A Model to Construct and Predict Flow Curve of Materials from Compression Test Results with Machine Learning Models Using Python
In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve deter...
Saved in:
| Published in | Key engineering materials Vol. 926; pp. 2022 - 2030 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Zurich
Trans Tech Publications Ltd
22.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1013-9826 1662-9795 1662-9809 1662-9795 |
| DOI | 10.4028/p-18kwo6 |
Cover
| Abstract | In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve determination and flow curve prediction. The compression test data including Force-Stroke values was processed to determine the flow curves in the first part, and the flow curve data constructed for certain temperature and strain rate values of the material was used as input for the machine learning algorithms to predict flow curve at desired intermediate temperature and strain rate values in the second part. Moreover, Ludwik material model parameters were estimated by using curve fitting methods in order to define the material model into the simulation software. Machine learning algorithms and various regression models in Python libraries were tested to predict the flow curves. The performances of different machine learning and regression models were compared with respect to the mean squared error and coefficient of determination performance measures. Support vector regression, k-Nearest Neighbour (kNN) and artificial neural network models were used to predict flow curves of cold forging materials and kNN regression model was able to found predictions with the lowest error rate. As a result, a model that can process the compression test data to predict flow curves at intermediate temperature or strain rate values was developed. |
|---|---|
| AbstractList | In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve determination and flow curve prediction. The compression test data including Force-Stroke values was processed to determine the flow curves in the first part, and the flow curve data constructed for certain temperature and strain rate values of the material was used as input for the machine learning algorithms to predict flow curve at desired intermediate temperature and strain rate values in the second part. Moreover, Ludwik material model parameters were estimated by using curve fitting methods in order to define the material model into the simulation software. Machine learning algorithms and various regression models in Python libraries were tested to predict the flow curves. The performances of different machine learning and regression models were compared with respect to the mean squared error and coefficient of determination performance measures. Support vector regression, k-Nearest Neighbour (kNN) and artificial neural network models were used to predict flow curves of cold forging materials and kNN regression model was able to found predictions with the lowest error rate. As a result, a model that can process the compression test data to predict flow curves at intermediate temperature or strain rate values was developed. |
| Author | Aydın, Tolga Zeren, Doğuş Kocatürk, Fatih |
| Author_xml | – givenname: Doğuş surname: Zeren fullname: Zeren, Doğuş email: dogus.zeren@norm-fasteners.com.tr organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center – givenname: Fatih surname: Kocatürk fullname: Kocatürk, Fatih email: fatih.kocaturk@norm-fasteners.com.tr organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center – givenname: Tolga surname: Aydın fullname: Aydın, Tolga email: tolga.aydin@norm-fasteners.com.tr organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center |
| BookMark | eNp9kF1LwzAUhoMouE3BnxDwRoVq0qRpezmGU2HikO26ZOmp6-ySmqSO3fnTzajgheDV-eA57znnHaJjbTQgdEHJLSdxdtdGNHvfGXGEBlSIOMrTPDkOOaEsyrNYnKKhcxtCGM1oMkBfY_xsSmiwN3hitPO2Ux5LXeK5hbIO-bQxOzzp7CdgU-Fn6cHWsnG4smYbRratBedqo_ECnMev4LrGO7yr_TrAal1rwDOQVtf6rV_l8NIdivner40-QydVkIPznzhCy-n9YvIYzV4enibjWaQoIyJSnKRKMs5XnKq4BLWKCRNslVcVT8sU4iQvGcl4SgUlGWVSVLFKRQIceFKGxghd97qdbuV-J5umaG29lXZfUFIcrCvaorcusJc921rz0YW3io3prA7nFYzkVKSCChKoq55S1jhnofpP8KZHvZXBY1DrX8U_8Dfy_Izh |
| Cites_doi | 10.1063/1.5112747 10.1016/j.procir.2019.02.050 10.3390/met9020220 10.25518/esaform21.4140 10.1016/j.jmrt.2019.01.019 10.1088/2053-1591/ab13ec 10.5545/sv-jme.2015.2785 10.1016/j.asoc.2010.06.004 10.1016/0890-6955(91)90038-5 10.1016/j.asoc.2008.03.016 |
| ContentType | Journal Article |
| Copyright | 2022 Aydın et al. Copyright Trans Tech Publications Ltd. 2022 |
| Copyright_xml | – notice: 2022 Aydın et al. – notice: Copyright Trans Tech Publications Ltd. 2022 |
| DBID | AAYXX CITATION 7SR 8BQ 8FD F28 FR3 JG9 ADTOC UNPAY |
| DOI | 10.4028/p-18kwo6 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1662-9795 |
| EndPage | 2030 |
| ExternalDocumentID | 10.4028/p-18kwo6 10_4028_p_18kwo6 |
| GroupedDBID | -~X .DC 4.4 8FE 8FG AAATW ABDNZ ABJNI ACGFS ACIWK AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ D1I DB1 DKFMR EBS F5P KB. L6V P2P RTP ~02 AAYXX CITATION 7SR 8BQ 8FD F28 FR3 JG9 ABJCF ACYGS ADTOC CCPQU EJD HCIFZ M7S PDBOC PHGZM PHGZT PQGLB PTHSS RNS UNPAY |
| ID | FETCH-LOGICAL-c1306-c407ca344b41c2decb20363b9ff47d7e259d308471610813a6f2c765e4e45d813 |
| IEDL.DBID | UNPAY |
| ISSN | 1013-9826 1662-9795 1662-9809 |
| IngestDate | Tue Aug 19 21:06:21 EDT 2025 Mon Jun 30 09:45:38 EDT 2025 Wed Oct 01 06:03:34 EDT 2025 Fri Oct 03 21:33:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN Flow Curve Prediction Metal Forming Machine Learning Python |
| Language | English |
| License | https://www.scientific.net/license/TDM_Licenser.pdf https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1306-c407ca344b41c2decb20363b9ff47d7e259d308471610813a6f2c765e4e45d813 |
| Notes | Peer-reviewed extended papers selected from the 25th International Conference on Material Forming (ESAFORM 2022), April 27-29, 2022, Portugal ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.scientific.net/KEM.926.2022.pdf |
| PQID | 3091676160 |
| PQPubID | 2040931 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_4028_p_18kwo6 proquest_journals_3091676160 crossref_primary_10_4028_p_18kwo6 transtech_journals_10_4028_p_18kwo6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220722 |
| PublicationDateYYYYMMDD | 2022-07-22 |
| PublicationDate_xml | – month: 07 year: 2022 text: 20220722 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Zurich |
| PublicationPlace_xml | – name: Zurich |
| PublicationTitle | Key engineering materials |
| PublicationYear | 2022 |
| Publisher | Trans Tech Publications Ltd |
| Publisher_xml | – name: Trans Tech Publications Ltd |
| References | Mandal (4592755); 9 4592756 4592754 Bingöl (4592757) 2015; 61 4592765 Rodríguez-Sánchez (4592760) 2019; 6 Kocatürk (4592763) 2021 4592764 Mehtedi (4592758); 79 4592762 Stendal (4592759) 2019; 9 Mahalle (4592761); 8 |
| References_xml | – ident: 4592762 doi: 10.1063/1.5112747 – volume: 79 start-page: 661 ident: 4592758 article-title: Flow curve prediction of ZAM100 magnesium alloy sheets using artificial neural network-based models publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.02.050 – volume: 9 start-page: 220 issn: 2075-4701 issue: 2 year: 2019 ident: 4592759 article-title: Applying Machine Learning to the Phenomenological Flow Stress Modeling of TNM-B1 publication-title: Metals doi: 10.3390/met9020220 – year: 2021 ident: 4592763 article-title: Flow curve prediction of cold forging steel by artificial neural network model publication-title: ESAFORM 2021 doi: 10.25518/esaform21.4140 – volume: 8 start-page: 2130 issue: 2 ident: 4592761 article-title: Neural network modeling for anisotropic mechanical properties and work hardening behavior of Inconel 718 alloy at elevated temperatures publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2019.01.019 – volume: 6 start-page: 075320 issn: 2053-1591 issue: 7 year: 2019 ident: 4592760 article-title: Application of artificial neural networks to map the mechanical response of a thermoplastic elastomer publication-title: Materials Research Express doi: 10.1088/2053-1591/ab13ec – volume: 61 start-page: 610 issn: 0039-2480 issue: 11 year: 2015 ident: 4592757 article-title: Prediction of the True Stress of ZE20 Magnesium Alloy at Different Temperatures and Strain Rates publication-title: Strojniški vestnik - Journal of Mechanical Engineering doi: 10.5545/sv-jme.2015.2785 – ident: 4592764 – ident: 4592765 – ident: 4592756 doi: 10.1016/j.asoc.2010.06.004 – ident: 4592754 doi: 10.1016/0890-6955(91)90038-5 – volume: 9 start-page: 237 issue: 1 ident: 4592755 article-title: Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.03.016 |
| SSID | ssj0031815 |
| Score | 2.2864223 |
| Snippet | In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and... |
| SourceID | unpaywall proquest crossref transtech |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 2022 |
| SubjectTerms | Algorithms Artificial neural networks Cold flow Cold forging Cold weather construction Compression tests Curve fitting Data compression Error analysis Machine learning Parameter estimation Performance prediction Programming languages Python Regression models Strain rate Support vector machines |
| Title | A Model to Construct and Predict Flow Curve of Materials from Compression Test Results with Machine Learning Models Using Python |
| URI | https://www.scientific.net/KEM.926.2022 https://www.proquest.com/docview/3091676160 https://www.scientific.net/KEM.926.2022.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 926 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1662-9795 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0031815 issn: 1662-9795 databaseCode: 8FG dateStart: 20150201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgObQ9UPpALC9NH1dv48RxnOMKsUWgRauKlegpih_hQJSsSLYreupPxxOHR4sqcbMSK5b1OZ4Z-5tvCPmqUm4KoQOqjSkoV1LQNNaW6rgouDQsCRTmDk_Pxcmcn17Gl73OdtPTKn0qIDJluvD87Hg6SkOkE4QuCDTFOtkQsXO8B2Rjfj4b_-zuM1lEU9kVV2NChDRNunorvi2D1MvOulhJfltQJq9XtfjbED16l69aNBKooOray2qR367ysnxidCZvfTZ302kVItfkerRs1Uj__kfJ8YXz2SKbvfMJY79a3pE1W70nb55IEn4gf8aA5dFKaGvAYp6dvCzklYHZDd7ptDAp6xUcLW9-WagLmOatX8OAiSqA24tn1lZw4SYKP2yzLNsG8LzXdUbmpoVe1PXKD9VAx1uA2S3qGHwk88nxxdEJ7as0UO3sn6DahYQ6jzhXnOnQWK3wbjNSqQM7MYl18ZWJAjSCzlOTLMpFEepExJZbHhv3YJsMqrqyOwQCaYzbnK1mheKpzSVKxzAVKcNiHSXJkHy6hyxbeDGOzAUxCGu2yDysQ7J_j2XW_45NFjmvSCSCiWBIvjzg-_j--Uc-PyD_35F2X9Jpj7xGnPE0OAz3ycChZg-cG9OqQ7IuJ98P-0V8B7mg8qA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgewAOvBELBQ2Pq5c4cRznuKq6qkBbrVBXKqcofoRDo2TVZFmVEz-dmTh9AELqzUqsWNbneGbsb75h7KPJpauUjbh1ruLSaMXz1Hpu06qS2oksMpQ7vDxWR2v5-TQ9HXW2u5FWGVIBiSkzhOdfDpezPCY6QYxBoKvusj2VouM9YXvr49X823CfKRKe66G4mlAq5nk21FsJbR3lQXYWYyX9acOFPtu16k9DdO1d3uvJSJCCKra3zaa82JV1fcPoLB6FbO5u0CokrsnZbNubmf35l5LjLefzmD0cnU-Yh9XyhN3xzVP24IYk4TP2aw5UHq2GvgUq5jnIy0LZOFid051OD4u63cHB9vyHh7aCZdmHNQyUqAK0vQRmbQMnOFH46rtt3XdA573YmZibHkZR1-9hqA4G3gKsLkjH4DlbLw5PDo74WKWBW7R_ilsMCW2ZSGmksLHz1tDdZmJyBDtzmcf4yiURGUH01LRISlXFNlOpl16mDh-8YJOmbfxLBpF2Djdnb0VlZO5LTdIxwiTGidQmWTZl7y4hKzZBjKPAIIZgLTZFgHXK9i-xLMbfsSsS9IpUpoSKpuzDFb7X7__9yPsr5P870qvbdHrN7hPOdBocx_tsgqj5N-jG9ObtuHx_Aw-u8bo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model+to+Construct+and+Predict+Flow+Curve+of+Materials+from+Compression+Test+Results+with+Machine+Learning+Models+Using+Python&rft.jtitle=Key+engineering+materials&rft.au=Zeren%2C+Do%C4%9Fu%C5%9F&rft.au=Kocat%C3%BCrk%2C+Fatih&rft.au=Ayd%C4%B1n%2C+Tolga&rft.date=2022-07-22&rft.pub=Trans+Tech+Publications+Ltd&rft.issn=1013-9826&rft.eissn=1662-9795&rft.volume=926&rft.spage=2022&rft.epage=2030&rft_id=info:doi/10.4028%2Fp-18kwo6&rft.externalDocID=10_4028_p_18kwo6 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F6392%3Fwidth%3D600 |