Co-Optimization of Partial Offloading and Resource Allocation for Multi-User Tasks in Vehicular Edge Networks

Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly incr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 36; no. 12; pp. 2537 - 2548
Main Authors Cao, Dun, Huang, Shirui, Gu, Ning, Alqahtani, Fayez, Sherratt, R. Simon, Wang, Jin
Format Journal Article
LanguageEnglish
Published IEEE 01.12.2025
Subjects
Online AccessGet full text
ISSN1045-9219
1558-2183
DOI10.1109/TPDS.2025.3571470

Cover

Abstract Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly increase the latency and energy consumption costs for vehicles. Therefore, achieving optimal configuration of available computing resources in MEC servers to accomplish the goal of low-latency and low-energy task offloading has become a critical issue to address. To tackle this problem, this study proposes a Multi-RSU Load Balancing (MRLB) strategy based on multi-hop network technology. This strategy dynamically allocates computing tasks to neighboring RSU server clusters with available computing resources through task segmentation and computation offloading mechanisms. Meanwhile, adaptive resource allocation strategies are implemented based on task quantity and task scale characteristics. Specifically, this study designs a multi-RSU collaborative offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) to solve the optimal offloading decision. Additionally, by integrating the Lagrange multiplier method and Sequential Quadratic Programming (SQP) algorithm, the joint optimization of imbalanced task segmentation decisions and optimal CPU frequency allocation decisions for RSU servers is achieved. Experimental results demonstrate that the proposed method can achieve efficient multi-RSU resource allocation and ensure coordinated optimization of both system latency and energy consumption costs across diverse device conditions and varying network scenarios, particularly in load-imbalanced situations.
AbstractList Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive vehicular applications. However, the uneven spatial distribution of users leads to load imbalance among adjacent MEC servers, significantly increase the latency and energy consumption costs for vehicles. Therefore, achieving optimal configuration of available computing resources in MEC servers to accomplish the goal of low-latency and low-energy task offloading has become a critical issue to address. To tackle this problem, this study proposes a Multi-RSU Load Balancing (MRLB) strategy based on multi-hop network technology. This strategy dynamically allocates computing tasks to neighboring RSU server clusters with available computing resources through task segmentation and computation offloading mechanisms. Meanwhile, adaptive resource allocation strategies are implemented based on task quantity and task scale characteristics. Specifically, this study designs a multi-RSU collaborative offloading algorithm based on Deep Deterministic Policy Gradient (DDPG) to solve the optimal offloading decision. Additionally, by integrating the Lagrange multiplier method and Sequential Quadratic Programming (SQP) algorithm, the joint optimization of imbalanced task segmentation decisions and optimal CPU frequency allocation decisions for RSU servers is achieved. Experimental results demonstrate that the proposed method can achieve efficient multi-RSU resource allocation and ensure coordinated optimization of both system latency and energy consumption costs across diverse device conditions and varying network scenarios, particularly in load-imbalanced situations.
Author Cao, Dun
Wang, Jin
Huang, Shirui
Alqahtani, Fayez
Sherratt, R. Simon
Gu, Ning
Author_xml – sequence: 1
  givenname: Dun
  orcidid: 0000-0003-1466-7351
  surname: Cao
  fullname: Cao, Dun
  email: caodun@csust.edu.cn
  organization: Changsha University of Science and Technology, Changsha, China
– sequence: 2
  givenname: Shirui
  orcidid: 0009-0005-6607-0313
  surname: Huang
  fullname: Huang, Shirui
  email: 2529095199@qq.com
  organization: College of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 3
  givenname: Ning
  surname: Gu
  fullname: Gu, Ning
  email: guning@stu.csust.edu.cn
  organization: College of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 4
  givenname: Fayez
  orcidid: 0000-0001-8972-5953
  surname: Alqahtani
  fullname: Alqahtani, Fayez
  email: fhalqahtani@ksu.edu.sa
  organization: Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
– sequence: 5
  givenname: R. Simon
  orcidid: 0000-0001-7899-4445
  surname: Sherratt
