Wrist Motion Regression Using EMG Attention Feature Fusion Algorithm

The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal p. 1
Main Authors Xiang, Yu, Zhang, Xu, Zhang, Wenqiang, Dou, Ziheng, Wang, Taihong
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2025.3576293

Cover

Abstract The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that provides bioelectric compensation in scenarios where visual tracking fails, enhancing the robustness of MR systems. A hybrid TCN-LSTM model is developed, integrated with channel attention and handcrafted feature fusion to enhance wrist angle estimation. To support training and real-time evaluation, we collected a synchronized EMG-MR dataset from 13 subjects at a sampling rate of 500 Hz, segmented using a 0.1 s sliding window with 50% overlap. Experimental results demonstrate that the proposed method achieves lower mean absolute error (MAE) and higher coefficient of determination (R²) than baseline models, reaching an average R² of 0.828 ± 0.029. Furthermore, attention weight analysis reveals consistency with physiological muscle activation patterns, enhancing the interpretability of the model's decision-making process.
AbstractList The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly degrades interaction accuracy. To address this issue, this study proposes an electromyography (EMG)-based wrist motion regression framework that provides bioelectric compensation in scenarios where visual tracking fails, enhancing the robustness of MR systems. A hybrid TCN-LSTM model is developed, integrated with channel attention and handcrafted feature fusion to enhance wrist angle estimation. To support training and real-time evaluation, we collected a synchronized EMG-MR dataset from 13 subjects at a sampling rate of 500 Hz, segmented using a 0.1 s sliding window with 50% overlap. Experimental results demonstrate that the proposed method achieves lower mean absolute error (MAE) and higher coefficient of determination (R²) than baseline models, reaching an average R² of 0.828 ± 0.029. Furthermore, attention weight analysis reveals consistency with physiological muscle activation patterns, enhancing the interpretability of the model's decision-making process.
Author Zhang, Wenqiang
Xiang, Yu
Dou, Ziheng
Zhang, Xu
Wang, Taihong
Author_xml – sequence: 1
  givenname: Yu
  surname: Xiang
  fullname: Xiang, Yu
  email: 12232130@mail.sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  email: 12131050@mail.sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Wenqiang
  surname: Zhang
  fullname: Zhang, Wenqiang
  organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Ziheng
  surname: Dou
  fullname: Dou, Ziheng
  organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Taihong
  orcidid: 0000-0002-6295-848X
  surname: Wang
  fullname: Wang, Taihong
  email: wangth@sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, State Key Laboratory of Quantum Functional Materials, Southern University of Science and Technology, Shenzhen, China
BookMark eNpFkNFOwjAUhhuDiYA-gIkXe4HNnp6VtpcLDtCAJorRu6Ub7ZyBzbTlwreXAYlX50_O95-TfCMyaLvWEHILNAGg6v7pLX9OGGU8QS4mTOEFGQLnMgaRykGfkcYpis8rMvL-m1JQgoshefhwjQ_RqgtN10avpnbG-z6--6ato3w1j7IQTHtcz4wOe2ei2f6IZNu6c0342l2TS6u33tyc55isZ_l6uoiXL_PHabaMK0AeYg1cSm2MSWlZUVQpZaWoZKqkYFaXttxMtMTKopowDrI8oMisVWAot9UGxwROZyvXee-MLX5cs9PutwBa9BaK3kLRWyjOFg6du1OnOfz954EiAKb4B4X3W6E
CODEN ISJEAZ
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2025.3576293
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2025_3576293
11031134
Genre orig-research
GrantInformation_xml – fundername: Research fund for the application of sensing technology in the field of robotics
  grantid: H20210928-6
– fundername: Research fund for the application of sensing technology in the field of VR
  grantid: H20210426-9
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
ID FETCH-LOGICAL-c135t-a1588aeee40bc039402b7c849872fabfbd6a83cf3962518baee32ff91e05fcd3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Wed Oct 01 06:04:01 EDT 2025
Wed Jun 18 06:01:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-a1588aeee40bc039402b7c849872fabfbd6a83cf3962518baee32ff91e05fcd3
ORCID 0000-0002-6295-848X
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2025_3576293
ieee_primary_11031134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019757
Score 2.4201777
Snippet The visual hand tracking technology in Mixed Reality (MR) headsets is susceptible to environmental occlusion and lighting interference, which significantly...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
attention mechanisms
Biological system modeling
Electromyography
electromyography (EMG)
Feature extraction
feature fusion
Hands
mixed reality (MR)
Muscles
Sensors
Training
Virtual reality
Wrist
wrist motion regression
Title Wrist Motion Regression Using EMG Attention Feature Fusion Algorithm
URI https://ieeexplore.ieee.org/document/11031134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6i3rwY06cX-TgSWjXfLRNjkM3x2A76MTdSpMmm6idjPagf71J2ukUBG-lvMDjJY_8Xt7HD4DL2KAOEbmyck49Ko3PcaSRFwcypZgSEca2wXk0jgYPdDgNp3WzuuuFUUq54jPl20-Xy88WsrRPZR1kOQkQoZtgM2ZR1az1lTLgsRvraTw48CiJp3UKEwW8M7zvjU0oiEOfGHiNOflxCa2xqrhLpb8Hxit1qlqSZ78shC8_fk1q_Le--2C3hpewW52HA7Ch8ibYWRs62ARbNe_5_P0Q3DxaH4cjR-UD79SsqorNoaskgL3RLewWRVURCS1aLJcK9ksn0n2ZLZZPxfy1BSb93uR64NW8Cp5EJCy8FIWMpUZbGggZWGp0LGLJKGcx1qnQIotSRqQm3ARHiAkjSrDWHKkg1DIjR6CRL3J1DKBxaB0xjZUQBolljKdpGBGJrVcrRkkbXK3snLxV0zMSF3UEPLGbkthNSepNaYOWNeG3YG29kz_-n4Jtu7x6DzkDjWJZqnODEApx4U7GJ82Atjc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN-KNByaklDi2E3usoKVA2wGK6BbFrl0Q0KIqGeDXYzsBChISWxSdrNPZJ3_ne3wAx4lFHTL2ZeWCBlRZnxPY4CAJVUYjSiRLXINzpxu37uhVn_WrZnXfC6O19sVnuuY-fS5_MFaFeyo7xY6TABM6C_OMUsrKdq2vpIFI_GBP68NhQEnSr5KYOBSnV7eNrg0GI1YjFmBHgvy4hqZ4Vfy10lyB7qdCZTXJU63IZU29_5rV-G-NV2G5ApioXp6INZjRo3VYmho7uA4LFfP5w9sGnN87L0cdT-aDbvSwrIsdIV9LgBqdC1TP87ImEjm8WEw0ahZepP48HE8e84eXTeg1G72zVlAxKwQKE5YHGWacZ1ZbGkoVOnL0SCaKU8GTyGTSyEGccaIMETY8wlxaURIZI7AOmVEDsgVzo_FIbwOyLm1ibiItpcViAy6yjMVERc6vNadkB04-7Zy-lvMzUh93hCJ1m5K6TUmrTdmBTWfCb8HKert__D-ChVav007bl93rPVh0S5WvI_swl08KfWDxQi4P_Sn5AIjluYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wrist+Motion+Regression+Using+EMG+Attention+Feature+Fusion+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Xiang%2C+Yu&rft.au=Zhang%2C+Xu&rft.au=Zhang%2C+Wenqiang&rft.au=Dou%2C+Ziheng&rft.date=2025&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2025.3576293&rft.externalDocID=11031134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon