Wrist Motion Regression Using EMG Attention Feature Fusion Algorithm
The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that...
Saved in:
| Published in | IEEE sensors journal p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2025.3576293 |
Cover
| Abstract | The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that provides bioelectric compensation in scenarios where visual tracking fails, enhancing the robustness of MR systems. A hybrid TCN-LSTM model is developed, integrated with channel attention and handcrafted feature fusion to enhance wrist angle estimation. To support training and real-time evaluation, we collected a synchronized EMG-MR dataset from 13 subjects at a sampling rate of 500 Hz, segmented using a 0.1 s sliding window with 50% overlap. Experimental results demonstrate that the proposed method achieves lower mean absolute error (MAE) and higher coefficient of determination (R²) than baseline models, reaching an average R² of 0.828 ± 0.029. Furthermore, attention weight analysis reveals consistency with physiological muscle activation patterns, enhancing the interpretability of the model's decision-making process. |
|---|---|
| AbstractList | The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that provides bioelectric compensation in scenarios where visual tracking fails, enhancing the robustness of MR systems. A hybrid TCN-LSTM model is developed, integrated with channel attention and handcrafted feature fusion to enhance wrist angle estimation. To support training and real-time evaluation, we collected a synchronized EMG-MR dataset from 13 subjects at a sampling rate of 500 Hz, segmented using a 0.1 s sliding window with 50% overlap. Experimental results demonstrate that the proposed method achieves lower mean absolute error (MAE) and higher coefficient of determination (R²) than baseline models, reaching an average R² of 0.828 ± 0.029. Furthermore, attention weight analysis reveals consistency with physiological muscle activation patterns, enhancing the interpretability of the model's decision-making process. |
| Author | Zhang, Wenqiang Xiang, Yu Dou, Ziheng Zhang, Xu Wang, Taihong |
| Author_xml | – sequence: 1 givenname: Yu surname: Xiang fullname: Xiang, Yu email: 12232130@mail.sustech.edu.cn organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Xu surname: Zhang fullname: Zhang, Xu email: 12131050@mail.sustech.edu.cn organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Wenqiang surname: Zhang fullname: Zhang, Wenqiang organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Ziheng surname: Dou fullname: Dou, Ziheng organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Taihong orcidid: 0000-0002-6295-848X surname: Wang fullname: Wang, Taihong email: wangth@sustech.edu.cn organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNpFkNFOwjAUhhuDiYA-gIkXe4HNnp6VtpcLDtCAJorRu6Ub7ZyBzbTlwreXAYlX50_O95-TfCMyaLvWEHILNAGg6v7pLX9OGGU8QS4mTOEFGQLnMgaRykGfkcYpis8rMvL-m1JQgoshefhwjQ_RqgtN10avpnbG-z6--6ato3w1j7IQTHtcz4wOe2ei2f6IZNu6c0342l2TS6u33tyc55isZ_l6uoiXL_PHabaMK0AeYg1cSm2MSWlZUVQpZaWoZKqkYFaXttxMtMTKopowDrI8oMisVWAot9UGxwROZyvXee-MLX5cs9PutwBa9BaK3kLRWyjOFg6du1OnOfz954EiAKb4B4X3W6E |
| CODEN | ISJEAZ |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSEN.2025.3576293 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2025_3576293 11031134 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research fund for the application of sensing technology in the field of robotics grantid: H20210928-6 – fundername: Research fund for the application of sensing technology in the field of VR grantid: H20210426-9 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 |
| ID | FETCH-LOGICAL-c135t-a1588aeee40bc039402b7c849872fabfbd6a83cf3962518baee32ff91e05fcd3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Wed Oct 01 06:04:01 EDT 2025 Wed Jun 18 06:01:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-a1588aeee40bc039402b7c849872fabfbd6a83cf3962518baee32ff91e05fcd3 |
| ORCID | 0000-0002-6295-848X |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3576293 ieee_primary_11031134 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0019757 |
| Score | 2.4201777 |
| Snippet | The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy attention mechanisms Biological system modeling Electromyography electromyography (EMG) Feature extraction feature fusion Hands mixed reality (MR) Muscles Sensors Training Virtual reality Wrist wrist motion regression |
| Title | Wrist Motion Regression Using EMG Attention Feature Fusion Algorithm |
| URI | https://ieeexplore.ieee.org/document/11031134 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6i3rwY06cX-TgSWjXfLRNjkM3x2A76MTdSpMmm6idjPagf71J2ukUBG-lvMDjJY_8Xt7HD4DL2KAOEbmyck49Ko3PcaSRFwcypZgSEca2wXk0jgYPdDgNp3WzuuuFUUq54jPl20-Xy88WsrRPZR1kOQkQoZtgM2ZR1az1lTLgsRvraTw48CiJp3UKEwW8M7zvjU0oiEOfGHiNOflxCa2xqrhLpb8Hxit1qlqSZ78shC8_fk1q_Le--2C3hpewW52HA7Ch8ibYWRs62ARbNe_5_P0Q3DxaH4cjR-UD79SsqorNoaskgL3RLewWRVURCS1aLJcK9ksn0n2ZLZZPxfy1BSb93uR64NW8Cp5EJCy8FIWMpUZbGggZWGp0LGLJKGcx1qnQIotSRqQm3ARHiAkjSrDWHKkg1DIjR6CRL3J1DKBxaB0xjZUQBolljKdpGBGJrVcrRkkbXK3snLxV0zMSF3UEPLGbkthNSepNaYOWNeG3YG29kz_-n4Jtu7x6DzkDjWJZqnODEApx4U7GJ82Atjc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN-KNByaklDi2E3usoKVA2wGK6BbFrl0Q0KIqGeDXYzsBChISWxSdrNPZJ3_ne3wAx4lFHTL2ZeWCBlRZnxPY4CAJVUYjSiRLXINzpxu37uhVn_WrZnXfC6O19sVnuuY-fS5_MFaFeyo7xY6TABM6C_OMUsrKdq2vpIFI_GBP68NhQEnSr5KYOBSnV7eNrg0GI1YjFmBHgvy4hqZ4Vfy10lyB7qdCZTXJU63IZU29_5rV-G-NV2G5ApioXp6INZjRo3VYmho7uA4LFfP5w9sGnN87L0cdT-aDbvSwrIsdIV9LgBqdC1TP87ImEjm8WEw0ahZepP48HE8e84eXTeg1G72zVlAxKwQKE5YHGWacZ1ZbGkoVOnL0SCaKU8GTyGTSyEGccaIMETY8wlxaURIZI7AOmVEDsgVzo_FIbwOyLm1ibiItpcViAy6yjMVERc6vNadkB04-7Zy-lvMzUh93hCJ1m5K6TUmrTdmBTWfCb8HKert__D-ChVav007bl93rPVh0S5WvI_swl08KfWDxQi4P_Sn5AIjluYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wrist+Motion+Regression+Using+EMG+Attention+Feature+Fusion+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Xiang%2C+Yu&rft.au=Zhang%2C+Xu&rft.au=Zhang%2C+Wenqiang&rft.au=Dou%2C+Ziheng&rft.date=2025&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2025.3576293&rft.externalDocID=11031134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |