Analysis the efficiency of object detection in images using machine learning libraries in Python

The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Fa...

Full description

Saved in:
Bibliographic Details
Published inJournal of Computer Sciences Institute Vol. 35; pp. 202 - 208
Main Authors Patryk Kalita, Miłosz, Marek
Format Journal Article
LanguageEnglish
Published Lublin University of Technology 30.06.2025
Subjects
Online AccessGet full text
ISSN2544-0764
2544-0764
DOI10.35784/jcsi.7303

Cover

Abstract The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Faster R-CNN. The experiment was conducted on the Pascal VOC dataset to evaluate the effectiveness and performance of the models. The results include a comparison of metrics such as recall, precision and mAP which allows to choose the best solutions depending on the situation. The article concludes with a summary and final conclusions, allowing practical recommendations to be made for those working on object detection projects.
AbstractList The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Faster R-CNN. The experiment was conducted on the Pascal VOC dataset to evaluate the effectiveness and performance of the models. The results include a comparison of metrics such as recall, precision and mAP which allows to choose the best solutions depending on the situation. The article concludes with a summary and final conclusions, allowing practical recommendations to be made for those working on object detection projects.
Author Miłosz, Marek
Patryk Kalita
Author_xml – sequence: 1
  surname: Patryk Kalita
  fullname: Patryk Kalita
– sequence: 2
  givenname: Marek
  orcidid: 0000-0002-5898-815X
  surname: Miłosz
  fullname: Miłosz, Marek
BookMark eNpNkEtLAzEUhYNUsNZu_AVZC1PzmMljWYqPgqALXcdMHm3KNJFkXMy_d6YVES6cy-Xwce65BrOYogPgFqMVbbio7w-mhBWniF6AOWnqukKc1bN_-xVYlnJACBHBmwaJOfhcR90NJRTY7x103gcTXDQDTB6m9uBMD63rRwkpwjDOUe9cgd8lxB08arMP0cHO6RynQxfarHMYDaP1bej3Kd6AS6-74pa_ugAfjw_vm-fq5fVpu1m_VAZTTitGZENaiQQzxLRWWM6Y49hQLbFpJOJEWmyxs55pa4VBBmGMPEXj35ZjQhdge-bapA_qK49B86CSDup0SHmndO6D6ZySBFHPjKRSmJpYL2pPsaasmRK0QoysuzPL5FRKdv6Ph5E6Va2mqtVUNf0BNt5zKA
Cites_doi 10.1007/978-3-319-46448-0_2
10.1109/CVPR.2016.90
10.1109/CVPR.2017.351
10.3390/s23052589
10.1007/978-3-030-30465-2_11
10.1109/TPAMI.2016.2577031
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35784/jcsi.7303
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2544-0764
EndPage 208
ExternalDocumentID oai_doaj_org_article_9203f6c9398c42df84f31a36552b9b88
10_35784_jcsi_7303
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
M~E
Y2W
ID FETCH-LOGICAL-c1373-62952b9086c2cbd8d766e71c3a91c590729d1d1edf6add8c0c0110f30784d7123
IEDL.DBID DOA
ISSN 2544-0764
IngestDate Wed Aug 27 01:27:29 EDT 2025
Thu Aug 07 15:32:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1373-62952b9086c2cbd8d766e71c3a91c590729d1d1edf6add8c0c0110f30784d7123
ORCID 0000-0002-5898-815X
0009-0005-4140-265X
OpenAccessLink https://doaj.org/article/9203f6c9398c42df84f31a36552b9b88
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_9203f6c9398c42df84f31a36552b9b88
crossref_primary_10_35784_jcsi_7303
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of Computer Sciences Institute
PublicationYear 2025
Publisher Lublin University of Technology
Publisher_xml – name: Lublin University of Technology
References 144443
144444
144441
144442
144436
144437
144435
144438
144439
144440
References_xml – ident: 144436
– ident: 144437
– ident: 144438
  doi: 10.1007/978-3-319-46448-0_2
– ident: 144443
  doi: 10.1109/CVPR.2016.90
– ident: 144441
  doi: 10.1109/CVPR.2017.351
– ident: 144444
  doi: 10.3390/s23052589
– ident: 144439
  doi: 10.1007/978-3-030-30465-2_11
– ident: 144440
  doi: 10.1109/TPAMI.2016.2577031
– ident: 144435
– ident: 144442
SSID ssj0002875508
Score 2.2954605
Snippet The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 202
SubjectTerms machine learning
object detection
python
Title Analysis the efficiency of object detection in images using machine learning libraries in Python
URI https://doaj.org/article/9203f6c9398c42df84f31a36552b9b88
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skxe_xfpFQK9rd5PsbnJUsRRB8WCht3UzSUoLbcXWg__emexW6smLkNMSlt2ZJG8mzLzH2LWztcBABLMTxI5ElS5NLCib2LQmdHAKgBqcn56LwVA9jvLRhtQX1YQ19MCN4XpGpDIUYKTRoIQLWgWZ1bLIc2GN1bHNNzXpRjI1jVdGJYbeuuEjJUIX1ZvCcnKD61n-QqANov6IKP09ttOGgvy2-YR9tuXnB2x3LbPA2113yN7WxCEcgzXuI-cDNUzyReALS_co3PlVLKma8wmOGZ4RS04V7WM-i8WSnrfqEGP-kx_T1Jcvog44YsP-w-v9IGmFERLIZCmTQhj6e8xGQIB12pVF4csMZG0yyA2RgbvMZd6FAo8vDSkQygfczlq5ErHqmHXmi7k_YdzWpQCDo_akuoH5npFOQi5zkDIE3WVXa2NV7w3_RYV5QzRpRSatyKRddkd2_JlBnNXxAXqyaj1Z_eXJ0_94yRnbFqTQGyv6zlln9fHpLzBsWNnLuEK-AcH2wGI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+the+efficiency+of+object+detection+in+images+using+machine+learning+libraries+in+Python&rft.jtitle=Journal+of+Computer+Sciences+Institute&rft.au=Patryk+Kalita&rft.au=Mi%C5%82osz%2C+Marek&rft.date=2025-06-30&rft.issn=2544-0764&rft.eissn=2544-0764&rft.volume=35&rft.spage=202&rft.epage=208&rft_id=info:doi/10.35784%2Fjcsi.7303&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_jcsi_7303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2544-0764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2544-0764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2544-0764&client=summon