Piecewise Linearity of Min-Norm Solution Map of a Nonconvexly Regularized Convex Sparse Model
It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an exten...
Saved in:
| Published in | IEEE transactions on information theory Vol. 71; no. 11; p. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2025.3605554 |
Cover
| Abstract | It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an extension of this classic result, proving that the aforementioned properties extend to the min-norm solution map x ⋆ ( y , λ), where y is the observed signal, for a generalization of LASSO termed the scaled generalized minimax concave (sGMC) model. The sGMC model adopts a nonconvex debiased variant of the ℓ 1 -norm as sparse regularizer, but its objective function is overall-convex. Based on the geometric properties of x ⋆ ( y , λ), we propose an extension of the least angle regression (LARS) algorithm, which iteratively computes the closed-form expression of x ⋆ ( y , λ) in each linear zone. Under suitable conditions, the proposed algorithm provably obtains the whole solution map x ⋆ ( y , λ) within finite iterations. Numerical experiments demonstrate the efficiency and reduced estimation error of the proposed algorithm compared to the conventional LARS. Notably, our proof techniques for establishing continuity and piecewise linearity of x ⋆ ( y , λ) are novel, and they lead to two side contributions: (a) our proofs establish continuity of the sGMC solution set as a set-valued mapping of ( y , λ); (b) to prove piecewise linearity and piecewise constant sparsity pattern of x ⋆ ( y , λ), we do not require any assumption that previous work relies on (whereas to prove some additional properties of x ⋆ ( y , λ), we use a different set of assumptions from previous work). |
|---|---|
| AbstractList | It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an extension of this classic result, proving that the aforementioned properties extend to the min-norm solution map x ⋆ ( y , λ), where y is the observed signal, for a generalization of LASSO termed the scaled generalized minimax concave (sGMC) model. The sGMC model adopts a nonconvex debiased variant of the ℓ 1 -norm as sparse regularizer, but its objective function is overall-convex. Based on the geometric properties of x ⋆ ( y , λ), we propose an extension of the least angle regression (LARS) algorithm, which iteratively computes the closed-form expression of x ⋆ ( y , λ) in each linear zone. Under suitable conditions, the proposed algorithm provably obtains the whole solution map x ⋆ ( y , λ) within finite iterations. Numerical experiments demonstrate the efficiency and reduced estimation error of the proposed algorithm compared to the conventional LARS. Notably, our proof techniques for establishing continuity and piecewise linearity of x ⋆ ( y , λ) are novel, and they lead to two side contributions: (a) our proofs establish continuity of the sGMC solution set as a set-valued mapping of ( y , λ); (b) to prove piecewise linearity and piecewise constant sparsity pattern of x ⋆ ( y , λ), we do not require any assumption that previous work relies on (whereas to prove some additional properties of x ⋆ ( y , λ), we use a different set of assumptions from previous work). |
| Author | Zhang, Yi Yamada, Isao |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0003-4870-7884 surname: Zhang fullname: Zhang, Yi email: yizhang.ch.2015@gmail.com organization: Department of Information and Communications Engineering, Tokyo Institute of Technology (currently Institute of Science Tokyo), Meguro ku, Tokyo, Japan – sequence: 2 givenname: Isao orcidid: 0000-0002-6563-7526 surname: Yamada fullname: Yamada, Isao email: isao@ict.e.titech.ac.jp organization: Department of Information and Communications Engineering, Institute of Science Tokyo, Meguro ku, Tokyo, Japan |
| BookMark | eNpFkE1PwkAQhjcGEwG9e_Cwf6A4-9XtHg1RIQE0gkfTbLdTs6Z0yRZU_PUWIfE0mXnneQ_PgPSa0CAh1wxGjIG5XU1XIw5cjUQKSil5RvpMKZ2YVMke6QOwLDFSZhdk0LYf3SoV433y9uzR4Zdvkc58gzb67Z6Gis59kyxCXNNlqHdbHxo6t5tDYOkiNC40n_hd7-kLvu_qDvrBko7_jnS5sbFrm4cS60tyXtm6xavTHJLXh_vVeJLMnh6n47tZ4piQ2yStbGGUVryCTGeygAI4Wi6MM8balLkSnBGldoClKipRCQ4m5RmWJQOtUQwJHHtdDG0bsco30a9t3OcM8oOevNOTH_TkJz0dcnNEPCL-vzOmQAotfgGhWWO0 |
| CODEN | IETTAW |
| Cites_doi | 10.1007/978-3-642-02431-3 10.1109/JCN.2013.000083 10.1109/IEEECONF53345.2021.9723102 10.1109/TSP.2017.2711501 10.1111/j.2517-6161.1996.tb02080.x 10.1137/S003614450037906X 10.1515/9781400873173 10.1109/TIT.2005.862083 10.1137/080716542 10.1137/0325033 10.1137/18M1199149 10.1093/imanum/20.3.389 10.23919/EUSIPCO55093.2022.9909805 10.1080/10618600.2014.962700 10.1201/b18401 10.1088/1361-6420/ab551e 10.1214/12-AOS1003 10.1016/S0898-1221(01)00278-4 10.1214/009053606000001370 10.1137/1015073 10.1109/OJSP.2021.3104497 10.1109/ICASSP48485.2024.10447295 10.1137/050626090 10.2140/pjm.1982.103.401 10.1214/13-EJS815 10.1007/978-3-030-03009-4_61-1 10.1016/j.crma.2011.12.014 10.1007/978-981-10-1789-6 10.1214/009053604000000067.MR2060166 10.1137/22m1498991 10.1109/TIT.2006.871582 10.1214/09-AOS729 10.1017/CBO9780511804441 10.1214/11-AOS878 10.1109/MSP.2018.2867638 10.1214/07-EJS004 10.23952/jano.4.2022.2.09 10.1214/23-EJS2167 10.1198/016214501753382273 10.1017/CBO9780511794308 10.1080/10618600.2000.10474883 10.1016/0925-7721(95)00049-6 10.1214/11-aos878 10.1007/978-3-319-48311-5 10.32614/cran.package.krls 10.1109/TSP.2023.3315449 10.1214/009053607000000127 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2025.3605554 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIT_2025_3605554 11150437 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Strategic International Collaborative Research Program grantid: JPMJSC20C6 funderid: 10.13039/501100009036 – fundername: Japan Society for the Promotion of Science grantid: 19H04134; 21J22393 funderid: 10.13039/501100001691 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX ABFSI AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK |
| ID | FETCH-LOGICAL-c134t-6fab95752f08784b0b02ea239c99aa61cd0c93d7c0ed5bf3f3209628edd1077e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Wed Oct 29 21:24:35 EDT 2025 Wed Sep 10 07:40:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c134t-6fab95752f08784b0b02ea239c99aa61cd0c93d7c0ed5bf3f3209628edd1077e3 |
| ORCID | 0000-0003-4870-7884 0000-0002-6563-7526 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2025_3605554 ieee_primary_11150437 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 Mishkin (ref41) ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 Boyd (ref49) 2004 ref51 ref50 ref46 ref48 ref47 ref42 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Gregor (ref30) ref35 ref34 ref37 ref36 ref31 Mairal (ref15) ref33 ref32 ref2 ref1 ref39 ref38 ref24 Mishkin (ref40) ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Rudin (ref45) 1976 |
| References_xml | – ident: ref31 doi: 10.1007/978-3-642-02431-3 – ident: ref5 doi: 10.1109/JCN.2013.000083 – ident: ref28 doi: 10.1109/IEEECONF53345.2021.9723102 – ident: ref20 doi: 10.1109/TSP.2017.2711501 – ident: ref7 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref8 doi: 10.1137/S003614450037906X – ident: ref52 doi: 10.1515/9781400873173 – ident: ref2 doi: 10.1109/TIT.2005.862083 – ident: ref10 doi: 10.1137/080716542 – ident: ref46 doi: 10.1137/0325033 – ident: ref21 doi: 10.1137/18M1199149 – ident: ref32 doi: 10.1093/imanum/20.3.389 – ident: ref29 doi: 10.23919/EUSIPCO55093.2022.9909805 – ident: ref38 doi: 10.1080/10618600.2014.962700 – ident: ref6 doi: 10.1201/b18401 – ident: ref22 doi: 10.1088/1361-6420/ab551e – volume-title: Principles of Mathematical Analysis year: 1976 ident: ref45 – ident: ref16 doi: 10.1214/12-AOS1003 – ident: ref51 doi: 10.1016/S0898-1221(01)00278-4 – ident: ref34 doi: 10.1214/009053606000001370 – ident: ref44 doi: 10.1137/1015073 – ident: ref23 doi: 10.1109/OJSP.2021.3104497 – ident: ref1 doi: 10.1109/ICASSP48485.2024.10447295 – ident: ref9 doi: 10.1137/050626090 – ident: ref42 doi: 10.2140/pjm.1982.103.401 – ident: ref17 doi: 10.1214/13-EJS815 – ident: ref24 doi: 10.1007/978-3-030-03009-4_61-1 – ident: ref33 doi: 10.1016/j.crma.2011.12.014 – start-page: 24888 volume-title: Proc. 40th Int. Conf. Mach. Learn. ident: ref41 article-title: Optimal sets and solution paths of ReLU networks – ident: ref50 doi: 10.1007/978-981-10-1789-6 – ident: ref12 doi: 10.1214/009053604000000067.MR2060166 – ident: ref37 doi: 10.1137/22m1498991 – ident: ref3 doi: 10.1109/TIT.2006.871582 – ident: ref19 doi: 10.1214/09-AOS729 – volume-title: Convex Optimization year: 2004 ident: ref49 doi: 10.1017/CBO9780511804441 – start-page: 1835 volume-title: Proc. 29th Int. Conf. Mach. Learn. ident: ref15 article-title: Complexity analysis of the lasso regularization path – ident: ref36 doi: 10.1214/11-AOS878 – ident: ref48 doi: 10.1109/MSP.2018.2867638 – ident: ref13 doi: 10.1214/07-EJS004 – ident: ref25 doi: 10.23952/jano.4.2022.2.09 – start-page: 399 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Learning fast approximations of sparse coding – ident: ref26 doi: 10.1214/23-EJS2167 – ident: ref18 doi: 10.1198/016214501753382273 – ident: ref4 doi: 10.1017/CBO9780511794308 – ident: ref11 doi: 10.1080/10618600.2000.10474883 – ident: ref47 doi: 10.1016/0925-7721(95)00049-6 – ident: ref35 doi: 10.1214/11-aos878 – ident: ref43 doi: 10.1007/978-3-319-48311-5 – ident: ref39 doi: 10.32614/cran.package.krls – volume-title: Proc. NeurIPS Workshop ident: ref40 article-title: The solution path of the group lasso – ident: ref27 doi: 10.1109/TSP.2023.3315449 – ident: ref14 doi: 10.1214/009053607000000127 |
| SSID | ssj0014512 |
| Score | 2.4930017 |
| Snippet | It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models compressed sensing Cost function generalized minimax concave penalty Geometry Hands least angle regression Linearity nonconvexly regularized convex models Reviews Shape Signal processing algorithms Sparse least-squares problems Sparse matrices Training |
| Title | Piecewise Linearity of Min-Norm Solution Map of a Nonconvexly Regularized Convex Sparse Model |
| URI | https://ieeexplore.ieee.org/document/11150437 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J33wOvFOHnzxoVuapG3yKENRYUN0wl6kpOkpDEc3dMPLr_ckbb2B4FtJWwg5J5zvO1dCTnjEVR6HNnDG0zXVloGSsghsmGkGiqEFc66B_iC-vJfXo2hUF6v7WhgA8Mln0HGPPpafT-3Cucq6oYMvUiTLZDlRcVWs9RkykFFYtQYP8QYj6Whikkx3h1dDZII86ojY9beSP2zQt6Eq3qZcrJNBs5sqleSxs5hnHfv-q1Hjv7e7QdZqdEnPKnXYJEtQbpH1ZnIDrS_yFln91oZwmzzcjMHCy_gZKFJTVH1E5nRa0P64DAaIaWnjO6N9M3MvDB1MS5-v_jp5o7d-nP3T-B1y2vOL9G6GfBmoG7Q2aZP7i_Nh7zKoxy6ggIScB3FhMo0ojhdMJUpmLGMcDBfaam0MyjVnVos8sQzyKCtEITjyIK4gz5FLJiB2SKuclrBLqNKxBW0KkdhIWmaNUYmJBYIcBagkfI-cNoJIZ1V3jdSzEqZTFFrqhJbWQtsjbXfEX9_Vp7v_x_oBWXG_V3WDh6Q1f1rAEQKIeXbsFecDfdvA4g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61cKAceJUKKAUfeukhi2M7iX1ECLRQNkJ0kbigyHEm0qoou6K7asuvZ-wkhSJV6i1yLMvyjDXfN54HwGeRCF2lsYu88fRFtVWklaojF5eGo-ZkwbxrYJSnwxt1cZvcdsnqIRcGEUPwGQ78Z3jLr6Zu4V1lR7GHL0pmb2GZFlVJm67159FAJXFbHDymO0y0o3-V5OZofD4mLiiSgUx9hSv1lxV60VYlWJWzdcj7_bTBJN8Hi3k5cI-vSjX-94Y3YK3Dl-y4VYhNeIPNFqz3vRtYd5W3YPVFIcL3cHc1QYc_Jz-QETkl5SdszqY1G02aKCdUy3rvGRvZmf9hWT5tQsT6r_vf7Do0tH-YPGLFTsIg-zYjxozMt1q734abs9PxyTDqGi-QiKSaR2ltS0M4TtRcZ1qVvOQCrZDGGWMtSbbizsgqcxyrpKxlLQUxIaGxqohNZig_wFIzbXAHmDapQ2NrmblEOe6s1ZlNJcEcjaQmYhe-9IIoZm19jSLwEm4KElrhhVZ0QtuFbX_Ez_O60937x_ghrAzHo8vi8jz_-hHe-aXaLMJ9WJo_LPATwYl5eRCU6AnE08Qv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piecewise+Linearity+of+Min-Norm+Solution+Map+of+a+Nonconvexly+Regularized+Convex+Sparse+Model&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Zhang%2C+Yi&rft.au=Yamada%2C+Isao&rft.date=2025-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=11&rft.spage=8840&rft.epage=8870&rft_id=info:doi/10.1109%2FTIT.2025.3605554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3605554 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |