SpikeNAS-Bench: Benchmarking NAS Algorithms for Spiking Neural Network Architecture
In recent years, neural architecture search (NAS) has marked significant advancements, yet its efficacy is marred by the dependence on substantial computational resources. To mitigate this, the development of NAS benchmarks has emerged, offering datasets that enumerate all potential network architec...
Saved in:
| Published in | IEEE transactions on artificial intelligence Vol. 6; no. 6; pp. 1614 - 1625 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2691-4581 2691-4581 |
| DOI | 10.1109/TAI.2025.3534136 |
Cover
| Abstract | In recent years, neural architecture search (NAS) has marked significant advancements, yet its efficacy is marred by the dependence on substantial computational resources. To mitigate this, the development of NAS benchmarks has emerged, offering datasets that enumerate all potential network architectures and their performances within a predefined search space. Nonetheless, these benchmarks predominantly focus on convolutional architectures, which are criticized for their limited interpretability and suboptimal hardware efficiency. Recognizing the untapped potential of spiking neural networks (SNNs)-often hailed as the third generation of neural networks due to their biological realism and computational thrift-this study introduces SpikeNAS-Bench. As a pioneering benchmark for SNN, SpikeNAS-Bench utilizes a cell-based search space, integrating leaky integrate-and-fire neurons with variable thresholds as candidate operations. It encompasses 15 625 candidate architectures, rigorously evaluated on CIFAR10, CIFAR100, and Tiny-ImageNet datasets. This article delves into the architectural nuances of SpikeNAS-Bench, leveraging various criteria to underscore the benchmark's utility and presenting insights that could steer future NAS algorithm designs. Moreover, we assess the benchmark's consistency through three distinct proxy types: zero-cost-based, early-stop-based, and predictor-based proxies. Additionally, the article benchmarks seven contemporary NAS algorithms to attest to SpikeNAS-Bench's broad applicability. We commit to providing training logs, diagnostic data for all candidate architectures, and we promise to release all code and datasets postacceptance, aiming to catalyze further exploration and innovation within the SNN domain. |
|---|---|
| AbstractList | In recent years, neural architecture search (NAS) has marked significant advancements, yet its efficacy is marred by the dependence on substantial computational resources. To mitigate this, the development of NAS benchmarks has emerged, offering datasets that enumerate all potential network architectures and their performances within a predefined search space. Nonetheless, these benchmarks predominantly focus on convolutional architectures, which are criticized for their limited interpretability and suboptimal hardware efficiency. Recognizing the untapped potential of spiking neural networks (SNNs)-often hailed as the third generation of neural networks due to their biological realism and computational thrift-this study introduces SpikeNAS-Bench. As a pioneering benchmark for SNN, SpikeNAS-Bench utilizes a cell-based search space, integrating leaky integrate-and-fire neurons with variable thresholds as candidate operations. It encompasses 15 625 candidate architectures, rigorously evaluated on CIFAR10, CIFAR100, and Tiny-ImageNet datasets. This article delves into the architectural nuances of SpikeNAS-Bench, leveraging various criteria to underscore the benchmark's utility and presenting insights that could steer future NAS algorithm designs. Moreover, we assess the benchmark's consistency through three distinct proxy types: zero-cost-based, early-stop-based, and predictor-based proxies. Additionally, the article benchmarks seven contemporary NAS algorithms to attest to SpikeNAS-Bench's broad applicability. We commit to providing training logs, diagnostic data for all candidate architectures, and we promise to release all code and datasets postacceptance, aiming to catalyze further exploration and innovation within the SNN domain. |
| Author | Sun, Gengchen Zhao, Wenfeng Li, Ting Gan, Lin Sun, Biao Su, Hang Liu, Zhengkun |
| Author_xml | – sequence: 1 givenname: Gengchen orcidid: 0009-0009-9209-6460 surname: Sun fullname: Sun, Gengchen email: sun_gengchen@163.com organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Zhengkun orcidid: 0000-0002-6481-835X surname: Liu fullname: Liu, Zhengkun email: liuzhengkun@tju.edu.cn, wudawei124578@126.com organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Lin orcidid: 0009-0002-8390-8251 surname: Gan fullname: Gan, Lin email: ganlin@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Hang orcidid: 0000-0002-6877-6783 surname: Su fullname: Su, Hang email: hang.su@polimi.it organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 5 givenname: Ting orcidid: 0000-0001-5145-3024 surname: Li fullname: Li, Ting email: t.li619@foxmail.com organization: Institute of Biomedical Engineering, Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, China – sequence: 6 givenname: Wenfeng orcidid: 0000-0002-2933-750X surname: Zhao fullname: Zhao, Wenfeng email: wzhao@binghamton.edu organization: Department of Electrical and Computer Engineering, Binghamton University, State University of New York, Binghamton, NY, USA – sequence: 7 givenname: Biao orcidid: 0000-0002-4124-9350 surname: Sun fullname: Sun, Biao email: sunbiao@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China |
| BookMark | eNpNkEFPwkAQhTcGExG5e_DQP9A6M9sti7dKREmIHsBzs2ynUIGWbEuM_94tcOD0Xmbem0y-e9Gr6oqFeESIEGH8vExnEQGpSCoZo0xuRJ-SMYax0ti78ndi2DQ_AD6KRDTqi8XiUG75M12Er1zZzUtwkr1x27JaB34epLt17cp2s2-ConZBlz-t-OjMzkv7W7ttkDq7KVu27dHxg7gtzK7h4UUH4nv6tpx8hPOv99kknYcWJbWh5oKtzGWhyODIxNIw4lglKwK2MbAeMSAlSq8SWpGyOeVgvAXSVsdg5EDA-a51ddM4LrKDK_3rfxlC1nHJPJes45JduPjK07lSMvNVXCuVaCn_AU3MX9M |
| CODEN | ITAICB |
| Cites_doi | 10.1038/s41467-021-24456-3 10.1038/s42256-021-00311-4 10.3389/fnins.2021.773954 10.1109/TNNLS.2017.2726060 10.1109/ICCV48922.2021.00516 10.1145/3321707.3321729 10.1016/j.neunet.2019.08.034 10.1109/ICCV48922.2021.00266 10.1109/CVPR.2017.243 10.1109/TNNLS.2021.3111897 10.1007/978-3-031-20053-3_3 10.1109/CVPR46437.2021.00938 10.1016/S0893-6080(01)00078-8 10.1109/MM.2020.2971677 10.1609/aaai.v33i01.33014780 10.1038/nn.3785 10.1113/jphysiol.1952.sp004764 10.3389/fncom.2015.00099 10.1609/aaai.v33i01.33011311 10.1109/WACV48630.2021.00400 10.1109/TCYB.2020.2983860 10.1109/HPEC55821.2022.9926296 10.1109/TNN.2003.820440 10.1109/iccv48922.2021.00463 10.1016/j.neunet.2024.106630 10.1017/CBO9780511815706 10.1109/CVPR.2016.90 10.1609/aaai.v38i10.28975 10.1007/978-3-031-73411-3_15 10.1109/MM.2018.112130359 10.1109/CVPR.2018.00907 10.1038/s42256-021-00388-x 10.1016/j.neunet.2021.09.022 10.1109/TIP.2021.3070193 10.24963/ijcai.2018/228 10.1109/ICCV.2017.154 10.1162/NECO_a_00395 10.1007/978-3-030-58526-6_39 10.24963/ijcai.2021/236 10.1007/978-3-031-20071-7_37 10.1109/CVPR52688.2022.00358 10.1126/sciadv.adi1480 10.1109/tpami.2021.3054824 10.1109/ISSCC.2014.6757323 10.1109/TEVC.2022.3147526 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAI.2025.3534136 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2691-4581 |
| EndPage | 1625 |
| ExternalDocumentID | 10_1109_TAI_2025_3534136 10855683 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: T2322020; 62371329 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c132t-8efec3d3f52a17a43ae11956b20ec40e87e012658b62b25cd2d0a62b028c840a3 |
| IEDL.DBID | RIE |
| ISSN | 2691-4581 |
| IngestDate | Wed Oct 01 05:33:59 EDT 2025 Wed Aug 27 07:40:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c132t-8efec3d3f52a17a43ae11956b20ec40e87e012658b62b25cd2d0a62b028c840a3 |
| ORCID | 0009-0002-8390-8251 0000-0002-6481-835X 0000-0002-6877-6783 0009-0009-9209-6460 0000-0002-2933-750X 0000-0002-4124-9350 0000-0001-5145-3024 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10855683 crossref_primary_10_1109_TAI_2025_3534136 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on artificial intelligence |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref54 Dong (ref11) 2020 ref17 Zoph (ref24) 2017 ref16 ref19 Xu (ref33) 2021 ref18 Lu (ref60) 2021; 34 ref50 Na (ref39) 2022 ref45 ref48 ref47 ref41 ref44 Siems (ref12) 2020 Li (ref35) 2020 Ying (ref10) 2019 Zhang (ref42) 2020; 33 ref8 Liu (ref27) 2018 ref7 ref9 ref4 ref3 ref6 ref5 Tan (ref49) 2019 ref37 Hunsberger (ref51) 2016 Real (ref28) 2017 Chen (ref31) 2021 ref30 Mellor (ref32) 2021 ref2 ref1 ref38 Simonyan (ref46) 2014 Li (ref36) 2020; 2 ref23 ref67 ref26 ref25 ref20 Pham (ref40) 2018 ref64 ref63 ref22 ref66 ref21 ref65 Abdelfattah (ref34) 2020 ref29 Krizhevsky (ref43) 2009 Chen (ref55) 2023 Hong (ref52) 2023 ref62 ref61 |
| References_xml | – start-page: 367 year: 2020 ident: ref35 article-title: Random search and reproducibility for neural architecture search publication-title: Proc. Uncertain. Artif. Intell. – volume: 2 start-page: 230 year: 2020 ident: ref36 article-title: A system for massively parallel hyperparameter tuning publication-title: Proc. Mach. Learn. Syst. – year: 2014 ident: ref46 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref64 doi: 10.1038/s41467-021-24456-3 – ident: ref18 doi: 10.1038/s42256-021-00311-4 – year: 2016 ident: ref51 article-title: Training spiking deep networks for neuromorphic hardware – start-page: 6105 year: 2019 ident: ref49 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref16 doi: 10.3389/fnins.2021.773954 – ident: ref45 doi: 10.1109/TNNLS.2017.2726060 – ident: ref17 doi: 10.1109/ICCV48922.2021.00516 – ident: ref30 doi: 10.1145/3321707.3321729 – ident: ref8 doi: 10.1016/j.neunet.2019.08.034 – ident: ref20 doi: 10.1109/ICCV48922.2021.00266 – year: 2023 ident: ref52 article-title: LaSNN: Layer-wise ANN-to-SNN distillation for effective and efficient training in deep spiking neural networks – ident: ref48 doi: 10.1109/CVPR.2017.243 – start-page: 2902 year: 2017 ident: ref28 article-title: Large-scale evolution of image classifiers publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref50 doi: 10.1109/TNNLS.2021.3111897 – ident: ref9 doi: 10.1007/978-3-031-20053-3_3 – year: 2009 ident: ref43 article-title: Learning multiple layers of features from tiny images – ident: ref38 doi: 10.1109/CVPR46437.2021.00938 – ident: ref1 doi: 10.1016/S0893-6080(01)00078-8 – ident: ref59 doi: 10.1109/MM.2020.2971677 – ident: ref26 doi: 10.1609/aaai.v33i01.33014780 – ident: ref63 doi: 10.1038/nn.3785 – ident: ref2 doi: 10.1113/jphysiol.1952.sp004764 – ident: ref14 doi: 10.3389/fncom.2015.00099 – ident: ref41 doi: 10.1609/aaai.v33i01.33011311 – ident: ref53 doi: 10.1109/WACV48630.2021.00400 – ident: ref62 doi: 10.1109/TCYB.2020.2983860 – ident: ref58 doi: 10.1109/HPEC55821.2022.9926296 – start-page: 1 year: 2021 ident: ref31 article-title: Neural architecture search on imagenet in four GPU hours: A theoretically inspired perspective publication-title: Proc. Int. Conf. Learn. Represent. – volume: 34 start-page: 15125 year: 2021 ident: ref60 article-title: TNASP: A transformer-based nas predictor with a self-evolution framework publication-title: Proc. Adv. Neural Inf. Process. Syst. – year: 2023 ident: ref55 article-title: Training full spike neural networks via auxiliary accumulation pathway – start-page: 4095 year: 2018 ident: ref40 article-title: Efficient neural architecture search via parameters sharing publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref3 doi: 10.1109/TNN.2003.820440 – ident: ref54 doi: 10.1109/iccv48922.2021.00463 – start-page: 7588 year: 2021 ident: ref32 article-title: Neural architecture search without training publication-title: Proc. Int. Conf. Mach. Learn. – start-page: 16253 year: 2022 ident: ref39 article-title: AutoSNN: Towards energy-efficient spiking neural networks publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref66 doi: 10.1016/j.neunet.2024.106630 – start-page: 7105 year: 2019 ident: ref10 article-title: NAS-Bench-101: Towards reproducible neural architecture search publication-title: Proc. Int. Conf. Mach. Learn. – volume: 33 start-page: 12022 year: 2020 ident: ref42 article-title: Temporal spike sequence learning via backpropagation for deep spiking neural networks,” in publication-title: Proc. Adv, Neural Inf. Process. Syst. – ident: ref4 doi: 10.1017/CBO9780511815706 – ident: ref47 doi: 10.1109/CVPR.2016.90 – ident: ref67 doi: 10.1609/aaai.v38i10.28975 – ident: ref65 doi: 10.1007/978-3-031-73411-3_15 – ident: ref56 doi: 10.1109/MM.2018.112130359 – ident: ref25 doi: 10.1109/CVPR.2018.00907 – start-page: 11613 year: 2021 ident: ref33 article-title: KNAS: Green neural architecture search publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref6 doi: 10.1038/s42256-021-00388-x – year: 2018 ident: ref27 article-title: DARTS: Differentiable architecture search – ident: ref15 doi: 10.1016/j.neunet.2021.09.022 – ident: ref7 doi: 10.1109/TIP.2021.3070193 – year: 2020 ident: ref11 article-title: NAS-Bench-201: Extending the scope of reproducible neural architecture search – ident: ref44 doi: 10.24963/ijcai.2018/228 – ident: ref29 doi: 10.1109/ICCV.2017.154 – start-page: 1 year: 2020 ident: ref34 article-title: Zero-cost proxies for lightweight NAS publication-title: Proc. Int. Conf. Learn. Represent. – ident: ref5 doi: 10.1162/NECO_a_00395 – ident: ref37 doi: 10.1007/978-3-030-58526-6_39 – ident: ref21 doi: 10.24963/ijcai.2021/236 – ident: ref23 doi: 10.1007/978-3-031-20071-7_37 – ident: ref22 doi: 10.1109/CVPR52688.2022.00358 – ident: ref19 doi: 10.1126/sciadv.adi1480 – ident: ref13 doi: 10.1109/tpami.2021.3054824 – year: 2020 ident: ref12 article-title: NAS-Bench–301 and the case for surrogate benchmarks for neural architecture search – ident: ref57 doi: 10.1109/ISSCC.2014.6757323 – start-page: 1 year: 2017 ident: ref24 article-title: Neural architecture search with reinforcement learning publication-title: Proc. Int. Conf. Learn. Represent. – ident: ref61 doi: 10.1109/TEVC.2022.3147526 |
| SSID | ssj0002512227 |
| Score | 2.2958028 |
| Snippet | In recent years, neural architecture search (NAS) has marked significant advancements, yet its efficacy is marred by the dependence on substantial... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1614 |
| SubjectTerms | Benchmark Benchmark testing Biological information theory Computer architecture Convolution Membrane potentials Microprocessors neural architecture search (NAS) neuron threshold Neurons spiking neural network (SNNs) Spiking neural networks Sun Training |
| Title | SpikeNAS-Bench: Benchmarking NAS Algorithms for Spiking Neural Network Architecture |
| URI | https://ieeexplore.ieee.org/document/10855683 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxaeRZRH5YGFwWlqJ07MFlCrgtQubaVukeNcaFX6UEkXBn47tpOggoTEZOviSNadk_vufA-E7kBkJra1Q4ArTjwGlAiaBASyIOso15OuzVsbDHl_4r1M_WmZrG5zYQDABp-BY6b2Lj9dq51xlbVNpLzPQ1ZDtSDkRbLWt0PFKGpKg-oq0hXtcfSsDUDqO8w3_2r-Q_Xs9VKxqqR3jIbVJooIkoWzyxNHffyqz_jvXZ6goxJU4qg4BafoAFZn6Lhq2IDL7_ccjUab-QKG0Yg8asLsAdthKa2_HGs6jt5e19t5Plu-Y41msVlvH4GpzqEHGzOOo73bhwaa9Lrjpz4puyoQpS3PnISQgWIpy3wqO4H0mART9o0n1AXluRAGoJWWBiYJpwn1VUpTV-qpBiJKW4OSXaD6ar2CS4Ql64C2eJgAyryUJVKKTPBMpKCBTuinTXRfMTzeFMUzYmt0uCLWwomNcOJSOE3UMKzcW1dw8eoP-jU6NK8XUVs3qJ5vd3Cr8UGetFBt8Nlt2dPxBaKOuSY |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLBQHkWUpwcWhqSpH3mwBUTVQpulrdQtcpwLrUofKunCr8d2UlSQkJhsXazIunNy353vgdAdBJmObW1a4ErXYhSIFZDEsyDzsqZ0mHBM3lovcttD9jLiozJZ3eTCAIAJPgNbT81dfrqQa-0qa-hIee76dBftccYYL9K1vl0qWlUT4m0uI52gMQg7ygQk3KZc_63dH8pnq5uKUSatKoo22yhiSKb2Ok9s-fmrQuO_93mEDktYicPiHByjHZifoOqmZQMuv-BT1O8vJ1OIwr71qAjjB2yGmTAec6zoOHx_W6wm-Xj2gRWexXq9eQS6PocaTNQ4DrfuH2po2HoePLWtsq-CJZXtmVs-ZCBpSjNORNMTjArQhd_chDggmQO-B0ptKWiSuCQhXKYkdYSaKigilT0o6BmqzBdzOEdY0CYom4cGQChLaSJEkAVuFqSgoI7P0zq63zA8XhblM2JjdjhBrIQTa-HEpXDqqKZZubWu4OLFH_RbtN8e9LpxtxO9XqID_aoihusKVfLVGq4VWsiTG3NGvgAfhbtC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpikeNAS-Bench%3A+Benchmarking+NAS+Algorithms+for+Spiking+Neural+Network+Architecture&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Sun%2C+Gengchen&rft.au=Liu%2C+Zhengkun&rft.au=Gan%2C+Lin&rft.au=Su%2C+Hang&rft.date=2025-06-01&rft.pub=IEEE&rft.eissn=2691-4581&rft.volume=6&rft.issue=6&rft.spage=1614&rft.epage=1625&rft_id=info:doi/10.1109%2FTAI.2025.3534136&rft.externalDocID=10855683 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |