Piecewise Linearity of Min-Norm Solution Map of a Nonconvexly Regularized Convex Sparse Model

It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an exten...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 71; no. 11; p. 1
Main Authors Zhang, Yi, Yamada, Isao
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2025
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2025.3605554

Cover

Abstract It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an extension of this classic result, proving that the aforementioned properties extend to the min-norm solution map x ⋆ ( y , λ), where y is the observed signal, for a generalization of LASSO termed the scaled generalized minimax concave (sGMC) model. The sGMC model adopts a nonconvex debiased variant of the ℓ 1 -norm as sparse regularizer, but its objective function is overall-convex. Based on the geometric properties of x ⋆ ( y , λ), we propose an extension of the least angle regression (LARS) algorithm, which iteratively computes the closed-form expression of x ⋆ ( y , λ) in each linear zone. Under suitable conditions, the proposed algorithm provably obtains the whole solution map x ⋆ ( y , λ) within finite iterations. Numerical experiments demonstrate the efficiency and reduced estimation error of the proposed algorithm compared to the conventional LARS. Notably, our proof techniques for establishing continuity and piecewise linearity of x ⋆ ( y , λ) are novel, and they lead to two side contributions: (a) our proofs establish continuity of the sGMC solution set as a set-valued mapping of ( y , λ); (b) to prove piecewise linearity and piecewise constant sparsity pattern of x ⋆ ( y , λ), we do not require any assumption that previous work relies on (whereas to prove some additional properties of x ⋆ ( y , λ), we use a different set of assumptions from previous work).
AbstractList It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization parameter λ, and its signed sparsity pattern is constant within each linear piece (Osborne 2000, Efron et al. 2004). The current study is an extension of this classic result, proving that the aforementioned properties extend to the min-norm solution map x ⋆ ( y , λ), where y is the observed signal, for a generalization of LASSO termed the scaled generalized minimax concave (sGMC) model. The sGMC model adopts a nonconvex debiased variant of the ℓ 1 -norm as sparse regularizer, but its objective function is overall-convex. Based on the geometric properties of x ⋆ ( y , λ), we propose an extension of the least angle regression (LARS) algorithm, which iteratively computes the closed-form expression of x ⋆ ( y , λ) in each linear zone. Under suitable conditions, the proposed algorithm provably obtains the whole solution map x ⋆ ( y , λ) within finite iterations. Numerical experiments demonstrate the efficiency and reduced estimation error of the proposed algorithm compared to the conventional LARS. Notably, our proof techniques for establishing continuity and piecewise linearity of x ⋆ ( y , λ) are novel, and they lead to two side contributions: (a) our proofs establish continuity of the sGMC solution set as a set-valued mapping of ( y , λ); (b) to prove piecewise linearity and piecewise constant sparsity pattern of x ⋆ ( y , λ), we do not require any assumption that previous work relies on (whereas to prove some additional properties of x ⋆ ( y , λ), we use a different set of assumptions from previous work).
Author Zhang, Yi
Yamada, Isao
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0003-4870-7884
  surname: Zhang
  fullname: Zhang, Yi
  email: yizhang.ch.2015@gmail.com
  organization: Department of Information and Communications Engineering, Tokyo Institute of Technology (currently Institute of Science Tokyo), Meguro ku, Tokyo, Japan
– sequence: 2
  givenname: Isao
  orcidid: 0000-0002-6563-7526
  surname: Yamada
  fullname: Yamada, Isao
  email: isao@ict.e.titech.ac.jp
  organization: Department of Information and Communications Engineering, Institute of Science Tokyo, Meguro ku, Tokyo, Japan
BookMark eNpFkE1PwkAQhjcGEwG9e_Cwf6A4-9XtHg1RIQE0gkfTbLdTs6Z0yRZU_PUWIfE0mXnneQ_PgPSa0CAh1wxGjIG5XU1XIw5cjUQKSil5RvpMKZ2YVMke6QOwLDFSZhdk0LYf3SoV433y9uzR4Zdvkc58gzb67Z6Gis59kyxCXNNlqHdbHxo6t5tDYOkiNC40n_hd7-kLvu_qDvrBko7_jnS5sbFrm4cS60tyXtm6xavTHJLXh_vVeJLMnh6n47tZ4piQ2yStbGGUVryCTGeygAI4Wi6MM8balLkSnBGldoClKipRCQ4m5RmWJQOtUQwJHHtdDG0bsco30a9t3OcM8oOevNOTH_TkJz0dcnNEPCL-vzOmQAotfgGhWWO0
CODEN IETTAW
Cites_doi 10.1007/978-3-642-02431-3
10.1109/JCN.2013.000083
10.1109/IEEECONF53345.2021.9723102
10.1109/TSP.2017.2711501
10.1111/j.2517-6161.1996.tb02080.x
10.1137/S003614450037906X
10.1515/9781400873173
10.1109/TIT.2005.862083
10.1137/080716542
10.1137/0325033
10.1137/18M1199149
10.1093/imanum/20.3.389
10.23919/EUSIPCO55093.2022.9909805
10.1080/10618600.2014.962700
10.1201/b18401
10.1088/1361-6420/ab551e
10.1214/12-AOS1003
10.1016/S0898-1221(01)00278-4
10.1214/009053606000001370
10.1137/1015073
10.1109/OJSP.2021.3104497
10.1109/ICASSP48485.2024.10447295
10.1137/050626090
10.2140/pjm.1982.103.401
10.1214/13-EJS815
10.1007/978-3-030-03009-4_61-1
10.1016/j.crma.2011.12.014
10.1007/978-981-10-1789-6
10.1214/009053604000000067.MR2060166
10.1137/22m1498991
10.1109/TIT.2006.871582
10.1214/09-AOS729
10.1017/CBO9780511804441
10.1214/11-AOS878
10.1109/MSP.2018.2867638
10.1214/07-EJS004
10.23952/jano.4.2022.2.09
10.1214/23-EJS2167
10.1198/016214501753382273
10.1017/CBO9780511794308
10.1080/10618600.2000.10474883
10.1016/0925-7721(95)00049-6
10.1214/11-aos878
10.1007/978-3-319-48311-5
10.32614/cran.package.krls
10.1109/TSP.2023.3315449
10.1214/009053607000000127
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3605554
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1
ExternalDocumentID 10_1109_TIT_2025_3605554
11150437
Genre orig-research
GrantInformation_xml – fundername: Strategic International Collaborative Research Program
  grantid: JPMJSC20C6
  funderid: 10.13039/501100009036
– fundername: Japan Society for the Promotion of Science
  grantid: 19H04134; 21J22393
  funderid: 10.13039/501100001691
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
ABFSI
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
ID FETCH-LOGICAL-c134t-6fab95752f08784b0b02ea239c99aa61cd0c93d7c0ed5bf3f3209628edd1077e3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Wed Oct 29 21:24:35 EDT 2025
Wed Sep 10 07:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-6fab95752f08784b0b02ea239c99aa61cd0c93d7c0ed5bf3f3209628edd1077e3
ORCID 0000-0003-4870-7884
0000-0002-6563-7526
PageCount 1
ParticipantIDs crossref_primary_10_1109_TIT_2025_3605554
ieee_primary_11150437
PublicationCentury 2000
PublicationDate 2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-00
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Mishkin (ref41)
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Boyd (ref49) 2004
ref51
ref50
ref46
ref48
ref47
ref42
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Gregor (ref30)
ref35
ref34
ref37
ref36
ref31
Mairal (ref15)
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Mishkin (ref40)
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Rudin (ref45) 1976
References_xml – ident: ref31
  doi: 10.1007/978-3-642-02431-3
– ident: ref5
  doi: 10.1109/JCN.2013.000083
– ident: ref28
  doi: 10.1109/IEEECONF53345.2021.9723102
– ident: ref20
  doi: 10.1109/TSP.2017.2711501
– ident: ref7
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref8
  doi: 10.1137/S003614450037906X
– ident: ref52
  doi: 10.1515/9781400873173
– ident: ref2
  doi: 10.1109/TIT.2005.862083
– ident: ref10
  doi: 10.1137/080716542
– ident: ref46
  doi: 10.1137/0325033
– ident: ref21
  doi: 10.1137/18M1199149
– ident: ref32
  doi: 10.1093/imanum/20.3.389
– ident: ref29
  doi: 10.23919/EUSIPCO55093.2022.9909805
– ident: ref38
  doi: 10.1080/10618600.2014.962700
– ident: ref6
  doi: 10.1201/b18401
– ident: ref22
  doi: 10.1088/1361-6420/ab551e
– volume-title: Principles of Mathematical Analysis
  year: 1976
  ident: ref45
– ident: ref16
  doi: 10.1214/12-AOS1003
– ident: ref51
  doi: 10.1016/S0898-1221(01)00278-4
– ident: ref34
  doi: 10.1214/009053606000001370
– ident: ref44
  doi: 10.1137/1015073
– ident: ref23
  doi: 10.1109/OJSP.2021.3104497
– ident: ref1
  doi: 10.1109/ICASSP48485.2024.10447295
– ident: ref9
  doi: 10.1137/050626090
– ident: ref42
  doi: 10.2140/pjm.1982.103.401
– ident: ref17
  doi: 10.1214/13-EJS815
– ident: ref24
  doi: 10.1007/978-3-030-03009-4_61-1
– ident: ref33
  doi: 10.1016/j.crma.2011.12.014
– start-page: 24888
  volume-title: Proc. 40th Int. Conf. Mach. Learn.
  ident: ref41
  article-title: Optimal sets and solution paths of ReLU networks
– ident: ref50
  doi: 10.1007/978-981-10-1789-6
– ident: ref12
  doi: 10.1214/009053604000000067.MR2060166
– ident: ref37
  doi: 10.1137/22m1498991
– ident: ref3
  doi: 10.1109/TIT.2006.871582
– ident: ref19
  doi: 10.1214/09-AOS729
– volume-title: Convex Optimization
  year: 2004
  ident: ref49
  doi: 10.1017/CBO9780511804441
– start-page: 1835
  volume-title: Proc. 29th Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Complexity analysis of the lasso regularization path
– ident: ref36
  doi: 10.1214/11-AOS878
– ident: ref48
  doi: 10.1109/MSP.2018.2867638
– ident: ref13
  doi: 10.1214/07-EJS004
– ident: ref25
  doi: 10.23952/jano.4.2022.2.09
– start-page: 399
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Learning fast approximations of sparse coding
– ident: ref26
  doi: 10.1214/23-EJS2167
– ident: ref18
  doi: 10.1198/016214501753382273
– ident: ref4
  doi: 10.1017/CBO9780511794308
– ident: ref11
  doi: 10.1080/10618600.2000.10474883
– ident: ref47
  doi: 10.1016/0925-7721(95)00049-6
– ident: ref35
  doi: 10.1214/11-aos878
– ident: ref43
  doi: 10.1007/978-3-319-48311-5
– ident: ref39
  doi: 10.32614/cran.package.krls
– volume-title: Proc. NeurIPS Workshop
  ident: ref40
  article-title: The solution path of the group lasso
– ident: ref27
  doi: 10.1109/TSP.2023.3315449
– ident: ref14
  doi: 10.1214/009053607000000127
SSID ssj0014512
Score 2.4930017
Snippet It is well known that the minimum ℓ 2 -norm solution of the convex LASSO model, say x ⋆ , is a continuous piecewise linear function of the regularization...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Analytical models
compressed sensing
Cost function
generalized minimax concave penalty
Geometry
Hands
least angle regression
Linearity
nonconvexly regularized convex models
Reviews
Shape
Signal processing algorithms
Sparse least-squares problems
Sparse matrices
Training
Title Piecewise Linearity of Min-Norm Solution Map of a Nonconvexly Regularized Convex Sparse Model
URI https://ieeexplore.ieee.org/document/11150437
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J33wOvFOHnzxoVuapG3yKENRYUN0wl6kpOkpDEc3dMPLr_ckbb2B4FtJWwg5J5zvO1dCTnjEVR6HNnDG0zXVloGSsghsmGkGiqEFc66B_iC-vJfXo2hUF6v7WhgA8Mln0HGPPpafT-3Cucq6oYMvUiTLZDlRcVWs9RkykFFYtQYP8QYj6Whikkx3h1dDZII86ojY9beSP2zQt6Eq3qZcrJNBs5sqleSxs5hnHfv-q1Hjv7e7QdZqdEnPKnXYJEtQbpH1ZnIDrS_yFln91oZwmzzcjMHCy_gZKFJTVH1E5nRa0P64DAaIaWnjO6N9M3MvDB1MS5-v_jp5o7d-nP3T-B1y2vOL9G6GfBmoG7Q2aZP7i_Nh7zKoxy6ggIScB3FhMo0ojhdMJUpmLGMcDBfaam0MyjVnVos8sQzyKCtEITjyIK4gz5FLJiB2SKuclrBLqNKxBW0KkdhIWmaNUYmJBYIcBagkfI-cNoJIZ1V3jdSzEqZTFFrqhJbWQtsjbXfEX9_Vp7v_x_oBWXG_V3WDh6Q1f1rAEQKIeXbsFecDfdvA4g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61cKAceJUKKAUfeukhi2M7iX1ECLRQNkJ0kbigyHEm0qoou6K7asuvZ-wkhSJV6i1yLMvyjDXfN54HwGeRCF2lsYu88fRFtVWklaojF5eGo-ZkwbxrYJSnwxt1cZvcdsnqIRcGEUPwGQ78Z3jLr6Zu4V1lR7GHL0pmb2GZFlVJm67159FAJXFbHDymO0y0o3-V5OZofD4mLiiSgUx9hSv1lxV60VYlWJWzdcj7_bTBJN8Hi3k5cI-vSjX-94Y3YK3Dl-y4VYhNeIPNFqz3vRtYd5W3YPVFIcL3cHc1QYc_Jz-QETkl5SdszqY1G02aKCdUy3rvGRvZmf9hWT5tQsT6r_vf7Do0tH-YPGLFTsIg-zYjxozMt1q734abs9PxyTDqGi-QiKSaR2ltS0M4TtRcZ1qVvOQCrZDGGWMtSbbizsgqcxyrpKxlLQUxIaGxqohNZig_wFIzbXAHmDapQ2NrmblEOe6s1ZlNJcEcjaQmYhe-9IIoZm19jSLwEm4KElrhhVZ0QtuFbX_Ez_O60937x_ghrAzHo8vi8jz_-hHe-aXaLMJ9WJo_LPATwYl5eRCU6AnE08Qv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piecewise+Linearity+of+Min-Norm+Solution+Map+of+a+Nonconvexly+Regularized+Convex+Sparse+Model&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Zhang%2C+Yi&rft.au=Yamada%2C+Isao&rft.date=2025-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=11&rft.spage=8840&rft.epage=8870&rft_id=info:doi/10.1109%2FTIT.2025.3605554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3605554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon