Beamspace Channel Estimation for the Millimeter-wave Massive MIMO Systems: Dual Loops-based Iteration Reduction Algorithms

In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology pp. 1 - 12
Main Authors Zhu, Lijun, Li, Zheng, An, Zeliang, Chu, Zheng, Zhu, Zhengyu, Chen, Gaojie, Li, Yonghui
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2025.3612767

Cover

Abstract In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity. To address this challenge, we propose dual-loop beamspace channel estimation strategies that leverage the sparsity of the mmWave beamspace channel, formulating the estimation problem as a sparse signal recovery task. First, we design an effective dual-loop algorithm based on the ℓ 1 minimization problem to tackle the channel estimation problem. In the outer loop, an ℓ 1 - based iterative reduction algorithm (ℓ 1 -IRA) reduces the largescale channel estimation problem to a series of small-scale subproblems by exploiting the sparsity of the beamspace channel. In the inner loop, the fast iterative shrinkage thresholding algorithm with backtracking (FISTAB) algorithm is used to solve these subproblems efficiently. Furthermore, conventional compressed sensing algorithms exhibit favorable performance in weakly correlated systems but suffer from significant performance degradation in strongly correlated scenarios. To mitigate this limitation, we design an ℓ 1−2 minimization problem-based IRA (ℓ 1−2 -IRA) for the beamspace channel estimation problem. Finally, simulation results show that the proposed dual loop methods significantly reduce pilot overhead and improve beamspace channel estimation accuracy compared to conventional channel estimation techniques.
AbstractList In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional compressed sensing algorithms demand numerous matrix-vector multiplications per iteration, thereby incurring substantial computational complexity. To address this challenge, we propose dual-loop beamspace channel estimation strategies that leverage the sparsity of the mmWave beamspace channel, formulating the estimation problem as a sparse signal recovery task. First, we design an effective dual-loop algorithm based on the ℓ 1 minimization problem to tackle the channel estimation problem. In the outer loop, an ℓ 1 - based iterative reduction algorithm (ℓ 1 -IRA) reduces the largescale channel estimation problem to a series of small-scale subproblems by exploiting the sparsity of the beamspace channel. In the inner loop, the fast iterative shrinkage thresholding algorithm with backtracking (FISTAB) algorithm is used to solve these subproblems efficiently. Furthermore, conventional compressed sensing algorithms exhibit favorable performance in weakly correlated systems but suffer from significant performance degradation in strongly correlated scenarios. To mitigate this limitation, we design an ℓ 1−2 minimization problem-based IRA (ℓ 1−2 -IRA) for the beamspace channel estimation problem. Finally, simulation results show that the proposed dual loop methods significantly reduce pilot overhead and improve beamspace channel estimation accuracy compared to conventional channel estimation techniques.
Author Zhu, Zhengyu
Li, Zheng
Chen, Gaojie
An, Zeliang
Li, Yonghui
Chu, Zheng
Zhu, Lijun
Author_xml – sequence: 1
  givenname: Lijun
  surname: Zhu
  fullname: Zhu, Lijun
  email: zlj572513@bupt.edu.cn
  organization: Seedlight robot (Shenzhen) Co., Ltd., Shenzheng, China
– sequence: 2
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  email: stones_li@outlook.com
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Zeliang
  surname: An
  fullname: An, Zeliang
  email: will_amc@163.com
  organization: School of Computer and Information, AnHui Polytechnic University, WuHu, AnHui, China
– sequence: 4
  givenname: Zheng
  surname: Chu
  fullname: Chu, Zheng
  email: andrew.chuzheng7@gmail.com
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 5
  givenname: Zhengyu
  surname: Zhu
  fullname: Zhu, Zhengyu
  email: iezyzhu@zzu.edu.cn
  organization: Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China
– sequence: 6
  givenname: Gaojie
  surname: Chen
  fullname: Chen, Gaojie
  email: gaojie.chen@surrey.ac.uk
  organization: School of Flexible Electronics (SoFE), Sun Yat-sen University, Shenzhen, Guangdong, China
– sequence: 7
  givenname: Yonghui
  surname: Li
  fullname: Li, Yonghui
  email: yonghui.li@sydney.edu.au
  organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia
BookMark eNpFkE9PwkAUxDcGEwG9e_CwX6C4f9uuN0RUEgiJotdmu32VNW2XdIsGP71bIfE0M8mbSd5vhAaNawCha0omlBJ1u3nfTBhhcsJjypI4OUNDqriKFJdqgIaE0DRSUsgLNPL-M0QhFB2in3vQtd9pA3i21U0DFZ77zta6s67BpWtxtwW8slVla-igjb71V8jae9vrYrXGrwffQe3v8MNeV3jp3M5HufZQ4EUoHIdeoNibPzetPlxru23tL9F5qSsPVycdo7fH-Wb2HC3XT4vZdBkZykUX5SaVjENBJE1okceJLrVhMqU81UzGLBgmSqVjkhoZ55IoabhIClVAEedc8DEix13TOu9bKLNdGx5sDxklWc8uC-yynl12YhcqN8eKBYD_c0rTQJPzX16NbfM
CODEN ITVTAB
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TVT.2025.3612767
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 12
ExternalDocumentID 10_1109_TVT_2025_3612767
11183593
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Ningbo Municipality; Ningbo Natural Science Foundation
  grantid: 2024J233
  funderid: 10.13039/100007834
– fundername: Fundamental Research Funds for the Central Universities, Sun Yat-sen University
  grantid: 24hytd010
– fundername: National Natural Science Foundation of China
  grantid: 62571495
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62571495; 62571182
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Henan Province
  grantid: 232300421097
  funderid: 10.13039/501100006407
– fundername: Science & Technology Innovation Talents in Universities of Henan Province
  grantid: 23HASTIT019
– fundername: Joint optimization and upgrade R&D project for liquidation robots
  grantid: 2025XX-JS-620
– fundername: State Key Laboratory of Integrated Services Networks
  grantid: ISN25-24
  funderid: 10.13039/501100019642
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
M43
VH1
ID FETCH-LOGICAL-c134t-bc8523ed05171db67afac258138a256281324f9a608c56b5095c347d9ded6b343
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Thu Oct 02 04:27:00 EDT 2025
Wed Oct 08 06:20:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-bc8523ed05171db67afac258138a256281324f9a608c56b5095c347d9ded6b343
PageCount 12
ParticipantIDs ieee_primary_11183593
crossref_primary_10_1109_TVT_2025_3612767
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014491
Score 2.4531767
Snippet In the millimeter-wave (mmWave) massive multipleinput multiple-output (MIMO) channel estimation problem blue employing lens antenna arrays, conventional...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Antenna arrays
beamspace channel estimation
Channel estimation
dual-loop
FISTAB
iterative reduction algorithm
Lenses
Massive MIMO
Matching pursuit algorithms
Millimeter wave communication
mmWave
Radio frequency
Signal processing algorithms
Vectors
Title Beamspace Channel Estimation for the Millimeter-wave Massive MIMO Systems: Dual Loops-based Iteration Reduction Algorithms
URI https://ieeexplore.ieee.org/document/11183593
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUoJziwFlE2-cCFg0sSO07MjVUtYpFQQb1F3gIVbVNBChJfz9hJASEhcYpjJbHlseM3tt8bhPZDKfKE54bQSMWEAUAmIpCcgPlZ7FgDIXdE4esb3rlnl_24X5PVPRfGWusPn9m2S_q9fFPoqVsqO4RxCYBB0AZqJCmvyFpfWwaM1eHxQhjBgAtme5KBOOw99MATjOI2FB0lPqT89xz0I6iKn1MultHNrDbVUZLn9rRUbf3xS6jx39VdQUs1usTHVXdYRXN2vIYWf2gOrqOPEytH8BvRFjtmwdgO8TkM84rBiAHCYoCE2FEEByN3VIa8yze4B4w9cNfu9S2uVc6P8NkUCrsqiskrcbOhwV2v0ew-dOckYX3qePhYvAzKp9FrE91fnPdOO6QOwEB0SFlJlE7BT7XG6XiFRvFE5lJHcRrSVAJUiiARsVxIHqQ65gqwR6wpS4ww1nBFGd1A8-NibDcRDgTVuQL_kjHLlLBKxLkwinLwt2QYJi10MDNJNql0NjLvnwQiA_NlznxZbb4WarrG_n6ubuetP_K30YJ7vVo42UHz5cvU7gKUKNWe70KfpNLFIw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFLZYDsCBYRXLAD5w4eCSxEvquTEDqIW2SKggbpG3zFS0DYKUkfj1PDspICQkTnGsyLb87Ph7tr_vIXQYK5mnIreEJpoTBgCZyEgJAuZn3LMGYuGJwt2eaN2wizt-V5PVAxfGORcun7mGT4azfFuYid8qO4Z5CYBB0lk0zxljvKJrvR0aMFYHyIthDgMymJ5KRvK4f9sHXzDhDag8SUNQ-fdV6ENYlbCqnP9AvWl7qssk941JqRvm5ZNU47cbvIKWa3yJT6oBsYpm3HgNLX1QHVxHL7-dGsGPxDjsuQVjN8RnMNErDiMGEIsBFGJPEhyM_GUZ8l89wzug7IF_trtXuNY5_4VPJ1BZpygenohfDy1uB5VmX9C1F4UNqZPh3-JxUP4bPW2gm_Oz_p8WqUMwEBNTVhJtmuCpOuuVvGKrRapyZRLejGlTAVhKIJGwXCoRNQ0XGtAHN5SlVlpnhaaMbqK5cTF2WwhHkppcg4fJmGNaOi15Lq2mAjwuFcfpNjqamiR7qJQ2suChRDID82XefFltvm204Tv7_bu6n3e-yD9AC61-t5N12r3LXbToi6q2UX6iufJx4vYAWJR6PwynVyNjyHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beamspace+Channel+Estimation+for+the+Millimeter-wave+Massive+MIMO+Systems%3A+Dual+Loops-based+Iteration+Reduction+Algorithms&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhu%2C+Lijun&rft.au=Li%2C+Zheng&rft.au=An%2C+Zeliang&rft.au=Chu%2C+Zheng&rft.date=2025&rft.issn=0018-9545&rft.eissn=1939-9359&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTVT.2025.3612767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2025_3612767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon