Analysis the efficiency of object detection in images using machine learning libraries in Python
The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Fa...
Saved in:
Published in | Journal of Computer Sciences Institute Vol. 35; pp. 202 - 208 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lublin University of Technology
30.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2544-0764 2544-0764 |
DOI | 10.35784/jcsi.7303 |
Cover
Abstract | The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Faster R-CNN. The experiment was conducted on the Pascal VOC dataset to evaluate the effectiveness and performance of the models. The results include a comparison of metrics such as recall, precision and mAP which allows to choose the best solutions depending on the situation. The article concludes with a summary and final conclusions, allowing practical recommendations to be made for those working on object detection projects. |
---|---|
AbstractList | The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Faster R-CNN. The experiment was conducted on the Pascal VOC dataset to evaluate the effectiveness and performance of the models. The results include a comparison of metrics such as recall, precision and mAP which allows to choose the best solutions depending on the situation. The article concludes with a summary and final conclusions, allowing practical recommendations to be made for those working on object detection projects. |
Author | Miłosz, Marek Patryk Kalita |
Author_xml | – sequence: 1 surname: Patryk Kalita fullname: Patryk Kalita – sequence: 2 givenname: Marek orcidid: 0000-0002-5898-815X surname: Miłosz fullname: Miłosz, Marek |
BookMark | eNpNkEtLAzEUhYNUsNZu_AVZC1PzmMljWYqPgqALXcdMHm3KNJFkXMy_d6YVES6cy-Xwce65BrOYogPgFqMVbbio7w-mhBWniF6AOWnqukKc1bN_-xVYlnJACBHBmwaJOfhcR90NJRTY7x103gcTXDQDTB6m9uBMD63rRwkpwjDOUe9cgd8lxB08arMP0cHO6RynQxfarHMYDaP1bej3Kd6AS6-74pa_ugAfjw_vm-fq5fVpu1m_VAZTTitGZENaiQQzxLRWWM6Y49hQLbFpJOJEWmyxs55pa4VBBmGMPEXj35ZjQhdge-bapA_qK49B86CSDup0SHmndO6D6ZySBFHPjKRSmJpYL2pPsaasmRK0QoysuzPL5FRKdv6Ph5E6Va2mqtVUNf0BNt5zKA |
Cites_doi | 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2016.90 10.1109/CVPR.2017.351 10.3390/s23052589 10.1007/978-3-030-30465-2_11 10.1109/TPAMI.2016.2577031 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.35784/jcsi.7303 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2544-0764 |
EndPage | 208 |
ExternalDocumentID | oai_doaj_org_article_9203f6c9398c42df84f31a36552b9b88 10_35784_jcsi_7303 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ M~E Y2W |
ID | FETCH-LOGICAL-c1373-62952b9086c2cbd8d766e71c3a91c590729d1d1edf6add8c0c0110f30784d7123 |
IEDL.DBID | DOA |
ISSN | 2544-0764 |
IngestDate | Wed Aug 27 01:27:29 EDT 2025 Thu Aug 07 15:32:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1373-62952b9086c2cbd8d766e71c3a91c590729d1d1edf6add8c0c0110f30784d7123 |
ORCID | 0000-0002-5898-815X 0009-0005-4140-265X |
OpenAccessLink | https://doaj.org/article/9203f6c9398c42df84f31a36552b9b88 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9203f6c9398c42df84f31a36552b9b88 crossref_primary_10_35784_jcsi_7303 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-30 |
PublicationDateYYYYMMDD | 2025-06-30 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Computer Sciences Institute |
PublicationYear | 2025 |
Publisher | Lublin University of Technology |
Publisher_xml | – name: Lublin University of Technology |
References | 144443 144444 144441 144442 144436 144437 144435 144438 144439 144440 |
References_xml | – ident: 144436 – ident: 144437 – ident: 144438 doi: 10.1007/978-3-319-46448-0_2 – ident: 144443 doi: 10.1109/CVPR.2016.90 – ident: 144441 doi: 10.1109/CVPR.2017.351 – ident: 144444 doi: 10.3390/s23052589 – ident: 144439 doi: 10.1007/978-3-030-30465-2_11 – ident: 144440 doi: 10.1109/TPAMI.2016.2577031 – ident: 144435 – ident: 144442 |
SSID | ssj0002875508 |
Score | 2.2954605 |
Snippet | The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 202 |
SubjectTerms | machine learning object detection python |
Title | Analysis the efficiency of object detection in images using machine learning libraries in Python |
URI | https://doaj.org/article/9203f6c9398c42df84f31a36552b9b88 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skxe_xfpFQK9rd5PsbnJUsRRB8WCht3UzSUoLbcXWg__emexW6smLkNMSlt2ZJG8mzLzH2LWztcBABLMTxI5ElS5NLCib2LQmdHAKgBqcn56LwVA9jvLRhtQX1YQ19MCN4XpGpDIUYKTRoIQLWgWZ1bLIc2GN1bHNNzXpRjI1jVdGJYbeuuEjJUIX1ZvCcnKD61n-QqANov6IKP09ttOGgvy2-YR9tuXnB2x3LbPA2113yN7WxCEcgzXuI-cDNUzyReALS_co3PlVLKma8wmOGZ4RS04V7WM-i8WSnrfqEGP-kx_T1Jcvog44YsP-w-v9IGmFERLIZCmTQhj6e8xGQIB12pVF4csMZG0yyA2RgbvMZd6FAo8vDSkQygfczlq5ErHqmHXmi7k_YdzWpQCDo_akuoH5npFOQi5zkDIE3WVXa2NV7w3_RYV5QzRpRSatyKRddkd2_JlBnNXxAXqyaj1Z_eXJ0_94yRnbFqTQGyv6zlln9fHpLzBsWNnLuEK-AcH2wGI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+the+efficiency+of+object+detection+in+images+using+machine+learning+libraries+in+Python&rft.jtitle=Journal+of+Computer+Sciences+Institute&rft.au=Patryk+Kalita&rft.au=Mi%C5%82osz%2C+Marek&rft.date=2025-06-30&rft.issn=2544-0764&rft.eissn=2544-0764&rft.volume=35&rft.spage=202&rft.epage=208&rft_id=info:doi/10.35784%2Fjcsi.7303&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_jcsi_7303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2544-0764&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2544-0764&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2544-0764&client=summon |