Parameter optimization of AISI 316 austenitic stainless steel for surface roughness by Grasshopper optimization algorithm

This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Mechanical Engineering Automation and Control Systems Vol. 2; no. 2; pp. 87 - 97
Main Authors Jawade, Samidha, Kulkarni, Omkar K., Kakandikar, G. M.
Format Journal Article
LanguageEnglish
Published 31.12.2021
Online AccessGet full text
ISSN2669-2600
2669-1361
2669-1361
DOI10.21595/jmeacs.2021.22149

Cover

Abstract This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the workpiece. The experiment was carried out using the design of experiments (DOE) on a computer numerical control (CNC) lathe. The surface roughness is tested for three conditions i.e. Dry, Wet, and cryogenic conditions after the turning process. Samples are step turned on CNC Lathe for all three conditions with a set of experiments designed. The response surface methodology is implemented, and mathematical models are built for all three conditions. The nature-inspired algorithm is the best way to get the optimal value. For the discussed problem in the paper, nature-inspired techniques are used for obtaining the optimum parameter values to get minimum surface roughness for all set conditions. The Grasshopper optimization algorithm (GOA) is the technique that is the most effective method for real-life applications. In this research, GOA is used to get optimum values for the surface roughness (Ra) at Dry, Wet and cryogenic conditions. Finally, results are compared, and it's observed that the values obtained from GOA are minimum in surface roughness value.
AbstractList This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting, parameters in the process like feed rate (fd), speed (vc), and depth of cut (DoC) were used to study the outcome on the surface roughness (Ra) of the workpiece. The experiment was carried out using the design of experiments (DOE) on a computer numerical control (CNC) lathe. The surface roughness is tested for three conditions i.e. Dry, Wet, and cryogenic conditions after the turning process. Samples are step turned on CNC Lathe for all three conditions with a set of experiments designed. The response surface methodology is implemented, and mathematical models are built for all three conditions. The nature-inspired algorithm is the best way to get the optimal value. For the discussed problem in the paper, nature-inspired techniques are used for obtaining the optimum parameter values to get minimum surface roughness for all set conditions. The Grasshopper optimization algorithm (GOA) is the technique that is the most effective method for real-life applications. In this research, GOA is used to get optimum values for the surface roughness (Ra) at Dry, Wet and cryogenic conditions. Finally, results are compared, and it's observed that the values obtained from GOA are minimum in surface roughness value.
Author Kulkarni, Omkar K.
Kakandikar, G. M.
Jawade, Samidha
Author_xml – sequence: 1
  givenname: Samidha
  surname: Jawade
  fullname: Jawade, Samidha
– sequence: 2
  givenname: Omkar K.
  surname: Kulkarni
  fullname: Kulkarni, Omkar K.
– sequence: 3
  givenname: G. M.
  surname: Kakandikar
  fullname: Kakandikar, G. M.
BookMark eNqNkE1OwzAQhS0EEqX0Aqx8gRTbiZ14WVVQKlUCCVhHE9dujZI4sh2hcHrSn1UXiNU8aea9mfnu0HXrWo3QAyVzRrnkj1-NBhXmjDA6Z4xm8gpNmBAyoamg12fNBCG3aBaCrUiW5RknRE7Q8AYeGh21x66LtrE_EK1rsTN4sX5f45QKDH2IurXRKhwi2LbWIYxK6xob53HovQGlsXf9bt8eetWAVx5C2LuuuwyGeue8jfvmHt0YqIOenesUfT4_fSxfks3rar1cbBI1Xi8Tk5KMV1RVkjNDttucFpnMBGcFV1QJoJxWXOSFyRUpqoKNE5JCwSoNmrEtpFOUnnL7toPhG-q67LxtwA8lJeURYHkCWB4AlkeAo6s4uZR3IXhtSmXj8YPowdZ_W9mF9R_7fgEKN4zE
CitedBy_id crossref_primary_10_3390_ma15228051
crossref_primary_10_1007_s00170_023_12182_7
crossref_primary_10_21595_jmai_2024_23909
Cites_doi 10.1504/IJSI.2020.106396
10.1007/s11042-020-10139-6
10.4172/2090-4908.1000165
10.1504/IJBIC.2013.055093
10.1016/j.matpr.2017.07.055
10.1016/j.cirpj.2015.08.004
10.1016/j.triboint.2005.05.005
10.1007/s12046-011-0055-z
10.1007/s42452-020-3167-4
10.1080/17445760.2016.1242728
10.1016/j.advengsoft.2017.01.004
10.4324/9781315156101
10.1016/j.cirp.2012.03.052
10.1016/j.matpr.2015.07.223
10.3390/technologies7030063
10.1002/9781119644552.ch5
10.5267/j.ijiec.2012.04.002
10.1016/j.proeng.2013.09.167
10.1016/j.matpr.2017.12.008
10.17530/jef.15.14.2.2
10.1007/s00521-016-2379-4
10.31142/ijtsrd14185
10.17222/mit.2014.282
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.21595/jmeacs.2021.22149
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2669-1361
EndPage 97
ExternalDocumentID 10.21595/jmeacs.2021.22149
10_21595_jmeacs_2021_22149
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
ADTOC
UNPAY
ID FETCH-LOGICAL-c1369-f3045b1cb952f0dd71849465285c1c6a151b5678f7c08b82dd791a82beae22da3
IEDL.DBID UNPAY
ISSN 2669-2600
2669-1361
IngestDate Tue Aug 19 19:52:55 EDT 2025
Tue Jul 01 01:16:14 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1369-f3045b1cb952f0dd71849465285c1c6a151b5678f7c08b82dd791a82beae22da3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.extrica.com/article/22149/pdf
PageCount 11
ParticipantIDs unpaywall_primary_10_21595_jmeacs_2021_22149
crossref_citationtrail_10_21595_jmeacs_2021_22149
crossref_primary_10_21595_jmeacs_2021_22149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-31
PublicationDateYYYYMMDD 2021-12-31
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of Mechanical Engineering Automation and Control Systems
PublicationYear 2021
References key-10.21595/jmeacs.2021.22149-cit19
key-10.21595/jmeacs.2021.22149-cit18
key-10.21595/jmeacs.2021.22149-cit17
key-10.21595/jmeacs.2021.22149-cit16
key-10.21595/jmeacs.2021.22149-cit15
key-10.21595/jmeacs.2021.22149-cit14
key-10.21595/jmeacs.2021.22149-cit13
key-10.21595/jmeacs.2021.22149-cit12
key-10.21595/jmeacs.2021.22149-cit9
key-10.21595/jmeacs.2021.22149-cit11
key-10.21595/jmeacs.2021.22149-cit10
key-10.21595/jmeacs.2021.22149-cit7
key-10.21595/jmeacs.2021.22149-cit8
key-10.21595/jmeacs.2021.22149-cit1
key-10.21595/jmeacs.2021.22149-cit2
key-10.21595/jmeacs.2021.22149-cit5
key-10.21595/jmeacs.2021.22149-cit6
key-10.21595/jmeacs.2021.22149-cit3
key-10.21595/jmeacs.2021.22149-cit4
key-10.21595/jmeacs.2021.22149-cit27
key-10.21595/jmeacs.2021.22149-cit26
key-10.21595/jmeacs.2021.22149-cit25
key-10.21595/jmeacs.2021.22149-cit24
key-10.21595/jmeacs.2021.22149-cit23
key-10.21595/jmeacs.2021.22149-cit22
key-10.21595/jmeacs.2021.22149-cit21
key-10.21595/jmeacs.2021.22149-cit20
References_xml – ident: key-10.21595/jmeacs.2021.22149-cit16
  doi: 10.1504/IJSI.2020.106396
– ident: key-10.21595/jmeacs.2021.22149-cit23
– ident: key-10.21595/jmeacs.2021.22149-cit10
  doi: 10.1007/s11042-020-10139-6
– ident: key-10.21595/jmeacs.2021.22149-cit21
  doi: 10.4172/2090-4908.1000165
– ident: key-10.21595/jmeacs.2021.22149-cit14
  doi: 10.1504/IJBIC.2013.055093
– ident: key-10.21595/jmeacs.2021.22149-cit13
  doi: 10.1016/j.matpr.2017.07.055
– ident: key-10.21595/jmeacs.2021.22149-cit24
  doi: 10.1016/j.cirpj.2015.08.004
– ident: key-10.21595/jmeacs.2021.22149-cit1
  doi: 10.1016/j.triboint.2005.05.005
– ident: key-10.21595/jmeacs.2021.22149-cit7
– ident: key-10.21595/jmeacs.2021.22149-cit3
– ident: key-10.21595/jmeacs.2021.22149-cit4
  doi: 10.1007/s12046-011-0055-z
– ident: key-10.21595/jmeacs.2021.22149-cit5
  doi: 10.1007/s42452-020-3167-4
– ident: key-10.21595/jmeacs.2021.22149-cit18
