Towards Sentence Level Inference Attack Against Pre-trained Language Models

In recent years, pre-trained language models (e.g., BERT and GPT) have shown the superior capability of textual representation learning, benefiting from their large architectures and massive training corpora. The industry has also quickly embraced language models to develop various downstream NLP ap...

Full description

Saved in:
Bibliographic Details
Published inProceedings on Privacy Enhancing Technologies Vol. 2023; no. 3; pp. 62 - 78
Main Authors Gu, Kang, Kabir, Ehsanul, Ramsurrun, Neha, Vosoughi, Soroush, Mehnaz, Shagufta
Format Journal Article
LanguageEnglish
Published 01.07.2023
Online AccessGet full text
ISSN2299-0984
2299-0984
DOI10.56553/popets-2023-0070

Cover

Abstract In recent years, pre-trained language models (e.g., BERT and GPT) have shown the superior capability of textual representation learning, benefiting from their large architectures and massive training corpora. The industry has also quickly embraced language models to develop various downstream NLP applications. For example, Google has already used BERT to improve its search system. The utility of the language embeddings also brings about potential privacy risks. Prior works have revealed that an adversary can either identify whether a keyword exists or gather a set of possible candidates for each word in a sentence embedding. However, these attacks cannot recover coherent sentences which leak high-level semantic information from the original text. To demonstrate that the adversary can go beyond the word-level attack, we present a novel decoder-based attack, which can reconstruct meaningful text from private embeddings after being pre-trained on a public dataset of the same domain. This attack is more challenging than a word-level attack due to the complexity of sentence structures. We comprehensively evaluate our attack in two domains and with different settings to show its superiority over the baseline attacks. Quantitative experimental results show that our attack can identify up to 3.5X of the number of keywords identified by the baseline attacks. Although our method reconstructs high-quality sentences in many cases, it often produces lower-quality sentences as well. We discuss these cases and the limitations of our method in detail
AbstractList In recent years, pre-trained language models (e.g., BERT and GPT) have shown the superior capability of textual representation learning, benefiting from their large architectures and massive training corpora. The industry has also quickly embraced language models to develop various downstream NLP applications. For example, Google has already used BERT to improve its search system. The utility of the language embeddings also brings about potential privacy risks. Prior works have revealed that an adversary can either identify whether a keyword exists or gather a set of possible candidates for each word in a sentence embedding. However, these attacks cannot recover coherent sentences which leak high-level semantic information from the original text. To demonstrate that the adversary can go beyond the word-level attack, we present a novel decoder-based attack, which can reconstruct meaningful text from private embeddings after being pre-trained on a public dataset of the same domain. This attack is more challenging than a word-level attack due to the complexity of sentence structures. We comprehensively evaluate our attack in two domains and with different settings to show its superiority over the baseline attacks. Quantitative experimental results show that our attack can identify up to 3.5X of the number of keywords identified by the baseline attacks. Although our method reconstructs high-quality sentences in many cases, it often produces lower-quality sentences as well. We discuss these cases and the limitations of our method in detail
Author Kabir, Ehsanul
Gu, Kang
Vosoughi, Soroush
Ramsurrun, Neha
Mehnaz, Shagufta
Author_xml – sequence: 1
  givenname: Kang
  surname: Gu
  fullname: Gu, Kang
  organization: Dartmouth College
– sequence: 2
  givenname: Ehsanul
  surname: Kabir
  fullname: Kabir, Ehsanul
  organization: Penn State University
– sequence: 3
  givenname: Neha
  surname: Ramsurrun
  fullname: Ramsurrun, Neha
  organization: Dartmouth College
– sequence: 4
  givenname: Soroush
  surname: Vosoughi
  fullname: Vosoughi, Soroush
  organization: Dartmouth College
– sequence: 5
  givenname: Shagufta
  surname: Mehnaz
  fullname: Mehnaz, Shagufta
  organization: Penn State University
BookMark eNqFkMtOwzAQRS1UJErpB7DzDwTsOHaSZVXxqAgCibK2pvakCgQnsl2q_j1NywKxgNXcWZw7mnNORq5zSMglZ1dSSSmu-67HGJKUpSJhLGcnZJymZZmwsshGP_IZmYbwxhjjSnIuizF5WHZb8DbQF3QRnUFa4Se2dOFq9Id9FiOYdzpbQ-NCpM8ek-j3GS2twK03sEb62FlswwU5raENOP2eE_J6e7Oc3yfV091iPqsSw4VgiTAA3KyEyspCZBkoWFmGUK5yq4wRubWyrm0qClkomwmUqkArkMkayhwkExOSHns3rofdFtpW9775AL_TnOmDEX00ogcjejCyh_IjZHwXgsdamyZCbDo3fNP-SfJf5P_XvgBqSnry
CitedBy_id crossref_primary_10_1007_s11191_024_00561_9
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.56553/popets-2023-0070
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Law
EISSN 2299-0984
EndPage 78
ExternalDocumentID 10.56553/popets-2023-0070
10_56553_popets_2023_0070
GroupedDBID 5VS
AAYXX
ACGFS
ADBBV
ADBLJ
AIKXB
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EJD
IPNFZ
KQ8
M~E
OK1
RIG
SLJYH
ADTOC
UNPAY
ID FETCH-LOGICAL-c1330-3caa1cb36498344a6abd0ea9b7d6cc37dd5ffd238586d43e568ed3e05fa97a503
IEDL.DBID UNPAY
ISSN 2299-0984
IngestDate Tue Aug 19 22:30:06 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Sat Oct 25 08:35:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1330-3caa1cb36498344a6abd0ea9b7d6cc37dd5ffd238586d43e568ed3e05fa97a503
OpenAccessLink https://proxy.k.utb.cz/login?url=https://petsymposium.org/popets/2023/popets-2023-0070.pdf
PageCount 17
ParticipantIDs unpaywall_primary_10_56553_popets_2023_0070
crossref_citationtrail_10_56553_popets_2023_0070
crossref_primary_10_56553_popets_2023_0070
PublicationCentury 2000
PublicationDate 2023-7-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-7-00
PublicationDecade 2020
PublicationTitle Proceedings on Privacy Enhancing Technologies
PublicationYear 2023
SSID ssj0001651158
Score 2.2265217
Snippet In recent years, pre-trained language models (e.g., BERT and GPT) have shown the superior capability of textual representation learning, benefiting from their...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 62
Title Towards Sentence Level Inference Attack Against Pre-trained Language Models
URI https://petsymposium.org/popets/2023/popets-2023-0070.pdf
UnpaywallVersion publishedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2299-0984
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651158
  issn: 2299-0984
  databaseCode: KQ8
  dateStart: 20150416
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2299-0984
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651158
  issn: 2299-0984
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVJWN
  databaseName: Sciendo:Open Access
  customDbUrl:
  eissn: 2299-0984
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651158
  issn: 2299-0984
  databaseCode: ADBLJ
  dateStart: 20150416
  isFulltext: true
  titleUrlDefault: https://www.sciendo.com/
  providerName: Sciendo
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8EDp78NmKU9OBJMzK2dh9HYiCoQEiEBL0sXdsZwxgLbCF48G-3bxsENdHorVlel5f3ur3Pvh9CV1J9fQZR0Ylguq4Rqvua4wRcRSlUOMrcUINBQr_Xtzojcj-m4y2oL-UqLlZTaFhKp1khP57BI4jRzWKtwVqDOTX1WAQlVLGocsPLqDLqD5pPACZnwM161yF5FVO5LPT73k92aDeNYrZasjDcMi7tffS8YSvrKZnU08Sv87cvExv_xfcB2itcTtzMz8gh2pHRESp12fIYPQyzrtkFfoTRnEr_uAtNRPhufQ0QN5OE8QluvrBX5UjiwVxqGaqEFLhbpDox4KmFixM0areGtx2tgFfQuApM1d-XM9bgvmkRF8A2mMV8oUvm-rawODdtIWgQCAMqh5YgpqSWI4UpdRow12ZUN09ROZpF8gxh0rAFtblsSEe9yKY-pFcN6RKo8zpUVJG-FrbHi9njwGzoqRgk04-Xy8gDGXkgoyq63myJ88EbPxHfbDT4O_X5n6gvUDmZp_JS-R6JX0Ol3nurVpy1D5F63As
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-uO3jyW5yo5OBJ6ejapB_HIo6pcwzcYHopaZKKrOvK1jLmX29e242poOgtlJfyeC_t-8z7IXQp1ddnEhWdCGYYOqFGqLtuxFWUQoWrzA01GST0H3t2Z0juR3S0AfWlXMX5cgINS_mkKOSnU3gEMbpVrXVY6zCnppmKqIbqNlVuuIbqw17ffwYwORNu1nsuKauYymWh3_d-skPbeZKy5YLF8YZxae-ilzVbRU_JuJlnYZO_f5nY-C--99BO5XJivzwj-2hLJgeo1mWLQ_QwKLpm5_gJRnMq_eMuNBHhu9U1QOxnGeNj7L-yN-VI4v5M6gWqhBS4W6U6MeCpxfMjNGzfDm46egWvoHMVmKq_L2esxUPLJh6AbTCbhcKQzAsdYXNuOULQKBImVA5tQSxJbVcKSxo0Yp7DqGEdIy2ZJvIEYdJyBHW4bElXvcihIaRXTekRqPO6VDSQsRJ2wKvZ48BsHKgYpNBPUMooABkFIKMGulpvScvBGz8RX681-Dv16Z-oz5CWzXJ5rnyPLLyoTtkHbcPa2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Sentence+Level+Inference+Attack+Against+Pre-trained+Language+Models&rft.jtitle=Proceedings+on+Privacy+Enhancing+Technologies&rft.au=Gu%2C+Kang&rft.au=Kabir%2C+Ehsanul&rft.au=Ramsurrun%2C+Neha&rft.au=Vosoughi%2C+Soroush&rft.date=2023-07-01&rft.issn=2299-0984&rft.eissn=2299-0984&rft.volume=2023&rft.issue=3&rft.spage=62&rft.epage=78&rft_id=info:doi/10.56553%2Fpopets-2023-0070&rft.externalDBID=n%2Fa&rft.externalDocID=10_56553_popets_2023_0070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2299-0984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2299-0984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2299-0984&client=summon