Parameter optimization of AISI 316 austenitic stainless steel for surface roughness by Grasshopper optimization algorithm
This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the...
Saved in:
| Published in | Journal of Mechanical Engineering Automation and Control Systems Vol. 2; no. 2; pp. 87 - 97 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
31.12.2021
|
| Online Access | Get full text |
| ISSN | 2669-2600 2669-1361 2669-1361 |
| DOI | 10.21595/jmeacs.2021.22149 |
Cover
| Abstract | This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the workpiece. The experiment was carried out using the design of experiments (DOE) on a computer numerical control (CNC) lathe. The surface roughness is tested for three conditions i.e. Dry, Wet, and cryogenic conditions after the turning process. Samples are step turned on CNC Lathe for all three conditions with a set of experiments designed. The response surface methodology is implemented, and mathematical models are built for all three conditions. The nature-inspired algorithm is the best way to get the optimal value. For the discussed problem in the paper, nature-inspired techniques are used for obtaining the optimum parameter values to get minimum surface roughness for all set conditions. The Grasshopper optimization algorithm (GOA) is the technique that is the most effective method for real-life applications. In this research, GOA is used to get optimum values for the surface roughness (Ra) at Dry, Wet and cryogenic conditions. Finally, results are compared, and it's observed that the values obtained from GOA are minimum in surface roughness value. |
|---|---|
| AbstractList | This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the workpiece. The experiment was carried out using the design of experiments (DOE) on a computer numerical control (CNC) lathe. The surface roughness is tested for three conditions i.e. Dry, Wet, and cryogenic conditions after the turning process. Samples are step turned on CNC Lathe for all three conditions with a set of experiments designed. The response surface methodology is implemented, and mathematical models are built for all three conditions. The nature-inspired algorithm is the best way to get the optimal value. For the discussed problem in the paper, nature-inspired techniques are used for obtaining the optimum parameter values to get minimum surface roughness for all set conditions. The Grasshopper optimization algorithm (GOA) is the technique that is the most effective method for real-life applications. In this research, GOA is used to get optimum values for the surface roughness (Ra) at Dry, Wet and cryogenic conditions. Finally, results are compared, and it's observed that the values obtained from GOA are minimum in surface roughness value. |
| Author | Kulkarni, Omkar K. Kakandikar, G. M. Jawade, Samidha |
| Author_xml | – sequence: 1 givenname: Samidha surname: Jawade fullname: Jawade, Samidha – sequence: 2 givenname: Omkar K. surname: Kulkarni fullname: Kulkarni, Omkar K. – sequence: 3 givenname: G. M. surname: Kakandikar fullname: Kakandikar, G. M. |
| BookMark | eNqNkE1OwzAQhS0EEqX0Aqx8gRTbiZ14WVVQKlUCCVhHE9dujZI4sh2hcHrSn1UXiNU8aea9mfnu0HXrWo3QAyVzRrnkj1-NBhXmjDA6Z4xm8gpNmBAyoamg12fNBCG3aBaCrUiW5RknRE7Q8AYeGh21x66LtrE_EK1rsTN4sX5f45QKDH2IurXRKhwi2LbWIYxK6xob53HovQGlsXf9bt8eetWAVx5C2LuuuwyGeue8jfvmHt0YqIOenesUfT4_fSxfks3rar1cbBI1Xi8Tk5KMV1RVkjNDttucFpnMBGcFV1QJoJxWXOSFyRUpqoKNE5JCwSoNmrEtpFOUnnL7toPhG-q67LxtwA8lJeURYHkCWB4AlkeAo6s4uZR3IXhtSmXj8YPowdZ_W9mF9R_7fgEKN4zE |
| CitedBy_id | crossref_primary_10_3390_ma15228051 crossref_primary_10_1007_s00170_023_12182_7 crossref_primary_10_21595_jmai_2024_23909 |
| Cites_doi | 10.1504/IJSI.2020.106396 10.1007/s11042-020-10139-6 10.4172/2090-4908.1000165 10.1504/IJBIC.2013.055093 10.1016/j.matpr.2017.07.055 10.1016/j.cirpj.2015.08.004 10.1016/j.triboint.2005.05.005 10.1007/s12046-011-0055-z 10.1007/s42452-020-3167-4 10.1080/17445760.2016.1242728 10.1016/j.advengsoft.2017.01.004 10.4324/9781315156101 10.1016/j.cirp.2012.03.052 10.1016/j.matpr.2015.07.223 10.3390/technologies7030063 10.1002/9781119644552.ch5 10.5267/j.ijiec.2012.04.002 10.1016/j.proeng.2013.09.167 10.1016/j.matpr.2017.12.008 10.17530/jef.15.14.2.2 10.1007/s00521-016-2379-4 10.31142/ijtsrd14185 10.17222/mit.2014.282 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.21595/jmeacs.2021.22149 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2669-1361 |
| EndPage | 97 |
| ExternalDocumentID | 10.21595/jmeacs.2021.22149 10_21595_jmeacs_2021_22149 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1369-f3045b1cb952f0dd71849465285c1c6a151b5678f7c08b82dd791a82beae22da3 |
| IEDL.DBID | UNPAY |
| ISSN | 2669-2600 2669-1361 |
| IngestDate | Tue Aug 19 19:52:55 EDT 2025 Tue Jul 01 01:16:14 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1369-f3045b1cb952f0dd71849465285c1c6a151b5678f7c08b82dd791a82beae22da3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.extrica.com/article/22149/pdf |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_21595_jmeacs_2021_22149 crossref_citationtrail_10_21595_jmeacs_2021_22149 crossref_primary_10_21595_jmeacs_2021_22149 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-31 |
| PublicationDateYYYYMMDD | 2021-12-31 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Mechanical Engineering Automation and Control Systems |
| PublicationYear | 2021 |
| References | key-10.21595/jmeacs.2021.22149-cit19 key-10.21595/jmeacs.2021.22149-cit18 key-10.21595/jmeacs.2021.22149-cit17 key-10.21595/jmeacs.2021.22149-cit16 key-10.21595/jmeacs.2021.22149-cit15 key-10.21595/jmeacs.2021.22149-cit14 key-10.21595/jmeacs.2021.22149-cit13 key-10.21595/jmeacs.2021.22149-cit12 key-10.21595/jmeacs.2021.22149-cit9 key-10.21595/jmeacs.2021.22149-cit11 key-10.21595/jmeacs.2021.22149-cit10 key-10.21595/jmeacs.2021.22149-cit7 key-10.21595/jmeacs.2021.22149-cit8 key-10.21595/jmeacs.2021.22149-cit1 key-10.21595/jmeacs.2021.22149-cit2 key-10.21595/jmeacs.2021.22149-cit5 key-10.21595/jmeacs.2021.22149-cit6 key-10.21595/jmeacs.2021.22149-cit3 key-10.21595/jmeacs.2021.22149-cit4 key-10.21595/jmeacs.2021.22149-cit27 key-10.21595/jmeacs.2021.22149-cit26 key-10.21595/jmeacs.2021.22149-cit25 key-10.21595/jmeacs.2021.22149-cit24 key-10.21595/jmeacs.2021.22149-cit23 key-10.21595/jmeacs.2021.22149-cit22 key-10.21595/jmeacs.2021.22149-cit21 key-10.21595/jmeacs.2021.22149-cit20 |
| References_xml | – ident: key-10.21595/jmeacs.2021.22149-cit16 doi: 10.1504/IJSI.2020.106396 – ident: key-10.21595/jmeacs.2021.22149-cit23 – ident: key-10.21595/jmeacs.2021.22149-cit10 doi: 10.1007/s11042-020-10139-6 – ident: key-10.21595/jmeacs.2021.22149-cit21 doi: 10.4172/2090-4908.1000165 – ident: key-10.21595/jmeacs.2021.22149-cit14 doi: 10.1504/IJBIC.2013.055093 – ident: key-10.21595/jmeacs.2021.22149-cit13 doi: 10.1016/j.matpr.2017.07.055 – ident: key-10.21595/jmeacs.2021.22149-cit24 doi: 10.1016/j.cirpj.2015.08.004 – ident: key-10.21595/jmeacs.2021.22149-cit1 doi: 10.1016/j.triboint.2005.05.005 – ident: key-10.21595/jmeacs.2021.22149-cit7 – ident: key-10.21595/jmeacs.2021.22149-cit3 – ident: key-10.21595/jmeacs.2021.22149-cit4 doi: 10.1007/s12046-011-0055-z – ident: key-10.21595/jmeacs.2021.22149-cit5 doi: 10.1007/s42452-020-3167-4 – ident: key-10.21595/jmeacs.2021.22149-cit18 doi: 10.1080/17445760.2016.1242728 – ident: key-10.21595/jmeacs.2021.22149-cit20 doi: 10.1016/j.advengsoft.2017.01.004 – ident: key-10.21595/jmeacs.2021.22149-cit17 doi: 10.4324/9781315156101 – ident: key-10.21595/jmeacs.2021.22149-cit9 doi: 10.1016/j.cirp.2012.03.052 – ident: key-10.21595/jmeacs.2021.22149-cit11 doi: 10.1016/j.matpr.2015.07.223 – ident: key-10.21595/jmeacs.2021.22149-cit6 doi: 10.3390/technologies7030063 – ident: key-10.21595/jmeacs.2021.22149-cit15 doi: 10.1002/9781119644552.ch5 – ident: key-10.21595/jmeacs.2021.22149-cit2 – ident: key-10.21595/jmeacs.2021.22149-cit8 doi: 10.5267/j.ijiec.2012.04.002 – ident: key-10.21595/jmeacs.2021.22149-cit22 doi: 10.1016/j.proeng.2013.09.167 – ident: key-10.21595/jmeacs.2021.22149-cit12 doi: 10.1016/j.matpr.2017.12.008 – ident: key-10.21595/jmeacs.2021.22149-cit27 doi: 10.17530/jef.15.14.2.2 – ident: key-10.21595/jmeacs.2021.22149-cit19 doi: 10.1007/s00521-016-2379-4 – ident: key-10.21595/jmeacs.2021.22149-cit26 doi: 10.31142/ijtsrd14185 – ident: key-10.21595/jmeacs.2021.22149-cit25 doi: 10.17222/mit.2014.282 |
| SSID | ssib044745009 ssib048876994 |
| Score | 2.1702073 |
| Snippet | This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting,... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 87 |
| Title | Parameter optimization of AISI 316 austenitic stainless steel for surface roughness by Grasshopper optimization algorithm |
| URI | https://www.extrica.com/article/22149/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2669-1361 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044745009 issn: 2669-2600 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Hjz5QEVFyx68aWx2t5s0xyI-oVLQgp7CvmLVtAl9oPXgb3cmiaI9iN4WMhnCTJj5hp35hpADX3KLUMDTWnOvyVjkaZ9bzzhtpTBhyCzOO3eug4te8-pO3lVk0ePPtspXJKdXRZyu7NfgHKB8I7fJIlkKJMDuGlnqXXfb97g8Lggij4mCG7U4I-l6OSADCS2SjacBhBfk5uZQEaKiH0loeTrM1exFpem3zHK2WvZkjQtCQmwoeT6eTvSxeZuja_zTR6-RlQpf0nb5bJ0suOEGmXUV9mCBCWkGIWJQzV7SLKHty5tLKlhAkf_HYSeRocVIVQohEE7OpRRwLR1PR4kyjhZbfTA8Uj2j5yOA3v0sz-cVq_QhGz1O-oNN0js7vT258KqdC54BC0ZegjenmhkdSZ741kLqakbNQPKWNMwECgCClpDgktD4Ld3iIBEx1eLaKce5VWKL1IbZ0G0TKiCABYkvIiw6jcT7WMVDK0IFeoRQO4R9OiE2FSE57sVIYyhMCsfFpeNidFxcGHOHHH69k5d0HL9KH3359g_iu_8T3yO1yWjq9gGUTHSdLHbeT-vVT_kBD-TlCQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60PXjygYqKyh68aWx2t5s0xyI-KlgKWqinsK_4SpvQB1p_vTNJKupB9LaQyRBmwsw37Mw3hBz5kluEAp7WmntNxiJP-9x6xmkrhQlDZnHe-aYbXPWb1wM5qMiiJ4u2yjckp1dFnK7s1-AcoHwjt8kyqQcSYHeN1PvdXvsel8cFQeQxUXCjFmckXS8HZCChRbLxPITwgtzcHCpCVPQtCa3MRrmav6o0_ZJZLtbKnqxJQUiIDSUvp7OpPjXvP-ga__TR62S1wpe0XT7bIEtutEnmPYU9WGBCmkGIGFazlzRLaLtz26GCBRT5fxx2EhlajFSlEALh5FxKAdfSyWycKONosdUHwyPVc3o5Buj9mOX5T8UqfcjGT9PH4RbpX5zfnV151c4Fz4AFIy_Bm1PNjI4kT3xrIXU1o2YgeUsaZgIFAEFLSHBJaPyWbnGQiJhqce2U49wqsU1qo2zkdggVEMCCxBcRFp1G4n2s4qEVoQI9QqhdwhZOiE1FSI57MdIYCpPCcXHpuBgdFxfG3CXHn-_kJR3Hr9Inn779g_je_8T3SW06nrkDACVTfVj9jh-2KuPY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+optimization+of+AISI+316+austenitic+stainless+steel+for+surface+roughness+by+Grasshopper+optimization+algorithm&rft.jtitle=Journal+of+Mechanical+Engineering%2C+Automation+and+Control+Systems&rft.au=Jawade%2C+Samidha&rft.au=Kulkarni%2C+Omkar+K.&rft.au=Kakandikar%2C+G.+M.&rft.date=2021-12-31&rft.issn=2669-2600&rft.eissn=2669-1361&rft.volume=2&rft.issue=2&rft.spage=87&rft.epage=97&rft_id=info:doi/10.21595%2Fjmeacs.2021.22149&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jmeacs_2021_22149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2669-2600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2669-2600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2669-2600&client=summon |