Graph-Hierarchical Approaches for Distributed Learning Over Nonuniform Durations of Agents
The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoret...
Saved in:
| Published in | IEEE transactions on control of network systems pp. 1 - 12 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2325-5870 2372-2533 |
| DOI | 10.1109/TCNS.2025.3597209 |
Cover
| Abstract | The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoretical methods to address a novel class of nonuniform distributed learning (NUDL) problems for networks consisting of nonlinear agents subject to nonuniform durations that are agent- and iteration-dependent. An NUDL algorithm is proposed by making full use of the available interaction information among agents in spite of the limitation of the network topology and the nonuniform durations. Furthermore, a graph-hierarchical method is presented to obtain feasible design conditions for NUDL such that the nonuniform cooperative tracking objectives of the agents can be accomplished in the presence of any specified trajectory, despite whether the unknown nonlinear dynamics of agents are globally or locally Lipschitz. In particular, an inherent relation is disclosed between the changing of agent- and iteration-dependent durations and the switching of network topologies in distributed learning. Simulations performed on a network of four nonlinear agents are used to demonstrate the effectiveness of the given NUDL results. |
|---|---|
| AbstractList | The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoretical methods to address a novel class of nonuniform distributed learning (NUDL) problems for networks consisting of nonlinear agents subject to nonuniform durations that are agent- and iteration-dependent. An NUDL algorithm is proposed by making full use of the available interaction information among agents in spite of the limitation of the network topology and the nonuniform durations. Furthermore, a graph-hierarchical method is presented to obtain feasible design conditions for NUDL such that the nonuniform cooperative tracking objectives of the agents can be accomplished in the presence of any specified trajectory, despite whether the unknown nonlinear dynamics of agents are globally or locally Lipschitz. In particular, an inherent relation is disclosed between the changing of agent- and iteration-dependent durations and the switching of network topologies in distributed learning. Simulations performed on a network of four nonlinear agents are used to demonstrate the effectiveness of the given NUDL results. |
| Author | Meng, Deyuan Zhang, Jingyao |
| Author_xml | – sequence: 1 givenname: Deyuan orcidid: 0000-0002-0990-0166 surname: Meng fullname: Meng, Deyuan email: dymeng@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, China – sequence: 2 givenname: Jingyao orcidid: 0000-0003-4065-8424 surname: Zhang fullname: Zhang, Jingyao email: zhangjingyao@buaa.edu.cn organization: State Key Laboratory of CNS/ATM, Beijing, China |
| BookMark | eNpFkMFqAjEYhEOxUGt9gEIPeYG1f_5s3N2jaKsF0UPtpZcliYmmaLIka6Fvr4tCTzMDM3P4HknPB28IeWYwYgyq18109TlCQDHioioQqjvSR15ghoLzXudRZKIs4IEMU_oBAIbiknmffM-jbPbZwpkoo947LQ900jQxSL03idoQ6cylNjp1as2WLo2M3vkdXf-aSFfBn7y7dI50doqydcEnGiyd7Ixv0xO5t_KQzPCmA_L1_raZLrLlev4xnSwzzbhos0KB1qUUElBXWglp861gnI0NClvZUlVKF9tcV0wUymqJOSoAxXCslSpVyQeEXX91DClFY-smuqOMfzWDuuNTd3zqjk9943PZvFw3zhjz32cMIc_H_Ay-GmUL |
| CODEN | ITCNAY |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TCNS.2025.3597209 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2372-2533 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TCNS_2025_3597209 11120446 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL PQQKQ RIA RIE 4.4 AAYXX AGSQL CITATION EJD M43 |
| ID | FETCH-LOGICAL-c135t-7b0cc8a5a02c9cb5af4d51316e25f9f8b9bc7d4c9157bfca242b00b126cbb8b83 |
| IEDL.DBID | RIE |
| ISSN | 2325-5870 |
| IngestDate | Wed Oct 01 05:34:51 EDT 2025 Wed Aug 20 06:21:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-7b0cc8a5a02c9cb5af4d51316e25f9f8b9bc7d4c9157bfca242b00b126cbb8b83 |
| ORCID | 0000-0002-0990-0166 0000-0003-4065-8424 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCNS_2025_3597209 ieee_primary_11120446 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on control of network systems |
| PublicationTitleAbbrev | TCNS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001255873 |
| Score | 2.3175526 |
| Snippet | The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework,... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Computer aided instruction Convergence cooperative tracking Distance learning distributed learning Graph hierarchy Network topology Nonlinear dynamical systems nonuniform duration Switches Topology Training Transient analysis Transient response |
| Title | Graph-Hierarchical Approaches for Distributed Learning Over Nonuniform Durations of Agents |
| URI | https://ieeexplore.ieee.org/document/11120446 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-2533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255873 issn: 2325-5870 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDi_yMGT0G5tmrQ5js05BOvBDYaX0pemImIrrr341_uSdlgEwVspCYSX9_K-f4-Qa2DocikROAqZwQkkyhzkInUkR_YBxQKwkEIPsZgvg_sVX7XN6rYXRmtti8-0az5tLj8rVW1CZUOUS98kILfJdhiJplmrE1DhPApZm7n0RnK4mMRP6AH63GVoNvum5rCjezrDVKwume2TeHOKpoTkza0rcNXXL4DGfx_zgOy1ViUdN2xwSLZ0cUR2O1iDx-T5zkBTO_NX03FsB6Dg-hZQXK8p2q50akB0zfwrndEWd_WFPiKv07gs6sL0cL3Tad3wzJqWOR2bxqx1nyxnt4vJ3GkHKzjKY7xyQhgpFaU8HflKKuBpHmTcY57QPs9lHoEEFWaBkh4PIVcpqnGUTvB8oQAiiNgJ6RVloU8JFdKTqeSAjiIPMiFwqzBeDcO3Q_oRH5CbDcmTjwY_I7F-x0gm5n4Scz9Jez8D0jfU_FnYEvLsj__nZMdsbyIiF6RXfdb6Em2ECq4sb3wD6Wa5lQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG90HtSDzxnnswdPJjCgD-hx2ZyoGx7cksULoaUYYwTj4OJfbwtdJCYm3ghpSfM9-B79vt8HwBVHKuQSFFtCCYOFmdI5ntHEYkSJDxcI8xpSaBrRcI7vF2RhmtXrXhgpZV18Jm39WN_lp4WodKqsr_TS0xeQ62CDYIxJ067VSqkQEvjI3F26DuvPhtGTigE9YiPlOHu66rBlfVrjVGprMt4F0eocTRHJm12V3BZfvyAa_33QPbBj_Eo4aARhH6zJ_ABst9AGD8HzrQantsJX3XNcj0BR6w2kuFxC5b3CkYbR1ROwZAoN8uoLfFTSDqMir3LdxfUOR1UjNUtYZHCgW7OWXTAf38yGoWVGK1jCRaS0fO4IESQkcTzBBCdJhlPiIpdKj2QsCzjjwk-xYC7xeSYSZciVfnLXo4LzgAfoCHTyIpfHAFLmsoQRrkJFglNK1Vaq4xqk_h7MC0gPXK9IHn80CBpxHXk4LNb8iTV_YsOfHuhqav4sNIQ8-eP9JdgMZ9NJPLmLHk7Blv5Ukx85A53ys5LnymMo-UUtJ9_Ozbzi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Hierarchical+Approaches+for+Distributed+Learning+Over+Nonuniform+Durations+of+Agents&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Meng%2C+Deyuan&rft.au=Zhang%2C+Jingyao&rft.date=2025&rft.pub=IEEE&rft.eissn=2372-2533&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTCNS.2025.3597209&rft.externalDocID=11120446 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon |