基于MEA-WNN的短波通信最佳频率预测

针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小 波神经网络(mind evolutionary algorithm-wavelet neural network, MEA-WNN)和混纯理论相结合的短波通信频率预测方法.采用具有良好的非线性拟合特性的小波神经网络作为预测模型,利用混沌理论重构相空间,确定神经网络各 层节点个数,并用思维进化算法优化网络的初始权值与网络中小波函数的伸缩因子和平移因子.实验表明, MEA-WNN算法能提髙短波通信f0F2的预测精度....

Full description

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 44; no. 2; pp. 215 - 219
Main Author 赵德群;陈鹏宇;孙光民;段建英;苏晋海
Format Journal Article
LanguageChinese
Published 北京工业大学信息学部,北京,100124 01.02.2018
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2017010032

Cover

Abstract 针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小 波神经网络(mind evolutionary algorithm-wavelet neural network, MEA-WNN)和混纯理论相结合的短波通信频率预测方法.采用具有良好的非线性拟合特性的小波神经网络作为预测模型,利用混沌理论重构相空间,确定神经网络各 层节点个数,并用思维进化算法优化网络的初始权值与网络中小波函数的伸缩因子和平移因子.实验表明, MEA-WNN算法能提髙短波通信f0F2的预测精度.
AbstractList 针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小 波神经网络(mind evolutionary algorithm-wavelet neural network, MEA-WNN)和混纯理论相结合的短波通信频率预测方法.采用具有良好的非线性拟合特性的小波神经网络作为预测模型,利用混沌理论重构相空间,确定神经网络各 层节点个数,并用思维进化算法优化网络的初始权值与网络中小波函数的伸缩因子和平移因子.实验表明, MEA-WNN算法能提髙短波通信f0F2的预测精度.
TN011.2; 针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小波神经网络(mind evolutionary algorithm-wavelet neural network,MEA-WNN)和混沌理论相结合的短波通信频率预测方法.采用具有良好的非线性拟合特性的小波神经网络作为预测模型,利用混沌理论重构相空间,确定神经网络各层节点个数,并用思维进化算法优化网络的初始权值与网络中小波函数的伸缩因子和平移因子.实验表明,MEA-WNN算法能提高短波通信f0F2的预测精度.
Abstract_FL Considering the problem caused by inappropriate selection of communication for HF communication frequency, such as, severe signal fading, unreliable transport, a method for HF communication frequency prediction was presented in this paper based on mind evolutionary algorithm-wavelet neural network combining with chaos theory. Wavelet neural network which has good characteristics of nonlinear fitting as predictive model was used. Chaos theory of phase space reconstruction was used to determine the number of layers of the neural network nodes. Also, mind evolutionary algorithm was used to optimize the initial weights of the network, the network stretch factor and the translation factor of wavelet function. Experiments show that MEA-WNN algorithm can improve the prediction accuracy of HF communication frequency.
Author 赵德群;陈鹏宇;孙光民;段建英;苏晋海
AuthorAffiliation 北京工业大学信息学部,北京100124
AuthorAffiliation_xml – name: 北京工业大学信息学部,北京,100124
Author_FL CHEN Pengyu
SU Jinhai
DUAN Jianying
SUN Guangmin
ZHAO Dequn
Author_FL_xml – sequence: 1
  fullname: ZHAO Dequn
– sequence: 2
  fullname: CHEN Pengyu
– sequence: 3
  fullname: SUN Guangmin
– sequence: 4
  fullname: DUAN Jianying
– sequence: 5
  fullname: SU Jinhai
Author_xml – sequence: 1
  fullname: 赵德群;陈鹏宇;孙光民;段建英;苏晋海
BookMark eNotjz1Lw1AYhe9QwVr7A1zdHFLf-5Hcm7GUqoVaF8Ux3JsvEzTRxGK7dSg4CAXXIhSzOxWXgvhnYkL-hcE6PWd4OIezhxpRHLkIHWDoYGxS41iF48eJIoA5YABKGqgJRGdanfkuaqdpoAAYMTmmtIk6P6tNvlmc97va9WhULufl6qNYZ9VsmX-_F2-z_GtdZa_l4rnK5sXnyz7a8eRt6rb_2UJXJ_3L3pk2vDgd9LpDzcYUC415rsFNxjCWttKpIJ4EXRlEYS4lCE8XBBxqA-GCYlMZzJEeMIdT7lJm12yho23vk4w8GflWGI-TqF60VOhPncnfQQEEQNTu4da1b-LIfwhq-z4J7mQytQzOiAGgm_QXbPBf7Q
ClassificationCodes TN011.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2017010032
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Prediction of Best Frequency Parameters of HF Communication Based on MEA-WNN
DocumentTitle_FL Prediction of Best Frequency Parameters of HF Communication Based on MEA-WNN
EndPage 219
ExternalDocumentID bjgydxxb201802008
674260059
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (11527801)
GroupedDBID -03
2B.
2C0
2RA
5XA
5XD
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
CW9
P2P
TCJ
TGT
U1G
U5M
W92
~WA
4A8
93N
ABJNI
ADMLS
PSX
ID FETCH-LOGICAL-c1318-4fe6794411acb5382fa05b62b17aa08f5820d3c0278319b64daf04d737e34cd73
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
Wed Feb 14 10:08:30 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords mind evolutionary
短波通信
小波神经网络
思维进化
HF communication
wavelet neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1318-4fe6794411acb5382fa05b62b17aa08f5820d3c0278319b64daf04d737e34cd73
Notes HF communication; mind evolutionary; wavelet neural network
11-2286/T
Considering the problem caused by inappropriate selection of communication for HF communication frequency, such as, severe signal fading,unreliable transport, a method for HF communication frequency prediction was presented in this paper based on mind evolutionary algorithm- wavelet neural network combining with chaos theory. Wavelet neural network which has good characteristics of nonlinear fitting as predictive model was used. Chaos theory of phase space reconstruction was used to determine the number of layers of the neural network nodes. Also, mind evolutionary algorithm was used to optimize the initial weights of the network,the network stretch factor and the translation factor of wavelet function. Experiments show that MEA-WNN algorithm can improve the prediction accuracy of HF communication frequency.
ZHAO Dequn,CHEN Pengyu,SUN Guangmin,DUAN Jianying,SU Jinhai (Faculty of Information Technology,Beijing University of Technology,Beijing 1
PageCount 5
ParticipantIDs wanfang_journals_bjgydxxb201802008
chongqing_primary_674260059
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle 北京工业大学学报
PublicationTitleAlternate Journal of Beijing Polytechnic University
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2018
Publisher 北京工业大学信息学部,北京,100124
Publisher_xml – name: 北京工业大学信息学部,北京,100124
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.1744862
Snippet 针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小 波神经网络(mind evolutionary algorithm-wavelet neural network,...
TN011.2; 针对短波通信中通信频率选择不恰当导致信号衰落严重、传输不可靠等问题,提出一种基于思维进化的小波神经网络(mind evolutionary algorithm-wavelet neural...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 215
SubjectTerms 小波神经网络
思维进化
短波通信
Title 基于MEA-WNN的短波通信最佳频率预测
URI http://lib.cqvip.com/qk/95054X/201802/674260059.html
https://d.wanfangdata.com.cn/periodical/bjgydxxb201802008
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 0254-0037
  databaseCode: ADMLS
  dateStart: 20180110
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0039890
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_W7UUP4ifWqhRxjqmZJPN1THazFLG92GJvS2aTtPSwrboLtaceCh6EgtciFHv3VLwUxD_Fy9qy_4XvzU6z8QNRIWTfvpl58yZvMu-XzMwLIY_y0ChhisgrwDl54KEzL-uVxgPwawotNYAU3I28tCwWV6Mna3yt0fhaW7U0HJiF3u5v95X8j1WBB3bFXbL_YNlKKDCABvvCGSwM57-yMU051R2axDSN8KzSpTT2ni8v01RSDf8jS3Ro3KapoElI44Cm2q5umJSBJIZJuoVM5LQxG-SBnJphcZVSJR0HBYIcTlVSR7Woh2pRLZ0ecQs5iaQxtxxlq-M0jmgsLdGmsagRgiooxS-sT1OFlcCBYlKUBIoAAQLCBHXR0AiFRAJEx0qyamKqlQoZUCk4tFXZx9ZgqsCcTnJiL52C1tBkkmppFChsFYlrbiLrb0eYulhQXQ2i8ADsYZCd-og_iTjpenbww_DNa0jADea_OhltP4NjNoeDHRNgACIGNQRTj1qtcxTSfgCA60tkJpBCBE0yE7eXnj6bIlbAW6w20QxoGG4aVocLkk0ROWchDtFVhLRQK_ca0TXTTdyjio9_VhDDh2xs9ddfACiye9T6ZdZfr8GplWvkqnsOmo8nnfo6aexu3CBXatExb5KFb0eno9MD16XPD_fPjz6enRyP9w5HXz6cvd8bfT4ZH787P3gzPt4_-_T2FlntpCutRc993sPrMfAkXlQWArxBxFjWM-B3gzLzuRGBYTLLfFVyAKd52MOpcfATRkR5VvpRLkNZhFEPfm-TZn-rX9wh8yUPeJArCSOSH0meKVUEISB7FhRQQPuzZK5qeXd7EsalWxlnljx016Lrbu5XXbO5_jrfsVdP-bhG6O4fRcyRy9Ped480By-HxX1AqwPzwFn8O772ax8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMEA-WNN%E7%9A%84%E7%9F%AD%E6%B3%A2%E9%80%9A%E4%BF%A1%E6%9C%80%E4%BD%B3%E9%A2%91%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%B5%B5%E5%BE%B7%E7%BE%A4%3B%E9%99%88%E9%B9%8F%E5%AE%87%3B%E5%AD%99%E5%85%89%E6%B0%91%3B%E6%AE%B5%E5%BB%BA%E8%8B%B1%3B%E8%8B%8F%E6%99%8B%E6%B5%B7&rft.date=2018-02-01&rft.issn=0254-0037&rft.volume=44&rft.issue=2&rft.spage=215&rft.epage=219&rft_id=info:doi/10.11936%2Fbjutxb2017010032&rft.externalDocID=674260059
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95054X%2F95054X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg