Automatic door opening using gait identification for movement as gesture

A wide variety of organizations are using automated person identification systems to improve Customer satisfaction, operating efficiency as well as to secure critical resources. Gait identification provides a way to automatic person identification at distance in visual surveillance and monitor peopl...

Full description

Saved in:
Bibliographic Details
Published inGSTF Journal of Engineering Technology (JET) Vol. 4; no. 1
Main Authors Indumathi, T., Pushparani, M.
Format Journal Article
LanguageEnglish
Published Singapore Global Science and Technology Forum 21.09.2016
Subjects
Online AccessGet full text
ISSN2251-371X
2251-3701
2251-371X
DOI10.7603/s40707-016-0020-7

Cover

Abstract A wide variety of organizations are using automated person identification systems to improve Customer satisfaction, operating efficiency as well as to secure critical resources. Gait identification provides a way to automatic person identification at distance in visual surveillance and monitor people without their cooperation. Controlled environments such as banks, military installations and even airports need to be able to quickly detect threats and provide differing levels of access to different user groups. Gait shows a particular way or manner of moving on foot and gait recognition is the process of identifying an individual by the manner in which they walk. Gait is less unobtrusive biometric, which offers the possibility to identify people at a distance, without any interaction or co-operation from the subject; this is the property which makes it so attractive. This paper proposed new method for gait recognition. In this thesis, first step is extraction of foreground objects i.e. human and other moving objects from input video sequences or binary silhouette of a walking person is detected from each frame and human detection and tracking will be performed. After getting binary silhouettes of human beings model based approach is used to extract the gait features of a person. This paper proposes a uncorrelated multilinear discriminant analysis (UMLDA) algorithm for the challenging problem of gait recognition. At last neural network for matlab tool is used for training and testing purpose. We have created different model of neural network based on hidden layer, selection of training algorithm and setting the different parameter for training. And then we will test for the combination of NN+SVM, Knearest neighbour classification. Here all experiments are done on gait database and input video. Here all experiments are done on CASIA gait database. Different groups of training and testing dataset give different results. The best recognition result for our method is 96.32%.
AbstractList A wide variety of organizations are using automated person identification systems to improve Customer satisfaction, operating efficiency as well as to secure critical resources. Gait identification provides a way to automatic person identification at distance in visual surveillance and monitor people without their cooperation. Controlled environments such as banks, military installations and even airports need to be able to quickly detect threats and provide differing levels of access to different user groups. Gait shows a particular way or manner of moving on foot and gait recognition is the process of identifying an individual by the manner in which they walk. Gait is less unobtrusive biometric, which offers the possibility to identify people at a distance, without any interaction or co-operation from the subject; this is the property which makes it so attractive. This paper proposed new method for gait recognition. In this thesis, first step is extraction of foreground objects i.e. human and other moving objects from input video sequences or binary silhouette of a walking person is detected from each frame and human detection and tracking will be performed. After getting binary silhouettes of human beings model based approach is used to extract the gait features of a person. This paper proposes a uncorrelated multilinear discriminant analysis (UMLDA) algorithm for the challenging problem of gait recognition. At last neural network for matlab tool is used for training and testing purpose. We have created different model of neural network based on hidden layer, selection of training algorithm and setting the different parameter for training. And then we will test for the combination of NN+SVM, Knearest neighbour classification. Here all experiments are done on gait database and input video. Here all experiments are done on CASIA gait database. Different groups of training and testing dataset give different results. The best recognition result for our method is 96.32%.
ArticleNumber 20
Author Pushparani, M.
Indumathi, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Indumathi
  fullname: Indumathi, T.
  email: indumathi1979@yahoo.co.in
  organization: Mother Teresa Women’s University
– sequence: 2
  givenname: M.
  surname: Pushparani
  fullname: Pushparani, M.
  organization: Dept. of Computer Science, Mother Teresa Women’s University
BookMark eNqNkMFKAzEQhoNUsNY-gLe8wOokWZP0WIraQsGLgreQzSZLSjcpya7StzelPXgSLzPDz__NMP8tmoQYLEL3BB4EB_aYaxAgKiC8AqBQiSs0pfSJVEyQz8mv-QbNc94BAGOU1JJN0Xo5DrHXgze4jTHheLDBhw6P-VQ77QfsWxsG77wprhiwK64-ftm-qFhn3Nk8jMneoWun99nOL32GPl6e31fravv2ulktt5UhVIqKCMaZMI60TLR0IW3dWA0LcJrJonFZc95IUUPLG9MIo4m2FlrJGyZA147NED3vHcNBH7_1fq8Oyfc6HRUBdYpDneNQJQ51ikOJApEzZFLMOVn3L-ZyKBdv6GxSuzimUH77A_oBkv50VQ
Cites_doi 10.1109/TPAMI.2003.1251144
10.1109/ICB.2013.6612979
10.1109/ICEngTechnol.2012.6396120
10.1088/0004-6256/141/6/189
10.7763/IJMLC.2011.V1.61
ContentType Journal Article
Copyright Global Science and Technology Forum 2016
Copyright_xml – notice: Global Science and Technology Forum 2016
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.7603/s40707-016-0020-7
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2251-371X
ExternalDocumentID 10.7603/s40707-016-0020-7
10_7603_s40707_016_0020_7
GroupedDBID AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADINQ
AFGXO
AFKAO
AHBYD
ALMA_UNASSIGNED_HOLDINGS
C24
C6C
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1287-173637cf1d37d298e4bea090fa381d368466b8740d6bcb7ca1aee0d86b370a4f3
IEDL.DBID UNPAY
ISSN 2251-371X
2251-3701
IngestDate Sun Sep 07 11:25:01 EDT 2025
Wed Oct 01 03:54:31 EDT 2025
Fri Feb 21 02:34:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords UMLDA
Gait Biometric
SVM
Knearest neighbour Classifier
Neural
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1287-173637cf1d37d298e4bea090fa381d368466b8740d6bcb7ca1aee0d86b370a4f3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7603/s40707-016-0020-7
ParticipantIDs unpaywall_primary_10_7603_s40707_016_0020_7
crossref_primary_10_7603_s40707_016_0020_7
springer_journals_10_7603_s40707_016_0020_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160921
2016-09-21
PublicationDateYYYYMMDD 2016-09-21
PublicationDate_xml – month: 9
  year: 2016
  text: 20160921
  day: 21
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle GSTF Journal of Engineering Technology (JET)
PublicationTitleAbbrev GSTF J Eng Technol
PublicationYear 2016
Publisher Global Science and Technology Forum
Publisher_xml – name: Global Science and Technology Forum
References CR2
CR4
CR3
CR5
Wang, Tan, Ning, Hu (CR1) 2003; 25
CR7
Hossain, Chetty (CR6) 2011; 11
20_CR2
20_CR3
E. Hossain (20_CR6) 2011; 11
20_CR7
20_CR4
20_CR5
L. Wang (20_CR1) 2003; 25
References_xml – volume: 25
  start-page: 1505
  issue: 9
  year: 2003
  end-page: 1518
  ident: CR1
  article-title: Silhouette Analysis-Based Gait Recognition for Human Identification
  publication-title: IEEE Transaction pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2003.1251144
– ident: CR5
– ident: CR7
– ident: CR3
– ident: CR4
– ident: CR2
– volume: 11
  start-page: 77
  issue: 6
  year: 2011
  end-page: 86
  ident: CR6
  article-title: “Person Identity Verification Based on Multimodal Face-Gait Fusion,”
  publication-title: International Journal of Computer Science and Network Security
– ident: 20_CR5
  doi: 10.1109/ICB.2013.6612979
– ident: 20_CR3
– ident: 20_CR4
  doi: 10.1109/ICEngTechnol.2012.6396120
– ident: 20_CR2
  doi: 10.1088/0004-6256/141/6/189
– volume: 11
  start-page: 77
  issue: 6
  year: 2011
  ident: 20_CR6
  publication-title: International Journal of Computer Science and Network Security
– ident: 20_CR7
  doi: 10.7763/IJMLC.2011.V1.61
– volume: 25
  start-page: 1505
  issue: 9
  year: 2003
  ident: 20_CR1
  publication-title: IEEE Transaction pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2003.1251144
SSID ssj0003321483
Score 1.965319
Snippet A wide variety of organizations are using automated person identification systems to improve Customer satisfaction, operating efficiency as well as to secure...
SourceID unpaywall
crossref
springer
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Engineering
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20HrQH8RPrF3vwpASSbLKbHEuxFEFPFnoLs9lNKdSktAniv3cnH1JBFM9JNvB2s_NeZvYNwF0a60yilakale8EiKETo59ZIsddozJPhEgZ3ecXMZkGT7Nw1p7j3nTV7l1Kst6p7WctBf1tC8iZxkpfq4BJ88hd2LP0w6d-DaP2iANtv5xa70S8yWD-_OT3GNS9rQ_7Vb7Cj3dcLrdizPgIDltyyIbNbB7DjslPoL9lGXgKk2FVFrXNKtNFsWbU_cpeYFS_PmdzXJRsodsKoBp0ZlkpeytqW_CS4YZRQqlamzOYjh9fRxOn7YbgpDaGkJMjF1ymmae51H4cmUAZdGM3Qxt0NReWSAhFDfa0UKmSKXpojKsjobh0Mcj4OfTyIjcXwEwgUh2GwvhG2SDmRWmmXSssYpQYKqEHcN_hk6wa04vEigUCM2nATKgwjMBM5AAeOgSTdv1vfr37C-S_x77819hXcODXkxw7vncNvXJdmRtLGUp1Wy-RT6kLuQ4
  priority: 102
  providerName: Springer Nature
Title Automatic door opening using gait identification for movement as gesture
URI https://link.springer.com/article/10.7603/s40707-016-0020-7
https://doi.org/10.7603/s40707-016-0020-7
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2251-371X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321483
  issn: 2251-371X
  databaseCode: C24
  dateStart: 20130801
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20PYgHP1CxomUPnpSUfO42x1IsRbB4sFBPYTa7KcWalDZB9Nc7k6RSRfy4hByWZZnd5b2Xmbxh7DIOdSIBZaoG5Vo-QGCF4CZI5DzbqMQRAVBG924khmP_dhJMarNo-hdmI38vBX1j88mPBgUv6l5SOnKbNUWAtLvBmuPRfe-RmschRuNFKVsd1-_OpMpgfj_HZwxaJ0B32U6RLuD1BebzDYwZ7FfVWavSmpBKS546Ra468dsX48Y_Lf-A7dVMk_eqo3HItkx6xIa9Is9Kl1aus2zJqXkWLotT-fuUT2GW85muC4jKPeNIavlzVrqK5xxWnPJRxdIcs_Hg5qE_tOpmClaMEERGkJ7wZJw42pPaDbvGVwbs0E4AMVt7AnmIUNSfTwsVKxmDA8bYuisURhb8xDthjTRLzSnjxhexDgJhXKMQA51unGgbdUkIEgIldItdrcMbLSrPjAi1BgUkqgISUV0ZBSSSLXa93oCovj6rH0d_7NHvc5_9a_Q5a-TLwlwgychVm233XZ-eot-uj9o7gc_JvA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPMwdxJ84f-bgSSm0TZu0xzEcU7edNtitvDTpGMx2bC3if2_SdmOCKJ6b5vAl4Xtf3sv3AB7iUCYctUyVKFzLQ_StEN1EB3LUViJxmI8mozscsf7Ee53609os2ryF2cnfc2bu2DzjR6MFr9a9RunwfTjwnCAwZ7DLutvrFGoa7gS0ylv-_Od35tmkPVvQLNIlfn7gYrHDLL1jOKpDQtKp1vAE9lR6Cq0do8Az6HeKPCvNVYnMshUxPa_0B2Kq1mdkhvOczGVd91NCTXQsSt6z0gw8J7gmJo1UrNQ5THrP427fqnsgWLFmDuPfSBnlceJIyqUbBsoTCu3QTlBTraRMhw9MmLZ6kolY8BgdVMqWAROU2-gl9AIaaZaqSyDKY7H0faZcJTR1OUGcSFvLiRA5-oLJNjxu8ImWldVFpCWCATOqwIxMOZgBM-JteNogGNW7fv3r6C3If8999a-576HZHw8H0eBl9HYNh2654KHlOjfQyFeFutVBQy7uyu3yBWUPuBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gtqD-MT63IMnJZhkk93mWKqlvooHC72F2eymFGpS2gTx37ubR6kgiuckG_gmyzezM_k-gKsokDFHXaZKFK7lIfpWgG6sEzlqKxE7zEfT0X0ZsP7Qexz5o8rndFFPu9ctyfKfBqPSlGS3MxmbLc6ZOXnzjEqNLoN1NWzqH74OG54mN2Nh0GXd5SELNTY8bVp2M39-8jsf1W9uwlaezPDzA6fTFb7p7cJOlSiSThnZPVhTyT40V-QDD6DfybO0kFwlMk3nxDhh6QvEzLKPyRgnGZnIahqoCADRGSp5TwuJ8IzggpjmUj5XhzDs3b91-1bljGBFmk-MqiNllEexIymXbtBWnlBoB3aMmoAlZTqpYMKY7UkmIsEjdFApW7aZoNxGL6ZH0EjSRB0DUR6LpO8z5SqhCc1pR7G0dZERIEdfMNmC6xqfcFYKYIS6cDBghiWYoRkSM2CGvAU3NYJhtRcWv969BPnvtU_-tfYlbL7e9cLnh8HTKWy7RbwDy3XOoJHNc3WuM4lMXBRfyxfX7MBf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60PYgHH6hYUdmDJyUlz93mWMRSBIsHC_UUZh8pxdqUNkH01zuTpFJFfNxyWJZldpfv-3Ym3zB2oWOTSkCZakD5TggQOTH4KRK5wLUq9UQElNG9G4j-MLwdRaPaLJr-hVnL30tBb2wh-dGg4EXdS0pHbrKmiJB2N1hzOLjvPlLzOMRovChlq-P62xtVGczv5_iMQasE6DbbKmZzeH2B6XQNY3q7VXXWsrQmpNKSp3aRq7Z--2Lc-Kfl77GdmmnybnU09tmGnR2wfrfIs9KllZssW3BqnoXL4lT-PuZjmOR8YuoConLPOJJa_pyVruI5hyWnfFSxsIds2Lt5uO47dTMFRyMEkRFkIAKpU88E0vhxx4bKghu7KSBmm0AgDxGK-vMZobSSGjyw1jUdoTCyEKbBEWvMspk9ZtyGQpsoEta3CjHQ6-jUuKhLYpAQKWFa7HIV3mReeWYkqDUoIEkVkITqyiggiWyxq9UGJPX1Wf44-mOPfp_75F-jT1kjXxT2DElGrs7r4_UOHj_IFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+door+opening+using+gait+identification+for+movement+as+gesture&rft.jtitle=GSTF+Journal+of+Engineering+Technology+%28JET%29&rft.au=Indumathi%2C+T.&rft.au=Pushparani%2C+M.&rft.date=2016-09-21&rft.issn=2251-371X&rft.eissn=2251-371X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.7603%2Fs40707-016-0020-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_7603_s40707_016_0020_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2251-371X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2251-371X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2251-371X&client=summon