  fullname: Sherratt, R. Simon
  email: r.s.sherratt@reading.ac.uk
  organization: School of Biomedical Engineering, University of Reading, Reading, U.K
– sequence: 6
  givenname: Jin
  orcidid: 0000-0001-5473-8738
  surname: Wang
  fullname: Wang, Jin
  email: jinwang@hnust.edu.cn
  organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China
BookMark eNpFkMtOAjEYhRuDiYA-gImLvsDg32k7TJcE8ZKgEAW3k9r-xcowJe0Qo08vBBJX5yTnsvh6pNOEBgm5ZjBgDNTtYn73NsghlwMuh0wM4Yx0mZRllrOSd_YehMxUztQF6aX0BcCEBNElm3HIZtvWb_yvbn1oaHB0rmPrdU1nztVBW9-sqG4sfcUUdtEgHdV1MMe2C5E-7-rWZ8uEkS50WifqG_qOn97sah3pxK6QvmD7HeI6XZJzp-uEVyftk-X9ZDF-zKazh6fxaJoZxmWbKasMMLQFL12JhskSh0ZZ8WFKY1FyrnJQohgKlTsOjpcAhpncWFEUoJzhfcKOvyaGlCK6ahv9RsefikF14FUdeFUHXtWJ135zc9x4RPzvM4B9qPgf4QRp4A
CODEN ITDSEO
Cites_doi 10.1109/TPDS.2019.2926979
10.1109/JIOT.2022.3222408
10.1109/TITS.2023.3305380
10.1109/ISCON52037.2021.9702330
10.1007/978-3-030-61746-2_2
10.1109/JIOT.2020.2972061
10.1109/JIOT.2021.3123406
10.1109/TPDS.2019.2950937
10.1109/VTC2024-Spring62846.2024.10683084
10.1109/TITS.2020.3017172
10.1109/JIOT.2020.3040768
10.1109/TVT.2023.3241286
10.1109/TVT.2022.3174530
10.1109/JIOT.2021.3100117
10.1109/TWC.2022.3186590
10.1109/ISWTA58588.2023.10249725
10.1109/TPDS.2021.3119948
10.1109/TMC.2020.3006507
10.1109/JIOT.2021.3118016
10.1109/TWC.2021.3108641
10.1109/TWC.2021.3062616
10.1109/JIOT.2023.3245721
10.1109/JIOT.2020.3015970
10.1007/978-3-030-61746-2_19
10.23919/jcin.2022.9745485
10.1109/SmartIoT58732.2023.00021
10.1109/JIOT.2022.3179000
10.1002/agj2.21385
10.1109/TVT.2021.3117847
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPDS.2025.3571470
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2548
ExternalDocumentID 10_1109_TPDS_2025_3571470
11007039
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China
  grantid: 2025JJ20069
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 62272063; 62473146
  funderid: 10.13039/501100001809
– fundername: Ongoing Research Funding Program, King Saud University
  grantid: ORF-2025-509
– fundername: Research Foundation of Education Bureau of Hunan Province
  grantid: 23A0253
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2024JJ3017
  funderid: 10.13039/501100004735
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c135t-9d9c01ed638f8ec158e7c9d4bc8cde5339209467492f30f3800c1c2cd46609fc3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Sat Oct 25 05:12:33 EDT 2025
Sat Oct 25 03:09:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-9d9c01ed638f8ec158e7c9d4bc8cde5339209467492f30f3800c1c2cd46609fc3
ORCID 0009-0005-6607-0313
0000-0001-5473-8738
0000-0001-8972-5953
0000-0003-1466-7351
0000-0001-7899-4445
PageCount 12
ParticipantIDs crossref_primary_10_1109_TPDS_2025_3571470
ieee_primary_11007039
PublicationCentury 2000
PublicationDate 2025-Dec.
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec.
PublicationDecade 2020
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref16
ref19
Kuang (ref18) 2022; 45
Ning (ref30) 2021; 42
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
Zhang (ref17) 2021; 42
ref7
Cao (ref24) 2022; 43
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/TPDS.2019.2926979
– ident: ref29
  doi: 10.1109/JIOT.2022.3222408
– ident: ref1
  doi: 10.1109/TITS.2023.3305380
– ident: ref3
  doi: 10.1109/ISCON52037.2021.9702330
– ident: ref2
  doi: 10.1007/978-3-030-61746-2_2
– ident: ref15
  doi: 10.1109/JIOT.2020.2972061
– volume: 43
  start-page: 185
  issue: 2
  year: 2022
  ident: ref24
  article-title: Multi-node cooperative distributed offloading strategy in V2X scenario
  publication-title: J. Commun.
– ident: ref21
  doi: 10.1109/JIOT.2021.3123406
– ident: ref7
  doi: 10.1109/TPDS.2019.2950937
– ident: ref11
  doi: 10.1109/VTC2024-Spring62846.2024.10683084
– ident: ref10
  doi: 10.1109/TITS.2020.3017172
– ident: ref16
  doi: 10.1109/JIOT.2020.3040768
– ident: ref31
  doi: 10.1109/TVT.2023.3241286
– ident: ref13
  doi: 10.1109/TVT.2022.3174530
– ident: ref19
  doi: 10.1109/JIOT.2021.3100117
– ident: ref32
  doi: 10.1109/TWC.2022.3186590
– ident: ref4
  doi: 10.1109/ISWTA58588.2023.10249725
– ident: ref8
  doi: 10.1109/TPDS.2021.3119948
– ident: ref9
  doi: 10.1109/TMC.2020.3006507
– ident: ref22
  doi: 10.1109/JIOT.2021.3118016
– ident: ref5
  doi: 10.1109/TWC.2021.3108641
– ident: ref23
  doi: 10.1109/TWC.2021.3062616
– ident: ref28
  doi: 10.1109/JIOT.2023.3245721
– volume: 45
  start-page: 812
  issue: 04
  year: 2022
  ident: ref18
  article-title: Multi-user edge computing task offloading scheduling and resource allocation based on deep reinforcement learning
  publication-title: Chin. J. Comput.
– ident: ref33
  doi: 10.1109/JIOT.2020.3015970
– volume: 42
  start-page: 1
  issue: 06
  year: 2021
  ident: ref17
  article-title: Computation offloading strategy in multi-agent cooperation scenario based on reinforcement learning with value-decomposition
  publication-title: J. Commun.
– ident: ref26
  doi: 10.1007/978-3-030-61746-2_19
– ident: ref20
  doi: 10.23919/jcin.2022.9745485
– ident: ref12
  doi: 10.1109/SmartIoT58732.2023.00021
– ident: ref27
  doi: 10.1109/JIOT.2022.3179000
– ident: ref14
  doi: 10.1002/agj2.21385
– ident: ref25
  doi: 10.1109/TVT.2021.3117847
– volume: 42
  start-page: 118
  issue: 6
  year: 2021
  ident: ref30
  article-title: Cooperative service caching and peer offloading in Internet of Vehicles based on multi-agent meta-reinforcement learning
  publication-title: J. Commun.
SSID ssj0014504
Score 2.4726663
Snippet Mobile Edge Computing (MEC) effectively alleviates the pressure on limited in-vehicle computing resources and energy supply caused by computation-intensive...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2537
SubjectTerms Collaboration
Costs
Delays
Edge computing
Energy consumption
Heuristic algorithms
Optimization
partial offloading
resource allocation
Resource management
Servers
Training
unequal splitting
Vehicle dynamics
Title Co-Optimization of Partial Offloading and Resource Allocation for Multi-User Tasks in Vehicular Edge Networks
URI https://ieeexplore.ieee.org/document/11007039
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ekx5EESN-pQdPJoV9dWuPBDHEA5AIhtuy9UMJsBmBi3-9r92mxMTE27J0S9P3Xvt7fR8_hO5YEqVOwj3CmauIUQqSUJaSgKowCjjjobbdPkfhcBY8zem8LFa3tTBKKZt8pjrm0cbyZS525qqsa9qbgYbyGqpFLCyKtb5DBgG1XIHgXlDCwQ7LEKbr8O508vAMrqBHOz6N3MAQE-8dQnusKvZQeWygUTWdIpdk2dlt0474_NWp8d_zPUHHJbzEvUIfTtGBypqoUVE34NKSm-horw_hGVr3czKGvWNdFmXiXOOJ0Sn41VjrVW4T7XGSSVxd9-PeyhyDdjTgXmwLeckMFBpPk81ygxcZflFvC5vmigfyVeFRkXG-aaHZ42DaH5KSh4EI16dbwiUXjqskmKpmSriUqUhwGaSCCakAL3IPnEQjWk_7jvYBgwpXeEIGYehwLfxzVM_yTF0g7EQek4CCAgF-DCDJNBVSu4ZVUIUpbLttdF8JJn4v2m3E1k1xeGykGBspxqUU26hl1vxnYLncl3-8v0KH5vMiGeUa1bcfO3UDkGKb3lpV-gLjrcct
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADaxE7PnBCcpvFTuIjAqqylUq0iFuUeAEEJIi2F76esZNChYTELYosy_K88byxZwE4SrI49zIRUJH4mlpQ0IwnOWVcRzETiYiMq_bZjToDdvnAH-pkdZcLo7V2wWe6aT_dW74q5dhelbVseTNEqJiFec4Y41W61vejAeOuWyA6GJwK1MT6EdP3RKvfO7tDZzDgzZDHPrOtiafM0FRfFWdW2ivQnSyoiiZ5aY5HeVN-_qrV-O8Vr8JyTTDJSYWINZjRxTqsTJo3kFqX12FpqhLhBrydlvQWT4-3Oi2TlIb0LKpwqltjXksXak-yQpHJhT85ebWG0I1G5ktcKi8dIKRJPxu-DMlzQe7107MLdCXn6lGTbhVzPmzAoH3eP-3QuhMDlX7IR1QoIT1fK1RWk2jp80THUiiWy0QqjYxRBOgmWuEGJvRMiCxU-jKQikWRJ4wMN2GuKAu9BcSLg0QhD2ISPRnkknkulfFtX0Ed5XjwbsPxRDDpe1VwI3WOiidSK8XUSjGtpbgNDbvnPwPr7d754_8hLHT6N9fp9UX3ahcW7VRVaMoezI0-xnofCcYoP3Cw-gJ-LMp6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-Optimization+of+Partial+Offloading+and+Resource+Allocation+for+Multi-User+Tasks+in+Vehicular+Edge+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Cao%2C+Dun&rft.au=Huang%2C+Shirui&rft.au=Gu%2C+Ning&rft.au=Alqahtani%2C+Fayez&rft.date=2025-12-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=36&rft.issue=12&rft.spage=2537&rft.epage=2548&rft_id=info:doi/10.1109%2FTPDS.2025.3571470&rft.externalDocID=11007039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon