Improved Semi-supervised Clustering Algorithm Based on Affinity Propagation

A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several...

Full description

Saved in:
Bibliographic Details
Published in东华大学学报(英文版) Vol. 32; no. 1; pp. 125 - 131
Main Author 金冉 刘瑞娟 李晔锋 寇春海
Format Journal Article
LanguageEnglish
Published College of Science, Donghua University, Shanghai 201620, China 28.02.2015
College of Computer Science and Technology, Zhejiang Wanli University, Ningbo 315100, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China
College of Information Science and Technology, Donghua University, Shanghai 201620, China
Subjects
Online AccessGet full text
ISSN1672-5220

Cover

Abstract A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved.
AbstractList A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved.
Author 金冉 刘瑞娟 李晔锋 寇春海
AuthorAffiliation College of lnformation Science and Technology, Donghua University, Shanghai 201620, China College of Computer Science and Technology, Zhejiang Wanli University, Ningbo 315100, China College of Science, Donghua University, Shanghai 201620, China
AuthorAffiliation_xml – name: College of Information Science and Technology, Donghua University, Shanghai 201620, China;College of Computer Science and Technology, Zhejiang Wanli University, Ningbo 315100, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China;College of Science, Donghua University, Shanghai 201620, China
Author_xml – sequence: 1
  fullname: 金冉 刘瑞娟 李晔锋 寇春海
BookMark eNotj8tugzAURL1IpaZp_gF11wWSHxjMkqI-okZqpbZrdI1tcAQ2NZAmf1-qdDajqzmaq7lBK-edXqE1STMac0rxNdqO4wEvSmmW4HyNXnf9EPxRq-hD9zYe50GHox2Xu-zmcdLBuiYqusYHO7V99AB_kXdRYYx1djpH78EP0MBkvbtFVwa6UW__fYO-nh4_y5d4__a8K4t9XBNGWJyAlFlGCIeaUKEFCJ4biXnGRJ4zYMpQLhkQKYDzXNZUKa2E1LXJMTVpyjbo_tL7A86Aa6qDn4NbPlaqVaeTrDTFhGOCKVvYuwtbt94138uaagi2h3Cu0pTjJBML9As0-VkS
ClassificationCodes TP181
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Improved Semi-supervised Clustering Algorithm Based on Affinity Propagation
EndPage 131
ExternalDocumentID dhdxxb_e201501023
665047823
GrantInformation_xml – fundername: the Science and Technology Research Program of Zhejiang Province,China; Projects in Science and Technology of Ningbo Municipal,China; Shanghai Natural Science Foundation,China; the National Undergraduate Training Programs for Innovation and Entrepreneurship,China
  funderid: (2011C21036); (2012B82003); (10ZR1400100); (201410876011)
GroupedDBID -02
-0B
-SB
-S~
188
2B.
2C-
2RA
5VR
5XA
5XC
5XL
8RM
92D
92I
92L
92M
93E
93N
9D9
9DB
ACGFS
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CW9
FA0
JUIAU
Q--
R-B
RT2
S..
T8R
TCJ
TGH
TTC
U1F
U1G
U5B
U5L
UGNYK
UZ2
UZ4
~WA
4A8
ABJNI
ADMLS
PSX
ID FETCH-LOGICAL-c1313-4abb77115ac128e8a859fb05738993a3df25b3a1b8a559bc2dded8becf902f663
ISSN 1672-5220
IngestDate Thu May 29 03:59:43 EDT 2025
Wed Feb 14 10:30:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords affinity propagation (AP)
layered combination
computation complexity
semi-supervised clustering
combined promotion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1313-4abb77115ac128e8a859fb05738993a3df25b3a1b8a559bc2dded8becf902f663
Notes 31-1920/N
A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved.
semi-supervised clustering affinity propagation(AP) layered combination computation complexity combined promotion
JIN Ran , LIU Rui-juan, LI Ye-feng, KOU Chun-hai ( 1 College of lnformation Science and Technology, Donghua University, Shanghai 201620, China 2 College of Computer Science and Technology, Zhefiang Wanli University, Ningbo 315100, China 3 College of Science, Donghua University, Shanghai 201620, China)
PageCount 7
ParticipantIDs wanfang_journals_dhdxxb_e201501023
chongqing_primary_665047823
PublicationCentury 2000
PublicationDate 2015-02-28
PublicationDateYYYYMMDD 2015-02-28
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-28
  day: 28
PublicationDecade 2010
PublicationTitle 东华大学学报(英文版)
PublicationTitleAlternate Journal of Donghua University
PublicationTitle_FL Journal of Donghua University(English Edition)
PublicationYear 2015
Publisher College of Science, Donghua University, Shanghai 201620, China
College of Computer Science and Technology, Zhejiang Wanli University, Ningbo 315100, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China
College of Information Science and Technology, Donghua University, Shanghai 201620, China
Publisher_xml – name: College of Information Science and Technology, Donghua University, Shanghai 201620, China
– name: College of Science, Donghua University, Shanghai 201620, China
– name: College of Computer Science and Technology, Zhejiang Wanli University, Ningbo 315100, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China%College of Information Science and Technology, Donghua University, Shanghai 201620, China
SSID ssj0000627409
Score 1.9331617
Snippet A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 125
Title Improved Semi-supervised Clustering Algorithm Based on Affinity Propagation
URI http://lib.cqvip.com/qk/86692X/201501/665047823.html
https://d.wanfangdata.com.cn/periodical/dhdxxb-e201501023
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1672-5220
  databaseCode: ADMLS
  dateStart: 20091201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0000627409
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZYeYEHxE8xNlCEuKcqKImdxH502lQTMF7YpL1Fdpy0lbZ0rK008dfv7GRJQAgBL9bJjn2pv8_2-ZS7EvKhEnVsVCJ8lvDAZybSvgiM8ZFMUWjq0KjIBjiffk1Oztmni_hicGW76JKd_lj--G1cyf-ginWIq42S_Qdk-0GxAmXEF0tEGMu_wrj1CFiTsbpa-9v9tV34W-uzvdzbBAjO5XG53Nysd6uraaZsE6It63rdtLGBeGVeDth0RirkDDIOYgZ5DHwOPLeCZCBTJ8xBJiMhAS5BxpAvIJuBkJBz4BlkoW0S2Iq9UuACeP_ZLOTCVovQacBHxNRJqJTbh7FBtEqxZjF1A7XvgYIAwewAWPLM9ZMLpySxve2LJJDFkKVjj0Y4jhBvN-EktRfkKBjv0oMXtGdju-WGbeB0d3qH3Znycw7tBO1QhrYQPSAHNIwm5KGcn3751jvjbK5m5j4H6nXbXBurTbP8jlC5gK6mVs1yZHucPSVPukuDJ1sGPCMPquY5eTxKJfmCfL7ngvcLF7yBC17PBc9xwds03j0XvBEXXpLzRX42O_G7P8rwS_y91GdK6zRF216VaG5UXPFY1NqmusTbNFXU1FGsqQo1V3iB1GWEZ5rhuHprEUQ12pyvyKTZNNVr4jHc4kuWpkGqFAtL3N5TU9K4VDXlmnJ6SI76aSmu24QoRT-9h-R9N1FFt0y2hVmZ21tdVBZpm8CQvvnjEEfk0cCJYzLZ3eyrt2j37fS7DrU7PrdF1g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Semi-supervised+Clustering+Algorithm+Based+on+Affinity+Propagation&rft.jtitle=%E4%B8%9C%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%87%91%E5%86%89+%E5%88%98%E7%91%9E%E5%A8%9F+%E6%9D%8E%E6%99%94%E9%94%8B+%E5%AF%87%E6%98%A5%E6%B5%B7&rft.date=2015-02-28&rft.issn=1672-5220&rft.volume=32&rft.issue=1&rft.spage=125&rft.epage=131&rft.externalDocID=665047823
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86692X%2F86692X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdhdxxb-e%2Fdhdxxb-e.jpg