Efficient COVID-19 detection using data mining algorithms: a comparison of basic and hybrid approaches

Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 29; no. 3; pp. 1437 - 1451
Main Authors Saidi, Mohammad, Gheibi, Mohammad, Ghazikhani, Adel, Lotfata, Aynaz, Chahkandi, Benyamin, Familsamavati, Sajad, Behzadian, Kourosh
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-025-10538-7

Cover

Abstract Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in diagnosing COVID-19, using blood test results and clinical information to identify the most effective approach. A dataset of 200 records from suspected and infected COVID-19 patients, with 23 characteristics and one diagnostic class, was analysed. Nine data mining algorithms were tested: four basic algorithms (Naive Bayes, Support Vector Machine, Decision Tree, K-Nearest Neighbor) and five hybrid algorithms (Random Forest, AdaBoost, Majority Voting, XGBoost, Bagging). The study also integrated Response Surface Methodology (RSM) and Adaptive-Network-based Fuzzy Inference System (ANFIS) to enhance model performance. The Bagging algorithm demonstrated superior performance with an accuracy of 88%, sensitivity of 74%, and F-criterion of 78%. The integration of RSM and ANFIS further showed that a smart model could be developed for efficient pandemic crisis management, achieving up to 100% accuracy when considering key factors like AST, Albumin, and CRP. The findings suggest that Bagging and hybrid data mining algorithms can significantly improve COVID-19 detection, reducing time and errors in identifying exposed individuals. The study highlights the potential of combining machine learning techniques with RSM-ANFIS models for effective pandemic management and decision-making in medical settings.
AbstractList Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in diagnosing COVID-19, using blood test results and clinical information to identify the most effective approach. A dataset of 200 records from suspected and infected COVID-19 patients, with 23 characteristics and one diagnostic class, was analysed. Nine data mining algorithms were tested: four basic algorithms (Naive Bayes, Support Vector Machine, Decision Tree, K-Nearest Neighbor) and five hybrid algorithms (Random Forest, AdaBoost, Majority Voting, XGBoost, Bagging). The study also integrated Response Surface Methodology (RSM) and Adaptive-Network-based Fuzzy Inference System (ANFIS) to enhance model performance. The Bagging algorithm demonstrated superior performance with an accuracy of 88%, sensitivity of 74%, and F-criterion of 78%. The integration of RSM and ANFIS further showed that a smart model could be developed for efficient pandemic crisis management, achieving up to 100% accuracy when considering key factors like AST, Albumin, and CRP. The findings suggest that Bagging and hybrid data mining algorithms can significantly improve COVID-19 detection, reducing time and errors in identifying exposed individuals. The study highlights the potential of combining machine learning techniques with RSM-ANFIS models for effective pandemic management and decision-making in medical settings.
Author Chahkandi, Benyamin
Lotfata, Aynaz
Saidi, Mohammad
Familsamavati, Sajad
Behzadian, Kourosh
Gheibi, Mohammad
Ghazikhani, Adel
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Saidi
  fullname: Saidi, Mohammad
– sequence: 2
  givenname: Mohammad
  surname: Gheibi
  fullname: Gheibi, Mohammad
– sequence: 3
  givenname: Adel
  surname: Ghazikhani
  fullname: Ghazikhani, Adel
– sequence: 4
  givenname: Aynaz
  surname: Lotfata
  fullname: Lotfata, Aynaz
– sequence: 5
  givenname: Benyamin
  surname: Chahkandi
  fullname: Chahkandi, Benyamin
– sequence: 6
  givenname: Sajad
  surname: Familsamavati
  fullname: Familsamavati, Sajad
– sequence: 7
  givenname: Kourosh
  orcidid: 0000-0002-1459-8408
  surname: Behzadian
  fullname: Behzadian, Kourosh
BookMark eNotkMFPwyAchYmZiXP6D3gi8YxCf22h3sycumTJLuqVAIWNZYUK3WH_vd3m6b3Dl_eS7xZNQgwWoQdGnxil_DlTWlFKaFERRisQhF-hKSsBCC95Mzn3gvC6hBt0m_OO0oLxCqbILZzzxtsw4Pn6Z_lGWINbO1gz-BjwIfuwwa0aFO58OHW138Tkh22XX7DCJna9Sj6PaHRYq-wNVqHF26NOvsWq71NUZmvzHbp2ap_t_X_O0Pf74mv-SVbrj-X8dUUMK9lAQDccKFW2ZYpRACWEKFvLrBagdWOccdbU0IA2vB1h14CwtW4qU9q6UAJm6PGyOx7_Hmwe5C4eUhgvJTBeUMYFL0equFAmxZyTdbJPvlPpKBmVJ5_y4lOOPuXZp-TwB6FSapE
Cites_doi 10.1109/i-Society.2014.7009056
10.1109/TSMCC.2011.2161285
10.1038/nmeth.3945
10.3390/s22062224
10.1007/s42979-020-00216-w
10.1016/j.engappai.2022.105315
10.1093/ndt/14.suppl_6.3
10.1109/ICSMC.2005.1571498
10.2174/1875036201811010117
10.1016/j.chaos.2020.110495
10.3233/IDA-1997-1302
10.1007/978-3-319-90512-9_4
10.1038/s41598-021-90265-9
10.1002/bio.4449
10.1101/2020.05.22.20109942
10.1016/j.rineng.2022.100363
10.1016/S0167-739X(97)00015-0
10.1038/s41598-023-31416-y
10.1109/ICECA.2018.8474918
10.2139/ssrn.4280274
10.1016/j.cmpb.2021.105996
10.1007/s10044-021-00984-y
10.1370/afm.1484
10.1016/B978-0-12-824536-1.00008-3
10.1016/j.imu.2020.100449
10.1016/j.ecolind.2023.110457
10.1007/s00330-021-07715-1
10.1007/s11356-020-10133-3
10.1186/1475-9276-11-51
10.1016/j.procs.2015.12.145
10.1186/s40537-014-0007-7
10.1109/IntelliSys.2017.8324330
10.1007/s00330-020-07044-9
10.1109/ICEngTechnol.2014.7016799
10.1016/j.imu.2021.100825
10.1016/j.ijdrr.2022.103470
10.1016/j.eswa.2007.04.015
10.1097/MLR.0b013e31817a835d
10.2196/25884
10.1101/2020.05.16.20104182
10.33480/pilar.v16i1.1293
10.1016/j.ejrad.2020.109402
10.1016/j.eswa.2020.113981
10.1007/978-3-319-10247-4
10.1515/cclm-2020-1294
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00500-025-10538-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-7479
EndPage 1451
ExternalDocumentID 10_1007_s00500_025_10538_7
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
JQ2
ID FETCH-LOGICAL-c141t-3b97300aed1a1033a8884de1eb83bb9cfcfec6393bc7d3b9f938e6b95c4e62a83
ISSN 1432-7643
IngestDate Fri Jul 25 09:46:45 EDT 2025
Wed Oct 01 06:46:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c141t-3b97300aed1a1033a8884de1eb83bb9cfcfec6393bc7d3b9f938e6b95c4e62a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1459-8408
PQID 3172017874
PQPubID 2043697
PageCount 15
ParticipantIDs proquest_journals_3172017874
crossref_primary_10_1007_s00500_025_10538_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-00
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Soft computing (Berlin, Germany)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Aktar (10538_CR2) 2021; 9
10538_CR7
10538_CR8
10538_CR9
10538_CR5
M AlJame (10538_CR3) 2020; 21
J Lever (10538_CR32) 2016; 13
M Galar (10538_CR19) 2011; 42
X Wu (10538_CR55) 2020; 128
F Cabitza (10538_CR13) 2021; 59
10538_CR29
OO Abayomi-Alli (10538_CR1) 2022; 22
RJ Urbanowicz (10538_CR59) 2018
ZA Varzaneh (10538_CR50) 2022; 28
B Sahu (10538_CR45) 2018; 11
MM Najafabadi (10538_CR37) 2015; 2
M Arab (10538_CR6) 2022; 115
V Chaurasia (10538_CR14) 2013; 1
A AlMoammar (10538_CR4) 2018
KK Sodhi (10538_CR49) 2022; 3
P Podder (10538_CR44) 2021
YA Nanehkaran (10538_CR39) 2023; 13
A Muhammad Malik (10538_CR36) 2012; 11
SS Nikam (10538_CR42) 2015; 8
N Jothi (10538_CR25) 2015; 72
S Wang (10538_CR53) 2021; 31
FM Jalali (10538_CR23) 2023; 33
E Hussain (10538_CR22) 2021; 142
M Kukar (10538_CR28) 2021; 11
A Narin (10538_CR40) 2021; 24
JH Eom (10538_CR17) 2008; 34
RA Kurian (10538_CR30) 2018; 3
W Wiguna (10538_CR54) 2020; 16
10538_CR43
J Kalezhi (10538_CR26) 2022; 13
10538_CR46
M Nakhaei (10538_CR38) 2023; 153
10538_CR47
LS Wallace (10538_CR52) 2013; 11
PA GurjotKour (10538_CR21) 2022; 13
AMUD Khanday (10538_CR27) 2020; 12
Q Ni (10538_CR41) 2020; 30
D Javor (10538_CR24) 2020; 133
F Li (10538_CR33) 2023; 38
S Sharma (10538_CR48) 2020; 27
LJ Muhammad (10538_CR35) 2020; 1
10538_CR16
U Fayyad (10538_CR18) 1997; 13
O Zabihi (10538_CR58) 2023; 84
Ş Yaşar (10538_CR57) 2021; 202
S Visa (10538_CR51) 2011; 710
N Lameire (10538_CR31) 1999; 14
AJ Wyner (10538_CR56) 2017; 18
N Maleki (10538_CR34) 2021; 164
10538_CR11
10538_CR10
10538_CR12
S García (10538_CR20) 2015
M Dash (10538_CR15) 1997; 1
References_xml – ident: 10538_CR12
– ident: 10538_CR11
  doi: 10.1109/i-Society.2014.7009056
– volume: 1
  start-page: 208
  year: 2013
  ident: 10538_CR14
  publication-title: Carib J Sci Techno
– volume: 42
  start-page: 463
  issue: 4
  year: 2011
  ident: 10538_CR19
  publication-title: IEEE Trans Syst, Man, Cybern, Part C
  doi: 10.1109/TSMCC.2011.2161285
– volume: 13
  start-page: 603
  issue: 8
  year: 2016
  ident: 10538_CR32
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3945
– volume: 22
  start-page: 2224
  issue: 6
  year: 2022
  ident: 10538_CR1
  publication-title: Sensors
  doi: 10.3390/s22062224
– volume: 1
  start-page: 1
  issue: 4
  year: 2020
  ident: 10538_CR35
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-020-00216-w
– volume: 115
  year: 2022
  ident: 10538_CR6
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105315
– volume: 14
  start-page: 3
  issue: suppl_6
  year: 1999
  ident: 10538_CR31
  publication-title: Nephrol Dial Transpl
  doi: 10.1093/ndt/14.suppl_6.3
– ident: 10538_CR43
  doi: 10.1109/ICSMC.2005.1571498
– volume: 11
  start-page: 117
  issue: 1
  year: 2018
  ident: 10538_CR45
  publication-title: Open Bioinform J
  doi: 10.2174/1875036201811010117
– start-page: 1070
  volume-title: In Proceedings of SAI Intelligent Systems
  year: 2018
  ident: 10538_CR4
– volume: 142
  year: 2021
  ident: 10538_CR22
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110495
– volume: 1
  start-page: 131
  issue: 1–4
  year: 1997
  ident: 10538_CR15
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-1997-1302
– volume: 710
  start-page: 120
  issue: 1
  year: 2011
  ident: 10538_CR51
  publication-title: MAICS
– start-page: 55
  volume-title: Genetic programming theory and practice XV
  year: 2018
  ident: 10538_CR59
  doi: 10.1007/978-3-319-90512-9_4
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10538_CR28
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90265-9
– volume: 38
  start-page: 302
  issue: 3
  year: 2023
  ident: 10538_CR33
  publication-title: Luminescence
  doi: 10.1002/bio.4449
– ident: 10538_CR8
  doi: 10.1101/2020.05.22.20109942
– volume: 8
  start-page: 13
  issue: 1
  year: 2015
  ident: 10538_CR42
  publication-title: Orient J Comput Sci Technol
– volume: 13
  year: 2022
  ident: 10538_CR26
  publication-title: Result Eng
  doi: 10.1016/j.rineng.2022.100363
– volume: 13
  start-page: 99
  issue: 2–3
  year: 1997
  ident: 10538_CR18
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/S0167-739X(97)00015-0
– volume: 3
  year: 2022
  ident: 10538_CR49
  publication-title: Total Environ Res Themes
– volume: 13
  start-page: 4126
  issue: 1
  year: 2023
  ident: 10538_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-31416-y
– ident: 10538_CR47
  doi: 10.1109/ICECA.2018.8474918
– ident: 10538_CR46
  doi: 10.2139/ssrn.4280274
– volume: 202
  year: 2021
  ident: 10538_CR57
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.105996
– volume: 24
  start-page: 1207
  issue: 3
  year: 2021
  ident: 10538_CR40
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-021-00984-y
– volume: 11
  start-page: 84
  issue: 1
  year: 2013
  ident: 10538_CR52
  publication-title: Annals Fam Med
  doi: 10.1370/afm.1484
– ident: 10538_CR10
– volume: 12
  start-page: 731
  issue: 3
  year: 2020
  ident: 10538_CR27
  publication-title: Int J Inf Technol
– start-page: 175
  volume-title: Data science for COVID-19
  year: 2021
  ident: 10538_CR44
  doi: 10.1016/B978-0-12-824536-1.00008-3
– volume: 21
  year: 2020
  ident: 10538_CR3
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100449
– volume: 153
  year: 2023
  ident: 10538_CR38
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2023.110457
– volume: 31
  start-page: 6096
  issue: 8
  year: 2021
  ident: 10538_CR53
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07715-1
– volume: 27
  start-page: 37155
  issue: 29
  year: 2020
  ident: 10538_CR48
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10133-3
– volume: 11
  start-page: 1
  issue: 1
  year: 2012
  ident: 10538_CR36
  publication-title: Int J Equity Health
  doi: 10.1186/1475-9276-11-51
– volume: 72
  start-page: 306
  year: 2015
  ident: 10538_CR25
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2015.12.145
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10538_CR37
  publication-title: J Big Data
  doi: 10.1186/s40537-014-0007-7
– ident: 10538_CR7
– ident: 10538_CR29
  doi: 10.1109/IntelliSys.2017.8324330
– volume: 30
  start-page: 6517
  issue: 12
  year: 2020
  ident: 10538_CR41
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07044-9
– ident: 10538_CR16
  doi: 10.1109/ICEngTechnol.2014.7016799
– volume: 128
  year: 2020
  ident: 10538_CR55
  publication-title: Eur J Radiol
– volume: 28
  year: 2022
  ident: 10538_CR50
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2021.100825
– volume: 84
  year: 2023
  ident: 10538_CR58
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2022.103470
– volume: 3
  start-page: 25
  issue: 6
  year: 2018
  ident: 10538_CR30
  publication-title: Int J Sci Res Comput Sci
– volume: 34
  start-page: 2465
  issue: 4
  year: 2008
  ident: 10538_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.04.015
– ident: 10538_CR5
  doi: 10.1097/MLR.0b013e31817a835d
– volume: 18
  start-page: 1558
  issue: 1
  year: 2017
  ident: 10538_CR56
  publication-title: J Mach Learn Res
– volume: 9
  issue: 4
  year: 2021
  ident: 10538_CR2
  publication-title: JMIR Med Inform
  doi: 10.2196/25884
– volume: 33
  year: 2023
  ident: 10538_CR23
  publication-title: Sustain Chem Pharm
– ident: 10538_CR9
  doi: 10.1101/2020.05.16.20104182
– volume: 16
  start-page: 71
  issue: 1
  year: 2020
  ident: 10538_CR54
  publication-title: J Pilar Nusa Mandiri
  doi: 10.33480/pilar.v16i1.1293
– volume: 133
  year: 2020
  ident: 10538_CR24
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109402
– volume: 164
  year: 2021
  ident: 10538_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113981
– volume-title: Data preprocessing in data mining
  year: 2015
  ident: 10538_CR20
  doi: 10.1007/978-3-319-10247-4
– volume: 13
  start-page: 171
  issue: 2
  year: 2022
  ident: 10538_CR21
  publication-title: Turk J Comput Math Edu (TURCOMAT)
– volume: 59
  start-page: 421
  issue: 2
  year: 2021
  ident: 10538_CR13
  publication-title: Clin Chem Lab Med (CCLM)
  doi: 10.1515/cclm-2020-1294
SSID ssj0021753
Score 2.3958642
Snippet Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1437
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bagging
Blood
Coronaviruses
COVID-19
Data mining
Decision trees
Error analysis
Error reduction
Machine learning
Middle East respiratory syndrome
Response surface methodology
Support vector machines
Title Efficient COVID-19 detection using data mining algorithms: a comparison of basic and hybrid approaches
URI https://www.proquest.com/docview/3172017874
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu3DhGzE2kA-IS-QpidN8cNtGq4FGd2lRb5btOGyItftID-Ov5z1_JBlMCLhEles2it8v78v-vUfIWwNBMtgBxfI6SVlWqpjJCt5HpbkqYq1j1eCO7udZfrTIPi3HywHjGtklrdrTP-7klfyPVGEM5Ios2X-QbPenMACfQb5wBQnD9a9kPLH1H3A3__Dky8cPLKmi2rTGdf_e2CwAngCNzm0XiEh-_7q-OmtPz68dxVkPexBGYM987dbTG6RxdeXG_SnDb4HP27T2l5vWZxlcxSyXYEcKwk3ILvhkQjoO549_SSbiSWncv-jILlY3Zhyc8dxVVdozYYwziEiqoUL1NzkbxttWO8LsYmBpsUnwnVrcHdzAhuxIe0-xVCrq5aK3WWGffnYipovjYzGfLOfvLi4ZdhPDXXffWuU-2UpB28cjsrU_PTiYdaG4r0_aPZKnU1lS5W-3ve2y3LbY1g2ZPyYPffxA9x0YnpB7ZvWUPAq9OahX1c9I02GDBmzQDhvUYoMiNqjDBu2x8Z5K2iODrhtqkUEBGdQhg_bIeE4W08n88Ij5nhpMJ1nSMq4q7FAgTZ3IJOZclmWZ1SYxquRKVbrRjdHgtXKlixomNxUvTa6qsc5MnsqSvyCj1XplXhIKka5J01rlMk_B6TaVbBRiKkvrJomN3iZRWDZx4UqniK5Itl1kAbOFXWRRbJPdsLLCv2LXApxbcFDBpmSv_vz1DnnQw3mXjNqrjXkN3mKr3njR_wTHI2lN
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+COVID-19+detection+using+data+mining+algorithms%3A+a+comparison+of+basic+and+hybrid+approaches&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=3&rft.spage=1437&rft.epage=1451&rft_id=info:doi/10.1007%2Fs00500-025-10538-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon