Beamspace Channel Estimation for the Millimeter-wave Massive MIMO Systems: Dual Loops-based Iteration Reduction Algorithms
In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity....
        Saved in:
      
    
          | Published in | IEEE transactions on vehicular technology pp. 1 - 12 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9545 1939-9359  | 
| DOI | 10.1109/TVT.2025.3612767 | 
Cover
| Abstract | In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity. To address this challenge, we propose dual-loop beamspace channel estimation strategies that leverage the sparsity of the mmWave beamspace channel, formulating the estimation problem as a sparse signal recovery task. First, we design an effective dual-loop algorithm based on the ℓ 1 minimization problem to tackle the channel estimation problem. In the outer loop, an ℓ 1 - based iterative reduction algorithm (ℓ 1 -IRA) reduces the largescale channel estimation problem to a series of small-scale subproblems by exploiting the sparsity of the beamspace channel. In the inner loop, the fast iterative shrinkage thresholding algorithm with backtracking (FISTAB) algorithm is used to solve these subproblems efficiently. Furthermore, conventional compressed sensing algorithms exhibit favorable performance in weakly correlated systems but suffer from significant performance degradation in strongly correlated scenarios. To mitigate this limitation, we design an ℓ 1−2 minimization problem-based IRA (ℓ 1−2 -IRA) for the beamspace channel estimation problem. Finally, simulation results show that the proposed dual loop methods significantly reduce pilot overhead and improve beamspace channel estimation accuracy compared to conventional channel estimation techniques. | 
    
|---|---|
| AbstractList | In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity. To address this challenge, we propose dual-loop beamspace channel estimation strategies that leverage the sparsity of the mmWave beamspace channel, formulating the estimation problem as a sparse signal recovery task. First, we design an effective dual-loop algorithm based on the ℓ 1 minimization problem to tackle the channel estimation problem. In the outer loop, an ℓ 1 - based iterative reduction algorithm (ℓ 1 -IRA) reduces the largescale channel estimation problem to a series of small-scale subproblems by exploiting the sparsity of the beamspace channel. In the inner loop, the fast iterative shrinkage thresholding algorithm with backtracking (FISTAB) algorithm is used to solve these subproblems efficiently. Furthermore, conventional compressed sensing algorithms exhibit favorable performance in weakly correlated systems but suffer from significant performance degradation in strongly correlated scenarios. To mitigate this limitation, we design an ℓ 1−2 minimization problem-based IRA (ℓ 1−2 -IRA) for the beamspace channel estimation problem. Finally, simulation results show that the proposed dual loop methods significantly reduce pilot overhead and improve beamspace channel estimation accuracy compared to conventional channel estimation techniques. | 
    
| Author | Zhu, Zhengyu Li, Zheng Chen, Gaojie An, Zeliang Li, Yonghui Chu, Zheng Zhu, Lijun  | 
    
| Author_xml | – sequence: 1 givenname: Lijun surname: Zhu fullname: Zhu, Lijun email: zlj572513@bupt.edu.cn organization: Seedlight robot (Shenzhen) Co., Ltd., Shenzheng, China – sequence: 2 givenname: Zheng surname: Li fullname: Li, Zheng email: stones_li@outlook.com organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Zeliang surname: An fullname: An, Zeliang email: will_amc@163.com organization: School of Computer and Information, AnHui Polytechnic University, WuHu, AnHui, China – sequence: 4 givenname: Zheng surname: Chu fullname: Chu, Zheng email: andrew.chuzheng7@gmail.com organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 5 givenname: Zhengyu surname: Zhu fullname: Zhu, Zhengyu email: iezyzhu@zzu.edu.cn organization: Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China – sequence: 6 givenname: Gaojie surname: Chen fullname: Chen, Gaojie email: gaojie.chen@surrey.ac.uk organization: School of Flexible Electronics (SoFE), Sun Yat-sen University, Shenzhen, Guangdong, China – sequence: 7 givenname: Yonghui surname: Li fullname: Li, Yonghui email: yonghui.li@sydney.edu.au organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia  | 
    
| BookMark | eNpFkE9PwkAUxDcGEwG9e_CwX6C4f9uuN0RUEgiJotdmu32VNW2XdIsGP71bIfE0M8mbSd5vhAaNawCha0omlBJ1u3nfTBhhcsJjypI4OUNDqriKFJdqgIaE0DRSUsgLNPL-M0QhFB2in3vQtd9pA3i21U0DFZ77zta6s67BpWtxtwW8slVla-igjb71V8jae9vrYrXGrwffQe3v8MNeV3jp3M5HufZQ4EUoHIdeoNibPzetPlxru23tL9F5qSsPVycdo7fH-Wb2HC3XT4vZdBkZykUX5SaVjENBJE1okceJLrVhMqU81UzGLBgmSqVjkhoZ55IoabhIClVAEedc8DEix13TOu9bKLNdGx5sDxklWc8uC-yynl12YhcqN8eKBYD_c0rTQJPzX16NbfM | 
    
| CODEN | ITVTAB | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TVT.2025.3612767 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1939-9359 | 
    
| EndPage | 12 | 
    
| ExternalDocumentID | 10_1109_TVT_2025_3612767 11183593  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Ningbo Municipality; Ningbo Natural Science Foundation grantid: 2024J233 funderid: 10.13039/100007834 – fundername: Fundamental Research Funds for the Central Universities, Sun Yat-sen University grantid: 24hytd010 – fundername: National Natural Science Foundation of China grantid: 62571495 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62571495; 62571182 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Henan Province grantid: 232300421097 funderid: 10.13039/501100006407 – fundername: Science & Technology Innovation Talents in Universities of Henan Province grantid: 23HASTIT019 – fundername: Joint optimization and upgrade R&D project for liquidation robots grantid: 2025XX-JS-620 – fundername: State Key Laboratory of Integrated Services Networks grantid: ISN25-24 funderid: 10.13039/501100019642  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH M43 VH1  | 
    
| ID | FETCH-LOGICAL-c134t-bc8523ed05171db67afac258138a256281324f9a608c56b5095c347d9ded6b343 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9545 | 
    
| IngestDate | Thu Oct 02 04:27:00 EDT 2025 Wed Oct 08 06:20:19 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c134t-bc8523ed05171db67afac258138a256281324f9a608c56b5095c347d9ded6b343 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | ieee_primary_11183593 crossref_primary_10_1109_TVT_2025_3612767  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-00-00 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on vehicular technology | 
    
| PublicationTitleAbbrev | TVT | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0014491 | 
    
| Score | 2.4531767 | 
    
| Snippet | In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Antenna arrays beamspace channel estimation Channel estimation dual-loop FISTAB iterative reduction algorithm Lenses Massive MIMO Matching pursuit algorithms Millimeter wave communication mmWave Radio frequency Signal processing algorithms Vectors  | 
    
| Title | Beamspace Channel Estimation for the Millimeter-wave Massive MIMO Systems: Dual Loops-based Iteration Reduction Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/11183593 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUoJziwFlE2-cCFg0sSO07MjVUtYpFQQb1F3gIVbVNBChJfz9hJASEhcYpjJbHlseM3tt8bhPZDKfKE54bQSMWEAUAmIpCcgPlZ7FgDIXdE4esb3rlnl_24X5PVPRfGWusPn9m2S_q9fFPoqVsqO4RxCYBB0AZqJCmvyFpfWwaM1eHxQhjBgAtme5KBOOw99MATjOI2FB0lPqT89xz0I6iKn1MultHNrDbVUZLn9rRUbf3xS6jx39VdQUs1usTHVXdYRXN2vIYWf2gOrqOPEytH8BvRFjtmwdgO8TkM84rBiAHCYoCE2FEEByN3VIa8yze4B4w9cNfu9S2uVc6P8NkUCrsqiskrcbOhwV2v0ew-dOckYX3qePhYvAzKp9FrE91fnPdOO6QOwEB0SFlJlE7BT7XG6XiFRvFE5lJHcRrSVAJUiiARsVxIHqQ65gqwR6wpS4ww1nBFGd1A8-NibDcRDgTVuQL_kjHLlLBKxLkwinLwt2QYJi10MDNJNql0NjLvnwQiA_NlznxZbb4WarrG_n6ubuetP_K30YJ7vVo42UHz5cvU7gKUKNWe70KfpNLFIw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFLZYDsCBYRXLAD5w4eCSxEvquTEDqIW2SKggbpG3zFS0DYKUkfj1PDspICQkTnGsyLb87Ph7tr_vIXQYK5mnIreEJpoTBgCZyEgJAuZn3LMGYuGJwt2eaN2wizt-V5PVAxfGORcun7mGT4azfFuYid8qO4Z5CYBB0lk0zxljvKJrvR0aMFYHyIthDgMymJ5KRvK4f9sHXzDhDag8SUNQ-fdV6ENYlbCqnP9AvWl7qssk941JqRvm5ZNU47cbvIKWa3yJT6oBsYpm3HgNLX1QHVxHL7-dGsGPxDjsuQVjN8RnMNErDiMGEIsBFGJPEhyM_GUZ8l89wzug7IF_trtXuNY5_4VPJ1BZpygenohfDy1uB5VmX9C1F4UNqZPh3-JxUP4bPW2gm_Oz_p8WqUMwEBNTVhJtmuCpOuuVvGKrRapyZRLejGlTAVhKIJGwXCoRNQ0XGtAHN5SlVlpnhaaMbqK5cTF2WwhHkppcg4fJmGNaOi15Lq2mAjwuFcfpNjqamiR7qJQ2suChRDID82XefFltvm204Tv7_bu6n3e-yD9AC61-t5N12r3LXbToi6q2UX6iufJx4vYAWJR6PwynVyNjyHA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beamspace+Channel+Estimation+for+the+Millimeter-wave+Massive+MIMO+Systems%3A+Dual+Loops-based+Iteration+Reduction+Algorithms&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhu%2C+Lijun&rft.au=Li%2C+Zheng&rft.au=An%2C+Zeliang&rft.au=Chu%2C+Zheng&rft.date=2025&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTVT.2025.3612767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2025_3612767 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |