A Model to Construct and Predict Flow Curve of Materials from Compression Test Results with Machine Learning Models Using Python

In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve deter...

Full description

Saved in:
Bibliographic Details
Published inKey engineering materials Vol. 926; pp. 2022 - 2030
Main Authors Zeren, Doğuş, Kocatürk, Fatih, Aydın, Tolga
Format Journal Article
LanguageEnglish
Published Zurich Trans Tech Publications Ltd 22.07.2022
Subjects
Online AccessGet full text
ISSN1013-9826
1662-9795
1662-9809
1662-9795
DOI10.4028/p-18kwo6

Cover

Abstract In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve determination and flow curve prediction. The compression test data including Force-Stroke values was processed to determine the flow curves in the first part, and the flow curve data constructed for certain temperature and strain rate values of the material was used as input for the machine learning algorithms to predict flow curve at desired intermediate temperature and strain rate values in the second part. Moreover, Ludwik material model parameters were estimated by using curve fitting methods in order to define the material model into the simulation software. Machine learning algorithms and various regression models in Python libraries were tested to predict the flow curves. The performances of different machine learning and regression models were compared with respect to the mean squared error and coefficient of determination performance measures. Support vector regression, k-Nearest Neighbour (kNN) and artificial neural network models were used to predict flow curves of cold forging materials and kNN regression model was able to found predictions with the lowest error rate. As a result, a model that can process the compression test data to predict flow curves at intermediate temperature or strain rate values was developed.
AbstractList In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and strain rate values, a model was developed using Python programming language in this study. The model consists of two parts: Flow curve determination and flow curve prediction. The compression test data including Force-Stroke values was processed to determine the flow curves in the first part, and the flow curve data constructed for certain temperature and strain rate values of the material was used as input for the machine learning algorithms to predict flow curve at desired intermediate temperature and strain rate values in the second part. Moreover, Ludwik material model parameters were estimated by using curve fitting methods in order to define the material model into the simulation software. Machine learning algorithms and various regression models in Python libraries were tested to predict the flow curves. The performances of different machine learning and regression models were compared with respect to the mean squared error and coefficient of determination performance measures. Support vector regression, k-Nearest Neighbour (kNN) and artificial neural network models were used to predict flow curves of cold forging materials and kNN regression model was able to found predictions with the lowest error rate. As a result, a model that can process the compression test data to predict flow curves at intermediate temperature or strain rate values was developed.
Author Aydın, Tolga
Zeren, Doğuş
Kocatürk, Fatih
Author_xml – givenname: Doğuş
  surname: Zeren
  fullname: Zeren, Doğuş
  email: dogus.zeren@norm-fasteners.com.tr
  organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center
– givenname: Fatih
  surname: Kocatürk
  fullname: Kocatürk, Fatih
  email: fatih.kocaturk@norm-fasteners.com.tr
  organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center
– givenname: Tolga
  surname: Aydın
  fullname: Aydın, Tolga
  email: tolga.aydin@norm-fasteners.com.tr
  organization: Norm Cıvata San. ve Tic. A.Ş : R&D Center
BookMark eNp9kF1LwzAUhoMouE3BnxDwRoVq0qRpezmGU2HikO26ZOmp6-ySmqSO3fnTzajgheDV-eA57znnHaJjbTQgdEHJLSdxdtdGNHvfGXGEBlSIOMrTPDkOOaEsyrNYnKKhcxtCGM1oMkBfY_xsSmiwN3hitPO2Ux5LXeK5hbIO-bQxOzzp7CdgU-Fn6cHWsnG4smYbRratBedqo_ECnMev4LrGO7yr_TrAal1rwDOQVtf6rV_l8NIdivner40-QydVkIPznzhCy-n9YvIYzV4enibjWaQoIyJSnKRKMs5XnKq4BLWKCRNslVcVT8sU4iQvGcl4SgUlGWVSVLFKRQIceFKGxghd97qdbuV-J5umaG29lXZfUFIcrCvaorcusJc921rz0YW3io3prA7nFYzkVKSCChKoq55S1jhnofpP8KZHvZXBY1DrX8U_8Dfy_Izh
Cites_doi 10.1063/1.5112747
10.1016/j.procir.2019.02.050
10.3390/met9020220
10.25518/esaform21.4140
10.1016/j.jmrt.2019.01.019
10.1088/2053-1591/ab13ec
10.5545/sv-jme.2015.2785
10.1016/j.asoc.2010.06.004
10.1016/0890-6955(91)90038-5
10.1016/j.asoc.2008.03.016
ContentType Journal Article
Copyright 2022 Aydın et al.
Copyright Trans Tech Publications Ltd. 2022
Copyright_xml – notice: 2022 Aydın et al.
– notice: Copyright Trans Tech Publications Ltd. 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
F28
FR3
JG9
ADTOC
UNPAY
DOI 10.4028/p-18kwo6
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-9795
EndPage 2030
ExternalDocumentID 10.4028/p-18kwo6
10_4028_p_18kwo6
GroupedDBID -~X
.DC
4.4
8FE
8FG
AAATW
ABDNZ
ABJNI
ACGFS
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
D1I
DB1
DKFMR
EBS
F5P
KB.
L6V
P2P
RTP
~02
AAYXX
CITATION
7SR
8BQ
8FD
F28
FR3
JG9
ABJCF
ACYGS
ADTOC
CCPQU
EJD
HCIFZ
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
RNS
UNPAY
ID FETCH-LOGICAL-c1306-c407ca344b41c2decb20363b9ff47d7e259d308471610813a6f2c765e4e45d813
IEDL.DBID UNPAY
ISSN 1013-9826
1662-9795
1662-9809
IngestDate Tue Aug 19 21:06:21 EDT 2025
Mon Jun 30 09:45:38 EDT 2025
Wed Oct 01 06:03:34 EDT 2025
Fri Oct 03 21:33:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ANN
Flow Curve Prediction
Metal Forming
Machine Learning
Python
Language English
License https://www.scientific.net/license/TDM_Licenser.pdf
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1306-c407ca344b41c2decb20363b9ff47d7e259d308471610813a6f2c765e4e45d813
Notes Peer-reviewed extended papers selected from the 25th International Conference on Material Forming (ESAFORM 2022), April 27-29, 2022, Portugal
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.scientific.net/KEM.926.2022.pdf
PQID 3091676160
PQPubID 2040931
PageCount 9
ParticipantIDs unpaywall_primary_10_4028_p_18kwo6
proquest_journals_3091676160
crossref_primary_10_4028_p_18kwo6
transtech_journals_10_4028_p_18kwo6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220722
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 20220722
  day: 22
PublicationDecade 2020
PublicationPlace Zurich
PublicationPlace_xml – name: Zurich
PublicationTitle Key engineering materials
PublicationYear 2022
Publisher Trans Tech Publications Ltd
Publisher_xml – name: Trans Tech Publications Ltd
References Mandal (4592755); 9
4592756
4592754
Bingöl (4592757) 2015; 61
4592765
Rodríguez-Sánchez (4592760) 2019; 6
Kocatürk (4592763) 2021
4592764
Mehtedi (4592758); 79
4592762
Stendal (4592759) 2019; 9
Mahalle (4592761); 8
References_xml – ident: 4592762
  doi: 10.1063/1.5112747
– volume: 79
  start-page: 661
  ident: 4592758
  article-title: Flow curve prediction of ZAM100 magnesium alloy sheets using artificial neural network-based models
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.02.050
– volume: 9
  start-page: 220
  issn: 2075-4701
  issue: 2
  year: 2019
  ident: 4592759
  article-title: Applying Machine Learning to the Phenomenological Flow Stress Modeling of TNM-B1
  publication-title: Metals
  doi: 10.3390/met9020220
– year: 2021
  ident: 4592763
  article-title: Flow curve prediction of cold forging steel by artificial neural network model
  publication-title: ESAFORM 2021
  doi: 10.25518/esaform21.4140
– volume: 8
  start-page: 2130
  issue: 2
  ident: 4592761
  article-title: Neural network modeling for anisotropic mechanical properties and work hardening behavior of Inconel 718 alloy at elevated temperatures
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2019.01.019
– volume: 6
  start-page: 075320
  issn: 2053-1591
  issue: 7
  year: 2019
  ident: 4592760
  article-title: Application of artificial neural networks to map the mechanical response of a thermoplastic elastomer
  publication-title: Materials Research Express
  doi: 10.1088/2053-1591/ab13ec
– volume: 61
  start-page: 610
  issn: 0039-2480
  issue: 11
  year: 2015
  ident: 4592757
  article-title: Prediction of the True Stress of ZE20 Magnesium Alloy at Different Temperatures and Strain Rates
  publication-title: Strojniški vestnik - Journal of Mechanical Engineering
  doi: 10.5545/sv-jme.2015.2785
– ident: 4592764
– ident: 4592765
– ident: 4592756
  doi: 10.1016/j.asoc.2010.06.004
– ident: 4592754
  doi: 10.1016/0890-6955(91)90038-5
– volume: 9
  start-page: 237
  issue: 1
  ident: 4592755
  article-title: Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.03.016
SSID ssj0031815
Score 2.2864223
Snippet In order to obtain flow curves from compression test results of a cold forging material and predict flow curves of the material at intermediate temperature and...
SourceID unpaywall
proquest
crossref
transtech
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2022
SubjectTerms Algorithms
Artificial neural networks
Cold flow
Cold forging
Cold weather construction
Compression tests
Curve fitting
Data compression
Error analysis
Machine learning
Parameter estimation
Performance prediction
Programming languages
Python
Regression models
Strain rate
Support vector machines
Title A Model to Construct and Predict Flow Curve of Materials from Compression Test Results with Machine Learning Models Using Python
URI https://www.scientific.net/KEM.926.2022
https://www.proquest.com/docview/3091676160
https://www.scientific.net/KEM.926.2022.pdf
UnpaywallVersion publishedVersion
Volume 926
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1662-9795
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0031815
  issn: 1662-9795
  databaseCode: 8FG
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZgObQ9UPpALC9NH1dv48RxnOMKsUWgRauKlegpih_hQJSsSLYreupPxxOHR4sqcbMSK5b1OZ4Z-5tvCPmqUm4KoQOqjSkoV1LQNNaW6rgouDQsCRTmDk_Pxcmcn17Gl73OdtPTKn0qIDJluvD87Hg6SkOkE4QuCDTFOtkQsXO8B2Rjfj4b_-zuM1lEU9kVV2NChDRNunorvi2D1MvOulhJfltQJq9XtfjbED16l69aNBKooOray2qR367ysnxidCZvfTZ302kVItfkerRs1Uj__kfJ8YXz2SKbvfMJY79a3pE1W70nb55IEn4gf8aA5dFKaGvAYp6dvCzklYHZDd7ptDAp6xUcLW9-WagLmOatX8OAiSqA24tn1lZw4SYKP2yzLNsG8LzXdUbmpoVe1PXKD9VAx1uA2S3qGHwk88nxxdEJ7as0UO3sn6DahYQ6jzhXnOnQWK3wbjNSqQM7MYl18ZWJAjSCzlOTLMpFEepExJZbHhv3YJsMqrqyOwQCaYzbnK1mheKpzSVKxzAVKcNiHSXJkHy6hyxbeDGOzAUxCGu2yDysQ7J_j2XW_45NFjmvSCSCiWBIvjzg-_j--Uc-PyD_35F2X9Jpj7xGnPE0OAz3ycChZg-cG9OqQ7IuJ98P-0V8B7mg8qA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgewAOvBELBQ2Pq5c4cRznuKq6qkBbrVBXKqcofoRDo2TVZFmVEz-dmTh9AELqzUqsWNbneGbsb75h7KPJpauUjbh1ruLSaMXz1Hpu06qS2oksMpQ7vDxWR2v5-TQ9HXW2u5FWGVIBiSkzhOdfDpezPCY6QYxBoKvusj2VouM9YXvr49X823CfKRKe66G4mlAq5nk21FsJbR3lQXYWYyX9acOFPtu16k9DdO1d3uvJSJCCKra3zaa82JV1fcPoLB6FbO5u0CokrsnZbNubmf35l5LjLefzmD0cnU-Yh9XyhN3xzVP24IYk4TP2aw5UHq2GvgUq5jnIy0LZOFid051OD4u63cHB9vyHh7aCZdmHNQyUqAK0vQRmbQMnOFH46rtt3XdA573YmZibHkZR1-9hqA4G3gKsLkjH4DlbLw5PDo74WKWBW7R_ilsMCW2ZSGmksLHz1tDdZmJyBDtzmcf4yiURGUH01LRISlXFNlOpl16mDh-8YJOmbfxLBpF2Djdnb0VlZO5LTdIxwiTGidQmWTZl7y4hKzZBjKPAIIZgLTZFgHXK9i-xLMbfsSsS9IpUpoSKpuzDFb7X7__9yPsr5P870qvbdHrN7hPOdBocx_tsgqj5N-jG9ObtuHx_Aw-u8bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model+to+Construct+and+Predict+Flow+Curve+of+Materials+from+Compression+Test+Results+with+Machine+Learning+Models+Using+Python&rft.jtitle=Key+engineering+materials&rft.au=Zeren%2C+Do%C4%9Fu%C5%9F&rft.au=Kocat%C3%BCrk%2C+Fatih&rft.au=Ayd%C4%B1n%2C+Tolga&rft.date=2022-07-22&rft.pub=Trans+Tech+Publications+Ltd&rft.issn=1013-9826&rft.eissn=1662-9795&rft.volume=926&rft.spage=2022&rft.epage=2030&rft_id=info:doi/10.4028%2Fp-18kwo6&rft.externalDocID=10_4028_p_18kwo6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F6392%3Fwidth%3D600