  doi: 10.1080/17445760.2016.1242728
– ident: key-10.21595/jmeacs.2021.22149-cit20
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: key-10.21595/jmeacs.2021.22149-cit17
  doi: 10.4324/9781315156101
– ident: key-10.21595/jmeacs.2021.22149-cit9
  doi: 10.1016/j.cirp.2012.03.052
– ident: key-10.21595/jmeacs.2021.22149-cit11
  doi: 10.1016/j.matpr.2015.07.223
– ident: key-10.21595/jmeacs.2021.22149-cit6
  doi: 10.3390/technologies7030063
– ident: key-10.21595/jmeacs.2021.22149-cit15
  doi: 10.1002/9781119644552.ch5
– ident: key-10.21595/jmeacs.2021.22149-cit2
– ident: key-10.21595/jmeacs.2021.22149-cit8
  doi: 10.5267/j.ijiec.2012.04.002
– ident: key-10.21595/jmeacs.2021.22149-cit22
  doi: 10.1016/j.proeng.2013.09.167
– ident: key-10.21595/jmeacs.2021.22149-cit12
  doi: 10.1016/j.matpr.2017.12.008
– ident: key-10.21595/jmeacs.2021.22149-cit27
  doi: 10.17530/jef.15.14.2.2
– ident: key-10.21595/jmeacs.2021.22149-cit19
  doi: 10.1007/s00521-016-2379-4
– ident: key-10.21595/jmeacs.2021.22149-cit26
  doi: 10.31142/ijtsrd14185
– ident: key-10.21595/jmeacs.2021.22149-cit25
  doi: 10.17222/mit.2014.282
SSID ssib044745009
ssib048876994
Score 2.1702073
Snippet This article describes the optimization of processing parameters for the surface roughness of AISI316 austenitic stainless steel. While experimenting,...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 87
Title Parameter optimization of AISI 316 austenitic stainless steel for surface roughness by Grasshopper optimization algorithm
URI https://www.extrica.com/article/22149/pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2669-1361
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044745009
  issn: 2669-2600
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Hjz5QEVFyx68aWx2t5s0xyI-oVLQgp7CvmLVtAl9oPXgb3cmiaI9iN4WMhnCTJj5hp35hpADX3KLUMDTWnOvyVjkaZ9bzzhtpTBhyCzOO3eug4te8-pO3lVk0ePPtspXJKdXRZyu7NfgHKB8I7fJIlkKJMDuGlnqXXfb97g8Lggij4mCG7U4I-l6OSADCS2SjacBhBfk5uZQEaKiH0loeTrM1exFpem3zHK2WvZkjQtCQmwoeT6eTvSxeZuja_zTR6-RlQpf0nb5bJ0suOEGmXUV9mCBCWkGIWJQzV7SLKHty5tLKlhAkf_HYSeRocVIVQohEE7OpRRwLR1PR4kyjhZbfTA8Uj2j5yOA3v0sz-cVq_QhGz1O-oNN0js7vT258KqdC54BC0ZegjenmhkdSZ741kLqakbNQPKWNMwECgCClpDgktD4Ld3iIBEx1eLaKce5VWKL1IbZ0G0TKiCABYkvIiw6jcT7WMVDK0IFeoRQO4R9OiE2FSE57sVIYyhMCsfFpeNidFxcGHOHHH69k5d0HL9KH3359g_iu_8T3yO1yWjq9gGUTHSdLHbeT-vVT_kBD-TlCQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60PXjygYqKyh68aWx2t5s0xyI-KlgKWqinsK_4SpvQB1p_vTNJKupB9LaQyRBmwsw37Mw3hBz5kluEAp7WmntNxiJP-9x6xmkrhQlDZnHe-aYbXPWb1wM5qMiiJ4u2yjckp1dFnK7s1-AcoHwjt8kyqQcSYHeN1PvdXvsel8cFQeQxUXCjFmckXS8HZCChRbLxPITwgtzcHCpCVPQtCa3MRrmav6o0_ZJZLtbKnqxJQUiIDSUvp7OpPjXvP-ga__TR62S1wpe0XT7bIEtutEnmPYU9WGBCmkGIGFazlzRLaLtz26GCBRT5fxx2EhlajFSlEALh5FxKAdfSyWycKONosdUHwyPVc3o5Buj9mOX5T8UqfcjGT9PH4RbpX5zfnV151c4Fz4AFIy_Bm1PNjI4kT3xrIXU1o2YgeUsaZgIFAEFLSHBJaPyWbnGQiJhqce2U49wqsU1qo2zkdggVEMCCxBcRFp1G4n2s4qEVoQI9QqhdwhZOiE1FSI57MdIYCpPCcXHpuBgdFxfG3CXHn-_kJR3Hr9Inn779g_je_8T3SW06nrkDACVTfVj9jh-2KuPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+optimization+of+AISI+316+austenitic+stainless+steel+for+surface+roughness+by+Grasshopper+optimization+algorithm&rft.jtitle=Journal+of+Mechanical+Engineering%2C+Automation+and+Control+Systems&rft.au=Jawade%2C+Samidha&rft.au=Kulkarni%2C+Omkar+K.&rft.au=Kakandikar%2C+G.+M.&rft.date=2021-12-31&rft.issn=2669-2600&rft.eissn=2669-1361&rft.volume=2&rft.issue=2&rft.spage=87&rft.epage=97&rft_id=info:doi/10.21595%2Fjmeacs.2021.22149&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jmeacs_2021_22149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2669-2600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2669-2600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2669-2600&client=summon