Graph-Hierarchical Approaches for Distributed Learning Over Nonuniform Durations of Agents

The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoret...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control of network systems pp. 1 - 12
Main Authors Meng, Deyuan, Zhang, Jingyao
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2325-5870
2372-2533
DOI10.1109/TCNS.2025.3597209

Cover

Abstract The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoretical methods to address a novel class of nonuniform distributed learning (NUDL) problems for networks consisting of nonlinear agents subject to nonuniform durations that are agent- and iteration-dependent. An NUDL algorithm is proposed by making full use of the available interaction information among agents in spite of the limitation of the network topology and the nonuniform durations. Furthermore, a graph-hierarchical method is presented to obtain feasible design conditions for NUDL such that the nonuniform cooperative tracking objectives of the agents can be accomplished in the presence of any specified trajectory, despite whether the unknown nonlinear dynamics of agents are globally or locally Lipschitz. In particular, an inherent relation is disclosed between the changing of agent- and iteration-dependent durations and the switching of network topologies in distributed learning. Simulations performed on a network of four nonlinear agents are used to demonstrate the effectiveness of the given NUDL results.
AbstractList The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework, but how to exploit new graph-theoretical methods in distributed learning is not clear. This paper is targeted at developing novel graph-theoretical methods to address a novel class of nonuniform distributed learning (NUDL) problems for networks consisting of nonlinear agents subject to nonuniform durations that are agent- and iteration-dependent. An NUDL algorithm is proposed by making full use of the available interaction information among agents in spite of the limitation of the network topology and the nonuniform durations. Furthermore, a graph-hierarchical method is presented to obtain feasible design conditions for NUDL such that the nonuniform cooperative tracking objectives of the agents can be accomplished in the presence of any specified trajectory, despite whether the unknown nonlinear dynamics of agents are globally or locally Lipschitz. In particular, an inherent relation is disclosed between the changing of agent- and iteration-dependent durations and the switching of network topologies in distributed learning. Simulations performed on a network of four nonlinear agents are used to demonstrate the effectiveness of the given NUDL results.
Author Meng, Deyuan
Zhang, Jingyao
Author_xml – sequence: 1
  givenname: Deyuan
  orcidid: 0000-0002-0990-0166
  surname: Meng
  fullname: Meng, Deyuan
  email: dymeng@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, China
– sequence: 2
  givenname: Jingyao
  orcidid: 0000-0003-4065-8424
  surname: Zhang
  fullname: Zhang, Jingyao
  email: zhangjingyao@buaa.edu.cn
  organization: State Key Laboratory of CNS/ATM, Beijing, China
BookMark eNpFkMFqAjEYhEOxUGt9gEIPeYG1f_5s3N2jaKsF0UPtpZcliYmmaLIka6Fvr4tCTzMDM3P4HknPB28IeWYwYgyq18109TlCQDHioioQqjvSR15ghoLzXudRZKIs4IEMU_oBAIbiknmffM-jbPbZwpkoo947LQ900jQxSL03idoQ6cylNjp1as2WLo2M3vkdXf-aSFfBn7y7dI50doqydcEnGiyd7Ixv0xO5t_KQzPCmA_L1_raZLrLlev4xnSwzzbhos0KB1qUUElBXWglp861gnI0NClvZUlVKF9tcV0wUymqJOSoAxXCslSpVyQeEXX91DClFY-smuqOMfzWDuuNTd3zqjk9943PZvFw3zhjz32cMIc_H_Ay-GmUL
CODEN ITCNAY
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCNS.2025.3597209
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 12
ExternalDocumentID 10_1109_TCNS_2025_3597209
11120446
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
4.4
AAYXX
AGSQL
CITATION
EJD
M43
ID FETCH-LOGICAL-c135t-7b0cc8a5a02c9cb5af4d51316e25f9f8b9bc7d4c9157bfca242b00b126cbb8b83
IEDL.DBID RIE
ISSN 2325-5870
IngestDate Wed Oct 01 05:34:51 EDT 2025
Wed Aug 20 06:21:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-7b0cc8a5a02c9cb5af4d51316e25f9f8b9bc7d4c9157bfca242b00b126cbb8b83
ORCID 0000-0002-0990-0166
0000-0003-4065-8424
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCNS_2025_3597209
ieee_primary_11120446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001255873
Score 2.3175526
Snippet The design and analysis of distributed learning for multi-agent networks generally resort to the graph-theoretical methods in the leader-follower framework,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Computer aided instruction
Convergence
cooperative tracking
Distance learning
distributed learning
Graph hierarchy
Network topology
Nonlinear dynamical systems
nonuniform duration
Switches
Topology
Training
Transient analysis
Transient response
Title Graph-Hierarchical Approaches for Distributed Learning Over Nonuniform Durations of Agents
URI https://ieeexplore.ieee.org/document/11120446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDi_yMGT0G5tmrQ5js05BOvBDYaX0pemImIrrr341_uSdlgEwVspCYSX9_K-f4-Qa2DocikROAqZwQkkyhzkInUkR_YBxQKwkEIPsZgvg_sVX7XN6rYXRmtti8-0az5tLj8rVW1CZUOUS98kILfJdhiJplmrE1DhPApZm7n0RnK4mMRP6AH63GVoNvum5rCjezrDVKwume2TeHOKpoTkza0rcNXXL4DGfx_zgOy1ViUdN2xwSLZ0cUR2O1iDx-T5zkBTO_NX03FsB6Dg-hZQXK8p2q50akB0zfwrndEWd_WFPiKv07gs6sL0cL3Tad3wzJqWOR2bxqx1nyxnt4vJ3GkHKzjKY7xyQhgpFaU8HflKKuBpHmTcY57QPs9lHoEEFWaBkh4PIVcpqnGUTvB8oQAiiNgJ6RVloU8JFdKTqeSAjiIPMiFwqzBeDcO3Q_oRH5CbDcmTjwY_I7F-x0gm5n4Scz9Jez8D0jfU_FnYEvLsj__nZMdsbyIiF6RXfdb6Em2ECq4sb3wD6Wa5lQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG90HtSDzxnnswdPJjCgD-hx2ZyoGx7cksULoaUYYwTj4OJfbwtdJCYm3ghpSfM9-B79vt8HwBVHKuQSFFtCCYOFmdI5ntHEYkSJDxcI8xpSaBrRcI7vF2RhmtXrXhgpZV18Jm39WN_lp4WodKqsr_TS0xeQ62CDYIxJ067VSqkQEvjI3F26DuvPhtGTigE9YiPlOHu66rBlfVrjVGprMt4F0eocTRHJm12V3BZfvyAa_33QPbBj_Eo4aARhH6zJ_ABst9AGD8HzrQantsJX3XNcj0BR6w2kuFxC5b3CkYbR1ROwZAoN8uoLfFTSDqMir3LdxfUOR1UjNUtYZHCgW7OWXTAf38yGoWVGK1jCRaS0fO4IESQkcTzBBCdJhlPiIpdKj2QsCzjjwk-xYC7xeSYSZciVfnLXo4LzgAfoCHTyIpfHAFLmsoQRrkJFglNK1Vaq4xqk_h7MC0gPXK9IHn80CBpxHXk4LNb8iTV_YsOfHuhqav4sNIQ8-eP9JdgMZ9NJPLmLHk7Blv5Ukx85A53ys5LnymMo-UUtJ9_Ozbzi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Hierarchical+Approaches+for+Distributed+Learning+Over+Nonuniform+Durations+of+Agents&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Meng%2C+Deyuan&rft.au=Zhang%2C+Jingyao&rft.date=2025&rft.pub=IEEE&rft.eissn=2372-2533&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTCNS.2025.3597209&rft.externalDocID=11120446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon