PARAMETER EFFICIENT FINE-TUNING AND OVERFITTING IN GPT LARGE LANGUAGE MODELS: A METRIC-BASED COMPARISON

Background. Building upon previous research, this study conducts an exploration into Large Language Models (LLMs), with an emphasis on the fine-tuning and assessment of LLaMA-3.1 for instructional tasks. LLaMA-3.1, which is a new generation model and has gained considerable recognition based on its...

Full description

Saved in:
Bibliographic Details
Published inЕлектроніка та інформаційні технологіі Vol. 30; no. 30; pp. 33 - 42
Main Authors Pavlyshenko, Bohdan, Bulka, Ivan
Format Journal Article
LanguageEnglish
Published Ivan Franko National University of Lviv 01.06.2025
Subjects
Online AccessGet full text
ISSN2224-087X
2224-0888
2224-0888
DOI10.30970/eli.30.3

Cover

Abstract Background. Building upon previous research, this study conducts an exploration into Large Language Models (LLMs), with an emphasis on the fine-tuning and assessment of LLaMA-3.1 for instructional tasks. LLaMA-3.1, which is a new generation model and has gained considerable recognition based on its superior performance on various benchmarks. Besides assessing the disparities and improvements between the base and the fine-tuned versions of LLaMA-3.1 on an instruction dataset, the study also addresses the concern of overfitting with LLaMA-3.1. Furthermore, it carries out a comparison between LLaMA-3.1 and both its predecessor, LLaMA-2, and another LLM known as Mixtral, thereby providing a more comprehensive picture of LLaMA-3.1's capabilities compared to other models. Materials and Methods. The fine-tuning of LLaMA-3.1 employed state-of-the-art techniques, such as Low-Rank Adaptation (LoRA) and Quantized Low-Rank Adaptation (QLoRA), on comprehensive instruction datasets. Acknowledging the resource-intensive nature of LLM fine-tuning, optimization measures were taken. The fine-tuning process was additionally enhanced using Parameter-Efficient Fine-tuning (PEFT) on NVIDIA A100 Tensor Core GPU (graphics processing unit) instances. All the models were fine-tuned using Hugging Face and PyTorch platforms for optimal performance. Results and Discussion. The results obtained from fine-tuning and evaluating LLaMA-3.1 offer valuable insights into how this model performs with specific tasks. The evaluation framework proved helpful in the efficient assessment assessing LLMs' performance concerning instruction tasks. The research highlights the importance of evaluation for LLM applications. It shows that not always is fine-tuning a good choice, due to the nature of the model and the specifics of the task. It highlights the overfitting problem. Conclusion. The close examination of LLaMA-3.1 contributes to the field of machine learning by offering insights into how this model works and its possible fine-tuning for special tasks. The findings of this research create opportunities for more in-depth studies around the application of LLMs. It highlights the importance of efficient evaluation with already designed metrics.
AbstractList Background. Building upon previous research, this study conducts an exploration into Large Language Models (LLMs), with an emphasis on the fine-tuning and assessment of LLaMA-3.1 for instructional tasks. LLaMA-3.1, which is a new generation model and has gained considerable recognition based on its superior performance on various benchmarks. Besides assessing the disparities and improvements between the base and the fine-tuned versions of LLaMA-3.1 on an instruction dataset, the study also addresses the concern of overfitting with LLaMA-3.1. Furthermore, it carries out a comparison between LLaMA-3.1 and both its predecessor, LLaMA-2, and another LLM known as Mixtral, thereby providing a more comprehensive picture of LLaMA-3.1's capabilities compared to other models. Materials and Methods. The fine-tuning of LLaMA-3.1 employed state-of-the-art techniques, such as Low-Rank Adaptation (LoRA) and Quantized Low-Rank Adaptation (QLoRA), on comprehensive instruction datasets. Acknowledging the resource-intensive nature of LLM fine-tuning, optimization measures were taken. The fine-tuning process was additionally enhanced using Parameter-Efficient Fine-tuning (PEFT) on NVIDIA A100 Tensor Core GPU (graphics processing unit) instances. All the models were fine-tuned using Hugging Face and PyTorch platforms for optimal performance. Results and Discussion. The results obtained from fine-tuning and evaluating LLaMA-3.1 offer valuable insights into how this model performs with specific tasks. The evaluation framework proved helpful in the efficient assessment assessing LLMs' performance concerning instruction tasks. The research highlights the importance of evaluation for LLM applications. It shows that not always is fine-tuning a good choice, due to the nature of the model and the specifics of the task. It highlights the overfitting problem. Conclusion. The close examination of LLaMA-3.1 contributes to the field of machine learning by offering insights into how this model works and its possible fine-tuning for special tasks. The findings of this research create opportunities for more in-depth studies around the application of LLMs. It highlights the importance of efficient evaluation with already designed metrics.
ArticleNumber 802
Author Pavlyshenko, Bohdan
Bulka, Ivan
Author_xml – sequence: 1
  givenname: Bohdan
  surname: Pavlyshenko
  fullname: Pavlyshenko, Bohdan
– sequence: 2
  givenname: Ivan
  surname: Bulka
  fullname: Bulka, Ivan
BookMark eNp9kE1Lw0AQhhepYK09-A_2qpC6H0m69bamm7iQJiVNxVvY7CalJTYlUaT_3rWVHr3MPDO8PAxzCwb7dl8BcI_RhKLZFD1VzdbShF6BISHEdRBjbHDh6fsNGPf9DiFEKaaMsCHYLHnGFyIXGRRhKAMpkhyGMhFOvk5kEkGezGH6JrJQ5vnvLBMYLXMY8ywStibRmltYpHMRr54hh9aVycB54Ssxh0G6sH65SpM7cF2rpq_Gf30E1qHIg1cnTiMZ8NjRmHrU8ZDW9i5f18bHhpoKV75LkYcNKY1SbmkQJayc0tqvqPFcWnpYuS4mtVGzmjA6AvLsNa3aFYdu-6G6Y9GqbXFatN2mUN3nVjdVUbOSaUMIM57vKq1KF82Iz4hGutSkLq3r8ez62h_U8Vs1zUWIUXH6eGE_bqmgNvxwDuuu7fuuqv_J_gAbOXoz
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.30970/eli.30.3
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2224-0888
EndPage 42
ExternalDocumentID oai_doaj_org_article_f8b8cd228d564acab4092682c0cbc2fb
10.30970/eli.30.3
10_30970_eli_30_3
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c1353-50cc8286cfd61d3de1e643051d2bdaa4bd0328b73f6e3d543b51a4412fda9f283
IEDL.DBID DOA
ISSN 2224-087X
2224-0888
IngestDate Fri Oct 03 12:41:55 EDT 2025
Mon Sep 15 10:14:21 EDT 2025
Wed Oct 01 05:40:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1353-50cc8286cfd61d3de1e643051d2bdaa4bd0328b73f6e3d543b51a4412fda9f283
ORCID 0009-0003-2962-7931
0000-0001-9515-3488
OpenAccessLink https://doaj.org/article/f8b8cd228d564acab4092682c0cbc2fb
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f8b8cd228d564acab4092682c0cbc2fb
unpaywall_primary_10_30970_eli_30_3
crossref_primary_10_30970_eli_30_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Електроніка та інформаційні технологіі
PublicationYear 2025
Publisher Ivan Franko National University of Lviv
Publisher_xml – name: Ivan Franko National University of Lviv
SSID ssj0003313828
Score 2.2956007
Snippet Background. Building upon previous research, this study conducts an exploration into Large Language Models (LLMs), with an emphasis on the fine-tuning and...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 33
SubjectTerms fine-tuning
gpt
llama
llms
mixtral
overfitting
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELaW7gPwwCFA2-WQOV5dEl9xeMu2aTdom1ZtispT5CNGiKq7Qq0Q_HrGafdCAvESTSzHjmYczTd25huE3iVxLFMdeWJT5Ql4CEZCdQeiOdXSJGnMbDjRHZfydME_LsXyAL2-zIW5cX7PojSJ3jerryD12B10KAXA7Q46XJTT7HMoGgfuh0QqWV7LSu3Yg24_e8vntNT899Hd7fpC__yhV6sb_mT48DorZ_cbybfedmN69tcfJI3_fNVH6MEeTeJsZ_7H6KBZP0FfptksG-eAUzGg0CLsIlV4WJQ5qSDaK0c4Kwd48imfDYuqCvdFiUfTCp9ls1EO13K0yEAYTwb52fwDzjCMNSv65CSb5wPcn4xh_GI-KZ-ixTCv-qdkX0-B2FDdgojI2pA1br2TsWOuiRsZGL9iR43TmhsXyPVMwrxsmBOcGRFrgEvUO516wCHPUGd9vm6OEPaCJioCg8bC8MD9y7mzto1vEq6F7qI3lxqvL3a0GTWEG62eatATSDXropNgi6sOgem6bQCt1vsPp_bKKOsoVU5Irq02EJBSqaiNrLHUmy56e2XJv091_F-9nqN7NJT3bTdZXqDO5vu2eQmYY2Ne7Vfdb-T7yD0
  priority: 102
  providerName: Unpaywall
Title PARAMETER EFFICIENT FINE-TUNING AND OVERFITTING IN GPT LARGE LANGUAGE MODELS: A METRIC-BASED COMPARISON
URI https://doi.org/10.30970/eli.30.3
https://doaj.org/article/f8b8cd228d564acab4092682c0cbc2fb
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2224-0888
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003313828
  issn: 2224-087X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBelO7Q9jI1uLPsoou1Vqy3JX70piZO4xE5InJKejD6sMQheGQ2l_32f7Kxkh7FLL-ZZGMm8Z_R-T7J-P4QuI98PE-lZopPYEsgQjDh1ByI5laGKEp9pt6ObF-FkxW_WwXpP6sv9E9bRA3eOu7KxirWhNDZByKWWCgoSGsZUe1ppapWbfb042Sum3BzMmOPWa-XoIEcRL47WHa0Q85LIu6o3P8H6zv5KRi1n_wk62jb38ulRbjZ7iWb0Dr3dIUQsujd7jw7q5hT9mIuFyFPAnhiQZeZWhko8yoqUlFDBFWMsiiGe3aaLUVaW7j4r8Hhe4qlYjFO4FuOVACOfDdPp8hoLDH0tsgHpi2U6xINZDv1ny1nxAa1GaTmYkJ1GAtFOsYIEntbuJLi2JvQNM7Vfh47FyzdUGSm5Mo4wT0XMhjUzAWcq8CVAIGqNTCxgi4_osPnV1J8QtgGNYg-C5AeKOz5fzo3Wbc0ScRnIHjr_46zqvqPCqKCEaD1agUfBqlgP9Z0bXx5w7NVtA8S02sW0-l9Me-jiJQj_Hurzawz1BR1Tp-jbrqt8RYcPv7f1N4AZD-qs_aLO0JtVMRd3zyFyx3Q
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELaW7gPwwCFA2-WQOV5dEl9xeMu2aTdom1ZtispT5CNGiKq7Qq0Q_HrGafdCAvESTSzHjmYczTd25huE3iVxLFMdeWJT5Ql4CEZCdQeiOdXSJGnMbDjRHZfydME_LsXyAL2-zIW5cX7PojSJ3jerryD12B10KAXA7Q46XJTT7HMoGgfuh0QqWV7LSu3Yg24_e8vntNT899Hd7fpC__yhV6sb_mT48DorZ_cbybfedmN69tcfJI3_fNVH6MEeTeJsZ_7H6KBZP0FfptksG-eAUzGg0CLsIlV4WJQ5qSDaK0c4Kwd48imfDYuqCvdFiUfTCp9ls1EO13K0yEAYTwb52fwDzjCMNSv65CSb5wPcn4xh_GI-KZ-ixTCv-qdkX0-B2FDdgojI2pA1br2TsWOuiRsZGL9iR43TmhsXyPVMwrxsmBOcGRFrgEvUO516wCHPUGd9vm6OEPaCJioCg8bC8MD9y7mzto1vEq6F7qI3lxqvL3a0GTWEG62eatATSDXropNgi6sOgem6bQCt1vsPp_bKKOsoVU5Irq02EJBSqaiNrLHUmy56e2XJv091_F-9nqN7NJT3bTdZXqDO5vu2eQmYY2Ne7Vfdb-T7yD0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARAMETER+EFFICIENT+FINE-TUNING+AND+OVERFITTING+IN+GPT+LARGE+LANGUAGE+MODELS%3A+A+METRIC-BASED+COMPARISON&rft.jtitle=%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D1%96%D0%BA%D0%B0+%D1%82%D0%B0+%D1%96%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D1%96%D0%B8%CC%86%D0%BD%D1%96+%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%96&rft.au=Bohdan+Pavlyshenko&rft.au=Ivan+Bulka&rft.date=2025-06-01&rft.pub=Ivan+Franko+National+University+of+Lviv&rft.issn=2224-087X&rft.eissn=2224-0888&rft.issue=30&rft.spage=33&rft.epage=42&rft_id=info:doi/10.30970%2Feli.30.3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8b8cd228d564acab4092682c0cbc2fb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2224-087X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2224-087X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2224-087X&client=summon