2022.108905_b23) 2022; 260 Wynn (10.1016/j.cie.2022.108905_b21) 2014; 352 Sun (10.1016/j.cie.2022.108905_b16) 2022; 115 Li (10.1016/j.cie.2022.108905_b10) 2020; 62 Thomas (10.1016/j.cie.2022.108905_b17) 2000; 16 MahmoudZadeh (10.1016/j.cie.2022.108905_b13) 2018; 70 Dorigo (10.1016/j.cie.2022.108905_b2) 2005; 344 Fan (10.1016/j.cie.2022.108905_b4) 2021; 47 Cheng (10.1016/j.cie.2022.108905_b1) 2021; 235 Kennedy (10.1016/j.cie.2022.108905_b5) 1995 Lim (10.1016/j.cie.2022.108905_b12) 2019; 52 Wang (10.1016/j.cie.2022.108905_b19) 2022; 266 Khan (10.1016/j.cie.2022.108905_b6) 2019; 135 Yu (10.1016/j.cie.2022.108905_b26) 2020; 1 10.1016/j.cie.2022.108905_b27 Dorigo (10.1016/j.cie.2022.108905_b3) 1996; 26 Yao (10.1016/j.cie.2022.108905_b24) 2020; 14 Yu (10.1016/j.cie.2022.108905_b25) 2019; 23 10.1016/j.cie.2022.108905_b20 Xi (10.1016/j.cie.2022.108905_b22) 2022; 9 Kumar (10.1016/j.cie.2022.108905_b8) 2020; 217 Zhu (10.1016/j.cie.2022.108905_b28) 2021; 6 |
| References_xml | – volume: 235 year: 2021 ident: b1 article-title: Path planning and obstacle avoidance for AUV: A review publication-title: Ocean Engineering – volume: 47 start-page: 2412 year: 2021 end-page: 2426 ident: b4 article-title: Joint configuration and scheduling optimization of dual-trolley quay crane and AGV for container terminal with considering energy saving publication-title: Acta Automatica Sinica – volume: 115 year: 2022 ident: b16 article-title: An adaptive bi-level task planning strategy for multi-USVs target visitation publication-title: Applied Soft Computing – volume: 9 year: 2021 ident: b18 article-title: A survey on mixed-integer programming techniques in bilevel optimization publication-title: EURO Journal on Computational Optimization – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b3 article-title: Ant system:optimizationby a colony of cooperating agents publication-title: IEEE Transaction on Systems, Man and Cybernetics-Part B – volume: 6 start-page: 333 year: 2021 end-page: 342 ident: b28 article-title: A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map publication-title: IEEE Transactions on Intelligent Vehicles – volume: 9 start-page: 17440 year: 2022 end-page: 17451 ident: b22 article-title: Comprehensive ocean information enabled AUV path planning via reinforcement learning publication-title: IEEE Internet of Things Journal – reference: Wen, J., Yang, J., & Wang, T. (2021). Path planning for autonomous underwater vehicles under the influence of ocean currents based on a fusion heuristic algorithm. – volume: 266 year: 2022 ident: b19 article-title: Task allocation for multi-AUV system: A review publication-title: Ocean Engineering – volume: 52 start-page: 315 year: 2019 end-page: 322 ident: b12 article-title: Constrained path planning of autonomous underwater vehicle using selectively-hybridized partical swarm optimization algorithms publication-title: IFAC PapersOnLine – start-page: 1942 year: 1995 end-page: 1948 ident: b5 article-title: Particle swarm optimization publication-title: IEEE international conference on neural networks, Vol. 4 – volume: 14 start-page: 3185 year: 2020 end-page: 3193 ident: b24 article-title: Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment publication-title: IEEE Systems Journal – volume: 168 year: 2022 ident: b9 article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots publication-title: Computers & Industrial Engineering – volume: 184 year: 2021 ident: b7 article-title: Bi-level programming model and KKT penalty function solution approach for reliable hub location problem publication-title: Expert Systems with Applications – volume: 260 year: 2022 ident: b23 article-title: A learning method for AUV collision avoidance through deep reinforcement learning publication-title: Ocean Engineering – volume: 344 start-page: 243 year: 2005 end-page: 278 ident: b2 article-title: Ant colony optimization theory: A survey publication-title: Theoretical Computer Science – reference: Zhang, J., Liu, M., & Zhang, S., et al. Multi-AUV adaptive path planning and cooperative sampling for ocean scalar field estimation. – volume: 217 year: 2020 ident: b8 article-title: Efficient path planning of AUVs for container ship oil spill detection in coastal areas publication-title: Ocean Engineering – volume: 62 start-page: 1 year: 2020 end-page: 9 ident: b10 article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism publication-title: Cognitive Systems Research – reference: (9), 8529–8544. – volume: 1 start-page: 561 year: 2020 end-page: 574 ident: b26 article-title: Path planning in multiple-AUV systems for difficult target traveling missions: a hybrid metaheuristic approach publication-title: IEEE Transactions on Cognitive and Developmental Systems – start-page: 1 year: 2021 end-page: 7 ident: b14 article-title: A three-dimensional path planning system for AUV diving process considering ocean current and energy consumption publication-title: OCEANS 2021: San Diego–Porto – volume: 16 start-page: 889 year: 2000 end-page: 914 ident: b17 article-title: MAX-MIN ant system publication-title: Future Generation Computer Systems – reference: . – volume: 114 year: 2022 ident: b11 article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA publication-title: Applied Soft Computing – volume: 352 start-page: 451 year: 2014 end-page: 468 ident: b21 article-title: Automomous underwater vehicle (AUVs): Their past, present and future contributions to the advancement of marine geoscience publication-title: Marine Geology – volume: 23 start-page: 617 year: 2019 end-page: 631 ident: b25 article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles publication-title: IEEE Transactions on Evolutionary Computation – volume: 70 start-page: 9292 year: 2018 end-page: 9945 ident: b13 article-title: Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms publication-title: Applied Soft Computing – volume: 16 start-page: 291 year: 2002 end-page: 303 ident: b15 article-title: Path planning in construction sites: performance evaluation of the dijkstra, A*, and ga search algorithms publication-title: Advanced Engineering Informatics – volume: 135 start-page: 20 year: 2019 end-page: 31 ident: b6 article-title: An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things publication-title: Journal of Network and Computer Applications – volume: 70 start-page: 9292 year: 2018 ident: 10.1016/j.cie.2022.108905_b13 article-title: Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.10.025 – volume: 16 start-page: 291 issue: 4 year: 2002 ident: 10.1016/j.cie.2022.108905_b15 article-title: Path planning in construction sites: performance evaluation of the dijkstra, A*, and ga search algorithms publication-title: Advanced Engineering Informatics doi: 10.1016/S1474-0346(03)00018-1 – volume: 23 start-page: 617 issue: 4 year: 2019 ident: 10.1016/j.cie.2022.108905_b25 article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2878221 – volume: 235 year: 2021 ident: 10.1016/j.cie.2022.108905_b1 article-title: Path planning and obstacle avoidance for AUV: A review publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.109355 – volume: 217 year: 2020 ident: 10.1016/j.cie.2022.108905_b8 article-title: Efficient path planning of AUVs for container ship oil spill detection in coastal areas publication-title: Ocean Engineering – volume: 115 year: 2022 ident: 10.1016/j.cie.2022.108905_b16 article-title: An adaptive bi-level task planning strategy for multi-USVs target visitation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108086 – volume: 9 year: 2021 ident: 10.1016/j.cie.2022.108905_b18 article-title: A survey on mixed-integer programming techniques in bilevel optimization publication-title: EURO Journal on Computational Optimization – volume: 168 year: 2022 ident: 10.1016/j.cie.2022.108905_b9 article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108123 – volume: 14 start-page: 3185 issue: 3 year: 2020 ident: 10.1016/j.cie.2022.108905_b24 article-title: Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2019.2937346 – volume: 266 year: 2022 ident: 10.1016/j.cie.2022.108905_b19 article-title: Task allocation for multi-AUV system: A review publication-title: Ocean Engineering – volume: 1 start-page: 561 issue: 3 year: 2020 ident: 10.1016/j.cie.2022.108905_b26 article-title: Path planning in multiple-AUV systems for difficult target traveling missions: a hybrid metaheuristic approach publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2019.2944945 – ident: 10.1016/j.cie.2022.108905_b20 doi: 10.1109/TVT.2021.3097203 – volume: 6 start-page: 333 issue: 2 year: 2021 ident: 10.1016/j.cie.2022.108905_b28 article-title: A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map publication-title: IEEE Transactions on Intelligent Vehicles doi: 10.1109/TIV.2020.3029369 – volume: 135 start-page: 20 year: 2019 ident: 10.1016/j.cie.2022.108905_b6 article-title: An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2019.02.025 – start-page: 1 year: 2021 ident: 10.1016/j.cie.2022.108905_b14 article-title: A three-dimensional path planning system for AUV diving process considering ocean current and energy consumption – volume: 184 year: 2021 ident: 10.1016/j.cie.2022.108905_b7 article-title: Bi-level programming model and KKT penalty function solution approach for reliable hub location problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115505 – volume: 52 start-page: 315 issue: 21 year: 2019 ident: 10.1016/j.cie.2022.108905_b12 article-title: Constrained path planning of autonomous underwater vehicle using selectively-hybridized partical swarm optimization algorithms publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2019.12.326 – volume: 62 start-page: 1 year: 2020 ident: 10.1016/j.cie.2022.108905_b10 article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2020.03.001 – volume: 9 start-page: 17440 issue: 18 year: 2022 ident: 10.1016/j.cie.2022.108905_b22 article-title: Comprehensive ocean information enabled AUV path planning via reinforcement learning publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2022.3155697 – volume: 344 start-page: 243 issue: 2–3 year: 2005 ident: 10.1016/j.cie.2022.108905_b2 article-title: Ant colony optimization theory: A survey publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2005.05.020 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.cie.2022.108905_b3 article-title: Ant system:optimizationby a colony of cooperating agents publication-title: IEEE Transaction on Systems, Man and Cybernetics-Part B doi: 10.1109/3477.484436 – start-page: 1942 year: 1995 ident: 10.1016/j.cie.2022.108905_b5 article-title: Particle swarm optimization – volume: 16 start-page: 889 issue: 8 year: 2000 ident: 10.1016/j.cie.2022.108905_b17 article-title: MAX-MIN ant system publication-title: Future Generation Computer Systems doi: 10.1016/S0167-739X(00)00043-1 – volume: 47 start-page: 2412 issue: 10 year: 2021 ident: 10.1016/j.cie.2022.108905_b4 article-title: Joint configuration and scheduling optimization of dual-trolley quay crane and AGV for container terminal with considering energy saving publication-title: Acta Automatica Sinica – volume: 260 year: 2022 ident: 10.1016/j.cie.2022.108905_b23 article-title: A learning method for AUV collision avoidance through deep reinforcement learning publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112038 – ident: 10.1016/j.cie.2022.108905_b27 doi: 10.1109/TIM.2022.3167784 – volume: 114 year: 2022 ident: 10.1016/j.cie.2022.108905_b11 article-title: A hybrid approach for forecasting ship motion using CNN-GRU-AM and GCWOA publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108084 – volume: 352 start-page: 451 year: 2014 ident: 10.1016/j.cie.2022.108905_b21 article-title: Automomous underwater vehicle (AUVs): Their past, present and future contributions to the advancement of marine geoscience publication-title: Marine Geology doi: 10.1016/j.margeo.2014.03.012 |
| SSID | ssj0004591 |
| Score | 2.3742683 |
| Snippet | Autonomous underwater vehicle (AUV) plays a great role in the ocean engineering, and path planning is one of its key technologies. For such scenarios as oil... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108905 |
| SubjectTerms | A algorithm Ant colony algorithm Autonomous underwater vehicles Bi-lever optimization model Particle swarm optimization algorithm Path planning |
| Title | ACO+PSO+A: A bi-layer hybrid algorithm for multi-task path planning of an AUV |
| URI | https://dx.doi.org/10.1016/j.cie.2022.108905 |
| Volume | 175 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: SD Complete Freedom Collection customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE5WpkzgvtqiiKqC2SKWoW2Q7Ng2UtGrLwMJvx04cVCRgYLXuoujiO38X390HwLmUCRMqTUCWL1yVoHAXhYy5COOEBJR4ni11g3Ov73VH5HbsjiugXfbC6LJKE_uLmJ5Ha7PSMtZszdO0NVSxt8AP-gpfwRDdwU58zWJw-WGtTQwvWPOUMNLS5c1mXuOlHqtSRNvWlXahZrD76WxaO286u2DbAEUYFe-yByoiq4EdAxqhccllDWytTRTcB72oPWjeDwfN6ApGkKVoShWmhpN33ZgF6fRptkhXk1eooCrMawnRii5foOYlhnPDXwRnEtIMRqPHAzDqXD-0u8gwJiBuKedDHDMncQSmQvqUSCtgvkOIS51Q-XHIhI2FK3HihpwL2-deKChJQlsoUIOpy4hzCKrZLBNHAFrU8njg6-kxuhQ0CRj2qMf9RDJJHM7qAJe2irkZJ65ZLaZxWTf2rNZFrM0bF-atg4svlXkxS-MvYVJ-gPjbhohVrP9d7fh_aidgU_PIF_9WTkF1tXgTZwptrFgj304NsBHd3HX7n01k0Co |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwLijQcmkKmT2EnDFlWgAi0gQRFbZDs2FEpbtWVg4bdjNw4qEjCwWndRdPGdv4vv7gM40DoTyqQJ2IsUMwmKZDgWgmFCMlrjNAx9bRucW1dho00vHthDCepFL4wtq3SxP4_pk2jtVqrOmtVBp1O9NbE3xw_2Ct_AkBmYpcyPbAZ2_OFNjQzPafOMNLbixdXmpMjLPNfkiL5vS-1iS2H30-E0deCcLcOiQ4ooyV9mBUqqV4ElhxqR88lRBRamRgquQiupXx_d3F4fJScoQaKDu9yAavT0bjuzEO8-9oed8dMrMlgVTYoJ8ZiPXpAlJkYDR2CE-hrxHkra92vQPju9qzewo0zA0jPehyURQRYowpWOONVeTUQBpYwHsXHkWCifKKZJxmIplR_JMFacZrGvDKohnAkarEO51--pDUAe90JZi-z4GFsLmtUECXkoo0wLTQMpNoEUtkqlmyduaS26aVE49mzWVWrNm-bm3YTDL5VBPkzjL2FafID0245ITbD_XW3rf2r7MNe4azXT5vnV5TbMW1L5_EfLDpTHwze1a6DHWOxNttYnT_TRvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACO%2BPSO%2BA%3A+A+bi-layer+hybrid+algorithm+for+multi-task+path+planning+of+an+AUV&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Sui%2C+Fuli&rft.au=Tang%2C+Xiaoke&rft.au=Dong%2C+Zihao&rft.au=Gan%2C+Xingjia&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=175&rft_id=info:doi/10.1016%2Fj.cie.2022.108905&rft.externalDocID=S0360835222008932 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |