Efficient COVID-19 detection using data mining algorithms: a comparison of basic and hybrid approaches
Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 29; no. 3; pp. 1437 - 1451 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Springer Nature B.V
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-025-10538-7 |
Cover
| Abstract | Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in diagnosing COVID-19, using blood test results and clinical information to identify the most effective approach. A dataset of 200 records from suspected and infected COVID-19 patients, with 23 characteristics and one diagnostic class, was analysed. Nine data mining algorithms were tested: four basic algorithms (Naive Bayes, Support Vector Machine, Decision Tree, K-Nearest Neighbor) and five hybrid algorithms (Random Forest, AdaBoost, Majority Voting, XGBoost, Bagging). The study also integrated Response Surface Methodology (RSM) and Adaptive-Network-based Fuzzy Inference System (ANFIS) to enhance model performance. The Bagging algorithm demonstrated superior performance with an accuracy of 88%, sensitivity of 74%, and F-criterion of 78%. The integration of RSM and ANFIS further showed that a smart model could be developed for efficient pandemic crisis management, achieving up to 100% accuracy when considering key factors like AST, Albumin, and CRP. The findings suggest that Bagging and hybrid data mining algorithms can significantly improve COVID-19 detection, reducing time and errors in identifying exposed individuals. The study highlights the potential of combining machine learning techniques with RSM-ANFIS models for effective pandemic management and decision-making in medical settings. |
|---|---|
| AbstractList | Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest scans, which can be time-consuming and error-prone. This study aims to compare the performance of basic and hybrid data mining algorithms in diagnosing COVID-19, using blood test results and clinical information to identify the most effective approach. A dataset of 200 records from suspected and infected COVID-19 patients, with 23 characteristics and one diagnostic class, was analysed. Nine data mining algorithms were tested: four basic algorithms (Naive Bayes, Support Vector Machine, Decision Tree, K-Nearest Neighbor) and five hybrid algorithms (Random Forest, AdaBoost, Majority Voting, XGBoost, Bagging). The study also integrated Response Surface Methodology (RSM) and Adaptive-Network-based Fuzzy Inference System (ANFIS) to enhance model performance. The Bagging algorithm demonstrated superior performance with an accuracy of 88%, sensitivity of 74%, and F-criterion of 78%. The integration of RSM and ANFIS further showed that a smart model could be developed for efficient pandemic crisis management, achieving up to 100% accuracy when considering key factors like AST, Albumin, and CRP. The findings suggest that Bagging and hybrid data mining algorithms can significantly improve COVID-19 detection, reducing time and errors in identifying exposed individuals. The study highlights the potential of combining machine learning techniques with RSM-ANFIS models for effective pandemic management and decision-making in medical settings. |
| Author | Chahkandi, Benyamin Lotfata, Aynaz Saidi, Mohammad Familsamavati, Sajad Behzadian, Kourosh Gheibi, Mohammad Ghazikhani, Adel |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Saidi fullname: Saidi, Mohammad – sequence: 2 givenname: Mohammad surname: Gheibi fullname: Gheibi, Mohammad – sequence: 3 givenname: Adel surname: Ghazikhani fullname: Ghazikhani, Adel – sequence: 4 givenname: Aynaz surname: Lotfata fullname: Lotfata, Aynaz – sequence: 5 givenname: Benyamin surname: Chahkandi fullname: Chahkandi, Benyamin – sequence: 6 givenname: Sajad surname: Familsamavati fullname: Familsamavati, Sajad – sequence: 7 givenname: Kourosh orcidid: 0000-0002-1459-8408 surname: Behzadian fullname: Behzadian, Kourosh |
| BookMark | eNotkMFPwyAchYmZiXP6D3gi8YxCf22h3sycumTJLuqVAIWNZYUK3WH_vd3m6b3Dl_eS7xZNQgwWoQdGnxil_DlTWlFKaFERRisQhF-hKSsBCC95Mzn3gvC6hBt0m_OO0oLxCqbILZzzxtsw4Pn6Z_lGWINbO1gz-BjwIfuwwa0aFO58OHW138Tkh22XX7DCJna9Sj6PaHRYq-wNVqHF26NOvsWq71NUZmvzHbp2ap_t_X_O0Pf74mv-SVbrj-X8dUUMK9lAQDccKFW2ZYpRACWEKFvLrBagdWOccdbU0IA2vB1h14CwtW4qU9q6UAJm6PGyOx7_Hmwe5C4eUhgvJTBeUMYFL0equFAmxZyTdbJPvlPpKBmVJ5_y4lOOPuXZp-TwB6FSapE |
| Cites_doi | 10.1109/i-Society.2014.7009056 10.1109/TSMCC.2011.2161285 10.1038/nmeth.3945 10.3390/s22062224 10.1007/s42979-020-00216-w 10.1016/j.engappai.2022.105315 10.1093/ndt/14.suppl_6.3 10.1109/ICSMC.2005.1571498 10.2174/1875036201811010117 10.1016/j.chaos.2020.110495 10.3233/IDA-1997-1302 10.1007/978-3-319-90512-9_4 10.1038/s41598-021-90265-9 10.1002/bio.4449 10.1101/2020.05.22.20109942 10.1016/j.rineng.2022.100363 10.1016/S0167-739X(97)00015-0 10.1038/s41598-023-31416-y 10.1109/ICECA.2018.8474918 10.2139/ssrn.4280274 10.1016/j.cmpb.2021.105996 10.1007/s10044-021-00984-y 10.1370/afm.1484 10.1016/B978-0-12-824536-1.00008-3 10.1016/j.imu.2020.100449 10.1016/j.ecolind.2023.110457 10.1007/s00330-021-07715-1 10.1007/s11356-020-10133-3 10.1186/1475-9276-11-51 10.1016/j.procs.2015.12.145 10.1186/s40537-014-0007-7 10.1109/IntelliSys.2017.8324330 10.1007/s00330-020-07044-9 10.1109/ICEngTechnol.2014.7016799 10.1016/j.imu.2021.100825 10.1016/j.ijdrr.2022.103470 10.1016/j.eswa.2007.04.015 10.1097/MLR.0b013e31817a835d 10.2196/25884 10.1101/2020.05.16.20104182 10.33480/pilar.v16i1.1293 10.1016/j.ejrad.2020.109402 10.1016/j.eswa.2020.113981 10.1007/978-3-319-10247-4 10.1515/cclm-2020-1294 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00500-025-10538-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-7479 |
| EndPage | 1451 |
| ExternalDocumentID | 10_1007_s00500_025_10538_7 |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PHGZM PHGZT PQGLB PT4 PT5 PUEGO QOS R89 R9I RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR JQ2 |
| ID | FETCH-LOGICAL-c141t-3b97300aed1a1033a8884de1eb83bb9cfcfec6393bc7d3b9f938e6b95c4e62a83 |
| ISSN | 1432-7643 |
| IngestDate | Fri Jul 25 09:46:45 EDT 2025 Wed Oct 01 06:46:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c141t-3b97300aed1a1033a8884de1eb83bb9cfcfec6393bc7d3b9f938e6b95c4e62a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1459-8408 |
| PQID | 3172017874 |
| PQPubID | 2043697 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3172017874 crossref_primary_10_1007_s00500_025_10538_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | S Aktar (10538_CR2) 2021; 9 10538_CR7 10538_CR8 10538_CR9 10538_CR5 M AlJame (10538_CR3) 2020; 21 J Lever (10538_CR32) 2016; 13 M Galar (10538_CR19) 2011; 42 X Wu (10538_CR55) 2020; 128 F Cabitza (10538_CR13) 2021; 59 10538_CR29 OO Abayomi-Alli (10538_CR1) 2022; 22 RJ Urbanowicz (10538_CR59) 2018 ZA Varzaneh (10538_CR50) 2022; 28 B Sahu (10538_CR45) 2018; 11 MM Najafabadi (10538_CR37) 2015; 2 M Arab (10538_CR6) 2022; 115 V Chaurasia (10538_CR14) 2013; 1 A AlMoammar (10538_CR4) 2018 KK Sodhi (10538_CR49) 2022; 3 P Podder (10538_CR44) 2021 YA Nanehkaran (10538_CR39) 2023; 13 A Muhammad Malik (10538_CR36) 2012; 11 SS Nikam (10538_CR42) 2015; 8 N Jothi (10538_CR25) 2015; 72 S Wang (10538_CR53) 2021; 31 FM Jalali (10538_CR23) 2023; 33 E Hussain (10538_CR22) 2021; 142 M Kukar (10538_CR28) 2021; 11 A Narin (10538_CR40) 2021; 24 JH Eom (10538_CR17) 2008; 34 RA Kurian (10538_CR30) 2018; 3 W Wiguna (10538_CR54) 2020; 16 10538_CR43 J Kalezhi (10538_CR26) 2022; 13 10538_CR46 M Nakhaei (10538_CR38) 2023; 153 10538_CR47 LS Wallace (10538_CR52) 2013; 11 PA GurjotKour (10538_CR21) 2022; 13 AMUD Khanday (10538_CR27) 2020; 12 Q Ni (10538_CR41) 2020; 30 D Javor (10538_CR24) 2020; 133 F Li (10538_CR33) 2023; 38 S Sharma (10538_CR48) 2020; 27 LJ Muhammad (10538_CR35) 2020; 1 10538_CR16 U Fayyad (10538_CR18) 1997; 13 O Zabihi (10538_CR58) 2023; 84 Ş Yaşar (10538_CR57) 2021; 202 S Visa (10538_CR51) 2011; 710 N Lameire (10538_CR31) 1999; 14 AJ Wyner (10538_CR56) 2017; 18 N Maleki (10538_CR34) 2021; 164 10538_CR11 10538_CR10 10538_CR12 S García (10538_CR20) 2015 M Dash (10538_CR15) 1997; 1 |
| References_xml | – ident: 10538_CR12 – ident: 10538_CR11 doi: 10.1109/i-Society.2014.7009056 – volume: 1 start-page: 208 year: 2013 ident: 10538_CR14 publication-title: Carib J Sci Techno – volume: 42 start-page: 463 issue: 4 year: 2011 ident: 10538_CR19 publication-title: IEEE Trans Syst, Man, Cybern, Part C doi: 10.1109/TSMCC.2011.2161285 – volume: 13 start-page: 603 issue: 8 year: 2016 ident: 10538_CR32 publication-title: Nat Methods doi: 10.1038/nmeth.3945 – volume: 22 start-page: 2224 issue: 6 year: 2022 ident: 10538_CR1 publication-title: Sensors doi: 10.3390/s22062224 – volume: 1 start-page: 1 issue: 4 year: 2020 ident: 10538_CR35 publication-title: SN Comput Sci doi: 10.1007/s42979-020-00216-w – volume: 115 year: 2022 ident: 10538_CR6 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105315 – volume: 14 start-page: 3 issue: suppl_6 year: 1999 ident: 10538_CR31 publication-title: Nephrol Dial Transpl doi: 10.1093/ndt/14.suppl_6.3 – ident: 10538_CR43 doi: 10.1109/ICSMC.2005.1571498 – volume: 11 start-page: 117 issue: 1 year: 2018 ident: 10538_CR45 publication-title: Open Bioinform J doi: 10.2174/1875036201811010117 – start-page: 1070 volume-title: In Proceedings of SAI Intelligent Systems year: 2018 ident: 10538_CR4 – volume: 142 year: 2021 ident: 10538_CR22 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110495 – volume: 1 start-page: 131 issue: 1–4 year: 1997 ident: 10538_CR15 publication-title: Intell Data Anal doi: 10.3233/IDA-1997-1302 – volume: 710 start-page: 120 issue: 1 year: 2011 ident: 10538_CR51 publication-title: MAICS – start-page: 55 volume-title: Genetic programming theory and practice XV year: 2018 ident: 10538_CR59 doi: 10.1007/978-3-319-90512-9_4 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10538_CR28 publication-title: Sci Rep doi: 10.1038/s41598-021-90265-9 – volume: 38 start-page: 302 issue: 3 year: 2023 ident: 10538_CR33 publication-title: Luminescence doi: 10.1002/bio.4449 – ident: 10538_CR8 doi: 10.1101/2020.05.22.20109942 – volume: 8 start-page: 13 issue: 1 year: 2015 ident: 10538_CR42 publication-title: Orient J Comput Sci Technol – volume: 13 year: 2022 ident: 10538_CR26 publication-title: Result Eng doi: 10.1016/j.rineng.2022.100363 – volume: 13 start-page: 99 issue: 2–3 year: 1997 ident: 10538_CR18 publication-title: Futur Gener Comput Syst doi: 10.1016/S0167-739X(97)00015-0 – volume: 3 year: 2022 ident: 10538_CR49 publication-title: Total Environ Res Themes – volume: 13 start-page: 4126 issue: 1 year: 2023 ident: 10538_CR39 publication-title: Sci Rep doi: 10.1038/s41598-023-31416-y – ident: 10538_CR47 doi: 10.1109/ICECA.2018.8474918 – ident: 10538_CR46 doi: 10.2139/ssrn.4280274 – volume: 202 year: 2021 ident: 10538_CR57 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.105996 – volume: 24 start-page: 1207 issue: 3 year: 2021 ident: 10538_CR40 publication-title: Pattern Anal Appl doi: 10.1007/s10044-021-00984-y – volume: 11 start-page: 84 issue: 1 year: 2013 ident: 10538_CR52 publication-title: Annals Fam Med doi: 10.1370/afm.1484 – ident: 10538_CR10 – volume: 12 start-page: 731 issue: 3 year: 2020 ident: 10538_CR27 publication-title: Int J Inf Technol – start-page: 175 volume-title: Data science for COVID-19 year: 2021 ident: 10538_CR44 doi: 10.1016/B978-0-12-824536-1.00008-3 – volume: 21 year: 2020 ident: 10538_CR3 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100449 – volume: 153 year: 2023 ident: 10538_CR38 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2023.110457 – volume: 31 start-page: 6096 issue: 8 year: 2021 ident: 10538_CR53 publication-title: Eur Radiol doi: 10.1007/s00330-021-07715-1 – volume: 27 start-page: 37155 issue: 29 year: 2020 ident: 10538_CR48 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-10133-3 – volume: 11 start-page: 1 issue: 1 year: 2012 ident: 10538_CR36 publication-title: Int J Equity Health doi: 10.1186/1475-9276-11-51 – volume: 72 start-page: 306 year: 2015 ident: 10538_CR25 publication-title: Proced Comput Sci doi: 10.1016/j.procs.2015.12.145 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10538_CR37 publication-title: J Big Data doi: 10.1186/s40537-014-0007-7 – ident: 10538_CR7 – ident: 10538_CR29 doi: 10.1109/IntelliSys.2017.8324330 – volume: 30 start-page: 6517 issue: 12 year: 2020 ident: 10538_CR41 publication-title: Eur Radiol doi: 10.1007/s00330-020-07044-9 – ident: 10538_CR16 doi: 10.1109/ICEngTechnol.2014.7016799 – volume: 128 year: 2020 ident: 10538_CR55 publication-title: Eur J Radiol – volume: 28 year: 2022 ident: 10538_CR50 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2021.100825 – volume: 84 year: 2023 ident: 10538_CR58 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2022.103470 – volume: 3 start-page: 25 issue: 6 year: 2018 ident: 10538_CR30 publication-title: Int J Sci Res Comput Sci – volume: 34 start-page: 2465 issue: 4 year: 2008 ident: 10538_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.04.015 – ident: 10538_CR5 doi: 10.1097/MLR.0b013e31817a835d – volume: 18 start-page: 1558 issue: 1 year: 2017 ident: 10538_CR56 publication-title: J Mach Learn Res – volume: 9 issue: 4 year: 2021 ident: 10538_CR2 publication-title: JMIR Med Inform doi: 10.2196/25884 – volume: 33 year: 2023 ident: 10538_CR23 publication-title: Sustain Chem Pharm – ident: 10538_CR9 doi: 10.1101/2020.05.16.20104182 – volume: 16 start-page: 71 issue: 1 year: 2020 ident: 10538_CR54 publication-title: J Pilar Nusa Mandiri doi: 10.33480/pilar.v16i1.1293 – volume: 133 year: 2020 ident: 10538_CR24 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109402 – volume: 164 year: 2021 ident: 10538_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113981 – volume-title: Data preprocessing in data mining year: 2015 ident: 10538_CR20 doi: 10.1007/978-3-319-10247-4 – volume: 13 start-page: 171 issue: 2 year: 2022 ident: 10538_CR21 publication-title: Turk J Comput Math Edu (TURCOMAT) – volume: 59 start-page: 421 issue: 2 year: 2021 ident: 10538_CR13 publication-title: Clin Chem Lab Med (CCLM) doi: 10.1515/cclm-2020-1294 |
| SSID | ssj0021753 |
| Score | 2.3958642 |
| Snippet | Accurate and efficient diagnosis of COVID-19 remains a significant challenge due to the limitations of current detection methods, such as blood tests and chest... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1437 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bagging Blood Coronaviruses COVID-19 Data mining Decision trees Error analysis Error reduction Machine learning Middle East respiratory syndrome Response surface methodology Support vector machines |
| Title | Efficient COVID-19 detection using data mining algorithms: a comparison of basic and hybrid approaches |
| URI | https://www.proquest.com/docview/3172017874 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu3DhGzE2kA-IS-QpidN8cNtGq4FGd2lRb5btOGyItftID-Ov5z1_JBlMCLhEles2it8v78v-vUfIWwNBMtgBxfI6SVlWqpjJCt5HpbkqYq1j1eCO7udZfrTIPi3HywHjGtklrdrTP-7klfyPVGEM5Ios2X-QbPenMACfQb5wBQnD9a9kPLH1H3A3__Dky8cPLKmi2rTGdf_e2CwAngCNzm0XiEh-_7q-OmtPz68dxVkPexBGYM987dbTG6RxdeXG_SnDb4HP27T2l5vWZxlcxSyXYEcKwk3ILvhkQjoO549_SSbiSWncv-jILlY3Zhyc8dxVVdozYYwziEiqoUL1NzkbxttWO8LsYmBpsUnwnVrcHdzAhuxIe0-xVCrq5aK3WWGffnYipovjYzGfLOfvLi4ZdhPDXXffWuU-2UpB28cjsrU_PTiYdaG4r0_aPZKnU1lS5W-3ve2y3LbY1g2ZPyYPffxA9x0YnpB7ZvWUPAq9OahX1c9I02GDBmzQDhvUYoMiNqjDBu2x8Z5K2iODrhtqkUEBGdQhg_bIeE4W08n88Ij5nhpMJ1nSMq4q7FAgTZ3IJOZclmWZ1SYxquRKVbrRjdHgtXKlixomNxUvTa6qsc5MnsqSvyCj1XplXhIKka5J01rlMk_B6TaVbBRiKkvrJomN3iZRWDZx4UqniK5Itl1kAbOFXWRRbJPdsLLCv2LXApxbcFDBpmSv_vz1DnnQw3mXjNqrjXkN3mKr3njR_wTHI2lN |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+COVID-19+detection+using+data+mining+algorithms%3A+a+comparison+of+basic+and+hybrid+approaches&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=3&rft.spage=1437&rft.epage=1451&rft_id=info:doi/10.1007%2Fs00500-025-10538-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |