Co-Optimization of Partial Offloading and Resource Allocation for Multi-User Tasks in Vehicular Edge Networks
Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly incr...
Saved in:
| Published in | IEEE transactions on parallel and distributed systems Vol. 36; no. 12; pp. 2537 - 2548 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.12.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9219 1558-2183 |
| DOI | 10.1109/TPDS.2025.3571470 |
Cover
| Abstract | Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly increase the latency and energy consumption costs for vehicles. Therefore, achieving optimal configuration of available computing resources in MEC servers to accomplish the goal of low-latency and low-energy task offloading has become a critical issue to address. To tackle this problem, this study proposes a Multi-RSU Load Balancing (MRLB) strategy based on multi-hop network technology. This strategy dynamically allocates computing tasks to neighboring RSU server clusters with available computing resources through task segmentation and computation offloading mechanisms. Meanwhile, adaptive resource allocation strategies are implemented based on task quantity and task scale characteristics. Specifically, this study designs a multi-RSU collaborative offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) to solve the optimal offloading decision. Additionally, by integrating the Lagrange multiplier method and Sequential Quadratic Programming (SQP) algorithm, the joint optimization of imbalanced task segmentation decisions and optimal CPU frequency allocation decisions for RSU servers is achieved. Experimental results demonstrate that the proposed method can achieve efficient multi-RSU resource allocation and ensure coordinated optimization of both system latency and energy consumption costs across diverse device conditions and varying network scenarios, particularly in load-imbalanced situations. |
|---|---|
| AbstractList | Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly increase the latency and energy consumption costs for vehicles. Therefore, achieving optimal configuration of available computing resources in MEC servers to accomplish the goal of low-latency and low-energy task offloading has become a critical issue to address. To tackle this problem, this study proposes a Multi-RSU Load Balancing (MRLB) strategy based on multi-hop network technology. This strategy dynamically allocates computing tasks to neighboring RSU server clusters with available computing resources through task segmentation and computation offloading mechanisms. Meanwhile, adaptive resource allocation strategies are implemented based on task quantity and task scale characteristics. Specifically, this study designs a multi-RSU collaborative offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) to solve the optimal offloading decision. Additionally, by integrating the Lagrange multiplier method and Sequential Quadratic Programming (SQP) algorithm, the joint optimization of imbalanced task segmentation decisions and optimal CPU frequency allocation decisions for RSU servers is achieved. Experimental results demonstrate that the proposed method can achieve efficient multi-RSU resource allocation and ensure coordinated optimization of both system latency and energy consumption costs across diverse device conditions and varying network scenarios, particularly in load-imbalanced situations. |
| Author | Cao, Dun Wang, Jin Huang, Shirui Alqahtani, Fayez Sherratt, R. Simon Gu, Ning |
| Author_xml | – sequence: 1 givenname: Dun orcidid: 0000-0003-1466-7351 surname: Cao fullname: Cao, Dun email: caodun@csust.edu.cn organization: Changsha University of Science and Technology, Changsha, China – sequence: 2 givenname: Shirui orcidid: 0009-0005-6607-0313 surname: Huang fullname: Huang, Shirui email: 2529095199@qq.com organization: College of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 3 givenname: Ning surname: Gu fullname: Gu, Ning email: guning@stu.csust.edu.cn organization: College of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 4 givenname: Fayez orcidid: 0000-0001-8972-5953 surname: Alqahtani fullname: Alqahtani, Fayez email: fhalqahtani@ksu.edu.sa organization: Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia – sequence: 5 givenname: R. Simon orcidid: 0000-0001-7899-4445 surname: Sherratt fullname: Sherratt, R. Simon email: r.s.sherratt@reading.ac.uk organization: School of Biomedical Engineering, University of Reading, Reading, U.K – sequence: 6 givenname: Jin orcidid: 0000-0001-5473-8738 surname: Wang fullname: Wang, Jin email: jinwang@hnust.edu.cn organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China |
| BookMark | eNpFkMtOAjEYhRuDiYA-gImLvsDg32k7TJcE8ZKgEAW3k9r-xcowJe0Qo08vBBJX5yTnsvh6pNOEBgm5ZjBgDNTtYn73NsghlwMuh0wM4Yx0mZRllrOSd_YehMxUztQF6aX0BcCEBNElm3HIZtvWb_yvbn1oaHB0rmPrdU1nztVBW9-sqG4sfcUUdtEgHdV1MMe2C5E-7-rWZ8uEkS50WifqG_qOn97sah3pxK6QvmD7HeI6XZJzp-uEVyftk-X9ZDF-zKazh6fxaJoZxmWbKasMMLQFL12JhskSh0ZZ8WFKY1FyrnJQohgKlTsOjpcAhpncWFEUoJzhfcKOvyaGlCK6ahv9RsefikF14FUdeFUHXtWJ135zc9x4RPzvM4B9qPgf4QRp4A |
| CODEN | ITDSEO |
| Cites_doi | 10.1109/TPDS.2019.2926979 10.1109/JIOT.2022.3222408 10.1109/TITS.2023.3305380 10.1109/ISCON52037.2021.9702330 10.1007/978-3-030-61746-2_2 10.1109/JIOT.2020.2972061 10.1109/JIOT.2021.3123406 10.1109/TPDS.2019.2950937 10.1109/VTC2024-Spring62846.2024.10683084 10.1109/TITS.2020.3017172 10.1109/JIOT.2020.3040768 10.1109/TVT.2023.3241286 10.1109/TVT.2022.3174530 10.1109/JIOT.2021.3100117 10.1109/TWC.2022.3186590 10.1109/ISWTA58588.2023.10249725 10.1109/TPDS.2021.3119948 10.1109/TMC.2020.3006507 10.1109/JIOT.2021.3118016 10.1109/TWC.2021.3108641 10.1109/TWC.2021.3062616 10.1109/JIOT.2023.3245721 10.1109/JIOT.2020.3015970 10.1007/978-3-030-61746-2_19 10.23919/jcin.2022.9745485 10.1109/SmartIoT58732.2023.00021 10.1109/JIOT.2022.3179000 10.1002/agj2.21385 10.1109/TVT.2021.3117847 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TPDS.2025.3571470 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 2548 |
| ExternalDocumentID | 10_1109_TPDS_2025_3571470 11007039 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China grantid: 2025JJ20069 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation of China grantid: 62272063; 62473146 funderid: 10.13039/501100001809 – fundername: Ongoing Research Funding Program, King Saud University grantid: ORF-2025-509 – fundername: Research Foundation of Education Bureau of Hunan Province grantid: 23A0253 – fundername: Natural Science Foundation of Hunan Province grantid: 2024JJ3017 funderid: 10.13039/501100004735 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c135t-9d9c01ed638f8ec158e7c9d4bc8cde5339209467492f30f3800c1c2cd46609fc3 |
| IEDL.DBID | RIE |
| ISSN | 1045-9219 |
| IngestDate | Sat Oct 25 05:12:33 EDT 2025 Sat Oct 25 03:09:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-9d9c01ed638f8ec158e7c9d4bc8cde5339209467492f30f3800c1c2cd46609fc3 |
| ORCID | 0009-0005-6607-0313 0000-0001-5473-8738 0000-0001-8972-5953 0000-0003-1466-7351 0000-0001-7899-4445 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TPDS_2025_3571470 ieee_primary_11007039 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Dec. |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref16 ref19 Kuang (ref18) 2022; 45 Ning (ref30) 2021; 42 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 Zhang (ref17) 2021; 42 ref7 Cao (ref24) 2022; 43 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/TPDS.2019.2926979 – ident: ref29 doi: 10.1109/JIOT.2022.3222408 – ident: ref1 doi: 10.1109/TITS.2023.3305380 – ident: ref3 doi: 10.1109/ISCON52037.2021.9702330 – ident: ref2 doi: 10.1007/978-3-030-61746-2_2 – ident: ref15 doi: 10.1109/JIOT.2020.2972061 – volume: 43 start-page: 185 issue: 2 year: 2022 ident: ref24 article-title: Multi-node cooperative distributed offloading strategy in V2X scenario publication-title: J. Commun. – ident: ref21 doi: 10.1109/JIOT.2021.3123406 – ident: ref7 doi: 10.1109/TPDS.2019.2950937 – ident: ref11 doi: 10.1109/VTC2024-Spring62846.2024.10683084 – ident: ref10 doi: 10.1109/TITS.2020.3017172 – ident: ref16 doi: 10.1109/JIOT.2020.3040768 – ident: ref31 doi: 10.1109/TVT.2023.3241286 – ident: ref13 doi: 10.1109/TVT.2022.3174530 – ident: ref19 doi: 10.1109/JIOT.2021.3100117 – ident: ref32 doi: 10.1109/TWC.2022.3186590 – ident: ref4 doi: 10.1109/ISWTA58588.2023.10249725 – ident: ref8 doi: 10.1109/TPDS.2021.3119948 – ident: ref9 doi: 10.1109/TMC.2020.3006507 – ident: ref22 doi: 10.1109/JIOT.2021.3118016 – ident: ref5 doi: 10.1109/TWC.2021.3108641 – ident: ref23 doi: 10.1109/TWC.2021.3062616 – ident: ref28 doi: 10.1109/JIOT.2023.3245721 – volume: 45 start-page: 812 issue: 04 year: 2022 ident: ref18 article-title: Multi-user edge computing task offloading scheduling and resource allocation based on deep reinforcement learning publication-title: Chin. J. Comput. – ident: ref33 doi: 10.1109/JIOT.2020.3015970 – volume: 42 start-page: 1 issue: 06 year: 2021 ident: ref17 article-title: Computation offloading strategy in multi-agent cooperation scenario based on reinforcement learning with value-decomposition publication-title: J. Commun. – ident: ref26 doi: 10.1007/978-3-030-61746-2_19 – ident: ref20 doi: 10.23919/jcin.2022.9745485 – ident: ref12 doi: 10.1109/SmartIoT58732.2023.00021 – ident: ref27 doi: 10.1109/JIOT.2022.3179000 – ident: ref14 doi: 10.1002/agj2.21385 – ident: ref25 doi: 10.1109/TVT.2021.3117847 – volume: 42 start-page: 118 issue: 6 year: 2021 ident: ref30 article-title: Cooperative service caching and peer offloading in Internet of Vehicles based on multi-agent meta-reinforcement learning publication-title: J. Commun. |
| SSID | ssj0014504 |
| Score | 2.4726663 |
| Snippet | Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 2537 |
| SubjectTerms | Collaboration Costs Delays Edge computing Energy consumption Heuristic algorithms Optimization partial offloading resource allocation Resource management Servers Training unequal splitting Vehicle dynamics |
| Title | Co-Optimization of Partial Offloading and Resource Allocation for Multi-User Tasks in Vehicular Edge Networks |
| URI | https://ieeexplore.ieee.org/document/11007039 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx5EESN-pQdPJoV9dWuPBDHEA5AIhtuy9UMJsBmBi3-9r92mxMTE27J0S9P3Xvt7fR8_hO5YEqVOwj3CmauIUQqSUJaSgKowCjjjobbdPkfhcBY8zem8LFa3tTBKKZt8pjrm0cbyZS525qqsa9qbgYbyGqpFLCyKtb5DBgG1XIHgXlDCwQ7LEKbr8O508vAMrqBHOz6N3MAQE-8dQnusKvZQeWygUTWdIpdk2dlt0474_NWp8d_zPUHHJbzEvUIfTtGBypqoUVE34NKSm-horw_hGVr3czKGvWNdFmXiXOOJ0Sn41VjrVW4T7XGSSVxd9-PeyhyDdjTgXmwLeckMFBpPk81ygxcZflFvC5vmigfyVeFRkXG-aaHZ42DaH5KSh4EI16dbwiUXjqskmKpmSriUqUhwGaSCCakAL3IPnEQjWk_7jvYBgwpXeEIGYehwLfxzVM_yTF0g7EQek4CCAgF-DCDJNBVSu4ZVUIUpbLttdF8JJn4v2m3E1k1xeGykGBspxqUU26hl1vxnYLncl3-8v0KH5vMiGeUa1bcfO3UDkGKb3lpV-gLjrcct |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADaxE7PnBCcpvFTuIjAqqylUq0iFuUeAEEJIi2F76esZNChYTELYosy_K88byxZwE4SrI49zIRUJH4mlpQ0IwnOWVcRzETiYiMq_bZjToDdvnAH-pkdZcLo7V2wWe6aT_dW74q5dhelbVseTNEqJiFec4Y41W61vejAeOuWyA6GJwK1MT6EdP3RKvfO7tDZzDgzZDHPrOtiafM0FRfFWdW2ivQnSyoiiZ5aY5HeVN-_qrV-O8Vr8JyTTDJSYWINZjRxTqsTJo3kFqX12FpqhLhBrydlvQWT4-3Oi2TlIb0LKpwqltjXksXak-yQpHJhT85ebWG0I1G5ktcKi8dIKRJPxu-DMlzQe7107MLdCXn6lGTbhVzPmzAoH3eP-3QuhMDlX7IR1QoIT1fK1RWk2jp80THUiiWy0QqjYxRBOgmWuEGJvRMiCxU-jKQikWRJ4wMN2GuKAu9BcSLg0QhD2ISPRnkknkulfFtX0Ed5XjwbsPxRDDpe1VwI3WOiidSK8XUSjGtpbgNDbvnPwPr7d754_8hLHT6N9fp9UX3ahcW7VRVaMoezI0-xnofCcYoP3Cw-gJ-LMp6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-Optimization+of+Partial+Offloading+and+Resource+Allocation+for+Multi-User+Tasks+in+Vehicular+Edge+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Cao%2C+Dun&rft.au=Huang%2C+Shirui&rft.au=Gu%2C+Ning&rft.au=Alqahtani%2C+Fayez&rft.date=2025-12-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=36&rft.issue=12&rft.spage=2537&rft.epage=2548&rft_id=info:doi/10.1109%2FTPDS.2025.3571470&rft.externalDocID=11007039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |