基于激光雷达与IMU融合的农业机器人定位方法

[目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维激光雷达(Light Detection and Ranging,LiDAR)与惯性测量单元(Inertial Measurement Unit,IMU)信息融合的农业机器人定位方法。[方法]首先,利用基于角度的聚类方法对激光雷达点云数据进行信息处理,并与三维正态分布变换(3D Normal Distribution Transform...

Full description

Saved in:
Bibliographic Details
Published in智慧农业(中英文) Vol. 6; no. 3; pp. 94 - 106
Main Authors 刘洋, 冀杰, 潘登, 赵立军, 李明生
Format Journal Article
LanguageChinese
Published 中国农业科学院农业信息研究所 30.05.2024
西南大学 工程技术学院,重庆 400715,中国%中国汽车工程研究院股份有限公司,重庆 401122,中国%重庆文理学院智能制造工程学院,重庆 402160,中国
Subjects
Online AccessGet full text
ISSN2096-8094
DOI10.12133/j.smartag.SA202401009

Cover

Abstract [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维激光雷达(Light Detection and Ranging,LiDAR)与惯性测量单元(Inertial Measurement Unit,IMU)信息融合的农业机器人定位方法。[方法]首先,利用基于角度的聚类方法对激光雷达点云数据进行信息处理,并与三维正态分布变换(3D Normal Distribution Transform,3D-NDT)定位算法相结合,在先验点云地图信息基础上实现基于激光雷达的实时定位;其次,为了克服单传感器定位方法的局限性,利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法对激光雷达定位信息与IMU里程计信息进行融合,进一步提升农业机器人的定位精度。最后,分别在机器人操作系统(Robot Operating System,ROS)的Gazebo仿真环境中,以及真实作业场景中进行实验,验证提出的定位算法的有效性。[结果和讨论]融合定位方法在仿真环境中的纵向和横向平均定位误差分别为1.7和1.8 cm,而在实验中的纵向和横向平均定位误差分别为3.3和3.3 cm,均小于传统3D-NDT定位算法的定位误差。[结论]提出的融合定位方法能够满足农业机器人在弱GNSS环境下自主作业的定位要求,为农业机器人提供了一种新的定位方法。
AbstractList [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维激光雷达(Light Detection and Ranging,LiDAR)与惯性测量单元(Inertial Measurement Unit,IMU)信息融合的农业机器人定位方法。[方法]首先,利用基于角度的聚类方法对激光雷达点云数据进行信息处理,并与三维正态分布变换(3D Normal Distribution Transform,3D-NDT)定位算法相结合,在先验点云地图信息基础上实现基于激光雷达的实时定位;其次,为了克服单传感器定位方法的局限性,利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法对激光雷达定位信息与IMU里程计信息进行融合,进一步提升农业机器人的定位精度。最后,分别在机器人操作系统(Robot Operating System,ROS)的Gazebo仿真环境中,以及真实作业场景中进行实验,验证提出的定位算法的有效性。[结果和讨论]融合定位方法在仿真环境中的纵向和横向平均定位误差分别为1.7和1.8 cm,而在实验中的纵向和横向平均定位误差分别为3.3和3.3 cm,均小于传统3D-NDT定位算法的定位误差。[结论]提出的融合定位方法能够满足农业机器人在弱GNSS环境下自主作业的定位要求,为农业机器人提供了一种新的定位方法。
TP242%S126; [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境中容易受到树木遮挡、电磁干扰等因素影响,因而,提出一种基于三维激光雷达(Light Detection and Ranging,LiDAR)与惯性测量单元(Inertial Measure-ment Unit,IMU)信息融合的农业机器人定位方法.[方法]首先,利用基于角度的聚类方法对激光雷达点云数据进行信息处理,并与三维正态分布变换(3D Normal Distribution Transform,3D-NDT)定位算法相结合,在先验点云地图信息基础上实现基于激光雷达的实时定位;其次,为了克服单传感器定位方法的局限性,利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法对激光雷达定位信息与IMU里程计信息进行融合,进一步提升农业机器人的定位精度.最后,分别在机器人操作系统(Robot Operating System,ROS)的Gazebo仿真环境中,以及真实作业场景中进行实验,验证提出的定位算法的有效性.[结果和讨论]融合定位方法在仿真环境中的纵向和横向平均定位误差分别为1.7和1.8 cm,而在实验中的纵向和横向平均定位误差分别为3.3和3.3 cm,均小于传统3D-NDT定位算法的定位误差.[结论]提出的融合定位方法能够满足农业机器人在弱GNSS环境下自主作业的定位要求,为农业机器人提供了一种新的定位方法.
Abstract_FL [Objective]High-precision localization technology serves as the crucial foundation in enabling the autonomous navigation operations of intelligent agricultural robots.However,the traditional global navigation satellite system(GNSS)localization method faces numer-ous limitations,such as tree shadow,electromagnetic interference,and other factors in the agricultural environment brings challenges to the accuracy and reliability of localization technology.To address the deficiencies and achieve precise localization of agricultural ro-bots independent of GNSS,a localization method was proposed based on the fusion of three-dimensional light detection and ranging(LiDAR)data and inertial measurement unit(IMU)information to enhance localization accuracy and reliability. [Methods]LiDAR was used to obtain point cloud data in the agricultural environment and realize self-localization via point cloud matching.By integrating real-time motion parameter measurements from the IMU with LiDAR data,a high-precision localization so-lution for agricultural robots was achieved through a specific fusion algorithm.Firstly,the LiDAR-obtained point cloud data was pre-processed and the depth map was used to save the data.This approach could reduce the dimensionality of the original LiDAR point cloud,and eliminate the disorder of the original LiDAR point cloud arrangement,facilitating traversal and clustering through graph search.Given the presence of numerous distinct crops like trees in the agricultural environment,an angle-based clustering method was adopted.Specific angle-based clustering criteria were set to group the point cloud data,leading to the segmentation of different clus-ters of points,and obvious crops in the agricultural environment was effectively perceived.Furthermore,to improve the accuracy and stability of positioning,an improved three-dimensional normal distribution transform(3D-NDT)localization algorithm was proposed.This algorithm operated by matching the LiDAR-scanned point cloud data in real time with the pre-existing down sampled point cloud map to achieve real-time localization.Considering that direct down sampling of LiDAR point clouds in the agricultural environment could result in the loss of crucial environmental data,a point cloud clustering operation was used in place of down sampling operation,thereby improving matching accuracy and positioning precision.Secondly,to address potential constraints and shortcomings of using a single sensor for robot localization,a multi-sensor information fusion strategy was deployed to improve the localization accuracy.Specifically,the extended Kalman filter algorithm(EKF)was chosen to fuse the localization data from LiDAR point cloud and the IMU odometer information.The IMU provided essential motion parameters such as acceleration and angular velocity of the agricultur-al robot,and by combining with the LiDAR-derived localization information,the localization of the agricultural robot could be more accurately estimated.This fusion approach maximized the advantages of different sensors,compensated for their individual limita-tions,and improved the overall localization accuracy of the agricultural robot. [Results and Discussions]A series of experimental results in the Gazebo simulation environment of the robot operating system(ROS)and real operation scenarios showed that the fusion localization method proposed had significant advantages.In the simulation envi-ronment,the average localization errors of the proposed multi-sensor data fusion localization method were 1.7 and 1.8 cm,respective-ly,while in the experimental scenario,these errors were 3.3 and 3.3 cm,respectively,which were significantly better than the tradition-al 3D-NDT localization algorithm.These findings showed that the localization method proposed in this study could achieve high-pre-cision localization in the complex agricultural environment,and provide reliable localization assistance for the autonomous function-ing of agricultural robots. [Conclusions]The proposed localization method based on the fusion of LiDAR data and IMU information provided a novel localiza-tion solution for the autonomous operation of agricultural robots in areas with limited GNSS reception.Through the comprehensive utilization of multi-sensor information and adopting advanced data processing and fusion algorithms,the localization accuracy of agri-cultural robots could be significantly improved,which could provide a new reference for the intelligence and automation of agricultur-al production.
Author 刘洋
冀杰
潘登
赵立军
李明生
AuthorAffiliation 西南大学 工程技术学院,重庆 400715,中国%中国汽车工程研究院股份有限公司,重庆 401122,中国%重庆文理学院智能制造工程学院,重庆 402160,中国
AuthorAffiliation_xml – name: 西南大学 工程技术学院,重庆 400715,中国%中国汽车工程研究院股份有限公司,重庆 401122,中国%重庆文理学院智能制造工程学院,重庆 402160,中国
Author_FL LIU Yang
LI Mingsheng
PAN Deng
JI Jie
ZHAO Lijun
Author_FL_xml – sequence: 1
  fullname: LIU Yang
– sequence: 2
  fullname: JI Jie
– sequence: 3
  fullname: PAN Deng
– sequence: 4
  fullname: ZHAO Lijun
– sequence: 5
  fullname: LI Mingsheng
Author_xml – sequence: 1
  fullname: 刘洋
  organization: 西南大学工程技术学院,重庆400715,中国
– sequence: 2
  fullname: 冀杰
  organization: 西南大学工程技术学院,重庆400715,中国
– sequence: 3
  fullname: 潘登
  organization: 中国汽车工程研究院股份有限公司,重庆401122,中国
– sequence: 4
  fullname: 赵立军
  organization: 重庆文理学院智能制造工程学院,重庆402160,中国
– sequence: 5
  fullname: 李明生
  organization: 西南大学工程技术学院,重庆400715,中国
BookMark eNotzzFLAzEABeAMFay1f8FBcLwzyaVNAi6lqC1UHbRIuxy5S65SNIVGEZ0cVHRocVHwLLo6uThYD6x_5u6s_8LSOr3l4z3eAsjojlYALCFoI4wcZ7VtmyPRPRYte7eEISYQQcgzIIshL1oMcjIP8sa0IYSYI4xpIQvWkpcojvrp90Vydfv79DEejeJhv7pVHz_3krubn_AyuR7EwzAdRMnjaxxFyVsYf_XSh8_0_X4RzAXi0Kj8f-ZAfWN9r1yxajub1XKpZvkIU2ZREkifC66YElRKn3CvKJDHiKdU4FCquPQCJoUkRFHfZwWHMYUJhwHzPDwhObAy6z0VOhC65bY7J109WXTPD_TZ9KkDIZu45ZnzhTGuNka6zcp2o9nYn5oZ-gNhFm1k
ClassificationCodes TP242%S126
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12133/j.smartag.SA202401009
DatabaseName 国家哲学社会科学文献中心
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Localization Method for Agricultural Robots Based on Fusion of LiDAR and IMU
EndPage 106
ExternalDocumentID zhny202403008
ZHNYZYW2024003008
GroupedDBID ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
EDH
GROUPED_DOAJ
NSCOK
TCJ
TGD
U1G
U5N
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c1278-74fdc9a9e8ea7ddc49b6a1b84beef377e9dbf8dad44e7cc85388e2490f8bb2ef3
ISSN 2096-8094
IngestDate Thu May 29 04:06:09 EDT 2025
Tue Jan 21 20:55:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 扩展卡尔曼滤波
激光雷达定位
传感器融合
点云匹配
农业机器人
agricultural robots
sensors fusion
LiDAR localization
extended Kalman filter
point cloud matching
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1278-74fdc9a9e8ea7ddc49b6a1b84beef377e9dbf8dad44e7cc85388e2490f8bb2ef3
OpenAccessLink http://dx.doi.org/10.12133/j.smartag.SA202401009
PageCount 13
ParticipantIDs wanfang_journals_zhny202403008
cass_nssd_ZHNYZYW2024003008
PublicationCentury 2000
PublicationDate 2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-30
  day: 30
PublicationDecade 2020
PublicationTitle 智慧农业(中英文)
PublicationTitle_FL Smart Agriculture
PublicationYear 2024
Publisher 中国农业科学院农业信息研究所
西南大学 工程技术学院,重庆 400715,中国%中国汽车工程研究院股份有限公司,重庆 401122,中国%重庆文理学院智能制造工程学院,重庆 402160,中国
Publisher_xml – name: 中国农业科学院农业信息研究所
– name: 西南大学 工程技术学院,重庆 400715,中国%中国汽车工程研究院股份有限公司,重庆 401122,中国%重庆文理学院智能制造工程学院,重庆 402160,中国
SSID ssj0002912275
ssib057733647
ssib051372935
ssib042363126
Score 2.3854203
Snippet [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在农业环境...
TP242%S126; [目的/意义]精准可靠的定位技术是智能农业机器人开展自主导航作业的重要前提,而常用的全球卫星导航系统(Global Navigation Satellite System,GNSS)定位方法在...
SourceID wanfang
cass
SourceType Aggregation Database
StartPage 94
Title 基于激光雷达与IMU融合的农业机器人定位方法
URI https://www.ncpssd.cn/Literature/articleinfo?id=ZHNYZYW2024003008&type=journalArticle
https://d.wanfangdata.com.cn/periodical/zhny202403008
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journal Collection
  issn: 2096-8094
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 2096-8094
  databaseCode: ABDBF
  dateStart: 20210901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2096-8094
  databaseCode: M~E
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib057733647
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9QwFI-qsrAgECBKoeqAp-pK4nzZEouTy6kgtQutaLucLl_t0kPi2oFODIBgaMUCEqWClYmFgXIS5Z-5O8qfwMZ7L7lLSlNRkKLIZz8__977-ZxnJ3E07ZYdhYmwkqTGzRhvM8ZpLeSWW4vtkIskMm3TxReF5xecuSXr3rK9PDb-q_TU0tZmOBttV75X8j-sQh7wim_J_gOzI6WQAWngF87AMJzPxDELbCYbzFMssPAsAhY4zGvg4wtQJOCQLJBMesxzWSCYF-CBwgKE784vYaYMmKiTKp0JwQKXSVBlkQaHST-Xh8yAfmJzICyZEnm7WY4KSAZy6qQQhAGMJEgmyz5yOYyDqVRSRQdxKreqOTDNJ0iUo-qIVoAtRq5cuEOZ0XIGqYHagpqFQNk7VuKQa6BynXl6UeIgZpnZDqhKdcBnNh5QojxsPIfplZdLuEV3-vVRB8d6ykYmUBxUk3nKyu0ES5QzgymgRWXKyTJ0hhpC9JlqjKSJRnA5h_8EpsH0jDSk3ZnB787j_h1-yVc28V5n3K7IRJMNSgg8YwMn0UBCZ9KiBLilBAKJ4EwZpHmoUPrD_iaxL2U9UPmUaCCAU6BDMM5Ph_5nhRL3LnVZp8JJRfcCoCbho36R2QAOVnqVwWd1NjccvRJxcV3lMGuHwCz7tvYwCHBKY51ZuqDnUlloaNDmGCejDm7gbREIOzobMBa01mbvK-x6uqHrsoizRk-_bq-3H1O5SdsUnOMQkOil1SC4FMIkxzGNYmZkG3h7vZjZ2C5uY5qvBGDQySVQRduKj8zL90NAcLcroUEUGsEMnV5XbKet9lopsl68qF3Ip8TTKhvfLmlj2-uXtTv9D91ed3fw_Un_2cuf774cHR72DnZhxDp6v9N_9eLH3tP-8_3ewd5gv9t_-7HX7fY_7fW-7QzefB18fn1FW2oEi_5cLf_SSy0yuIsbGqdxJFsyEUnLjePIkqHTMkJhhUmSmq6byDhMRdyKLStxowimGEIk3JJ6KsKQg8hVbbz9sJ1c06YdN41iE5dZ9BRf4pVpLIwolElkWwaE4xPaJBrdbHc6cXN1bmFldeUBeYTYmNCmcl8083G-0zxG1_W_CUxq54th54Y2vvloK7kJ85bNcIoY_g2EQuQJ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%BF%80%E5%85%89%E9%9B%B7%E8%BE%BE%E4%B8%8EIMU%E8%9E%8D%E5%90%88%E7%9A%84%E5%86%9C%E4%B8%9A%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%AE%9A%E4%BD%8D%E6%96%B9%E6%B3%95&rft.jtitle=%E6%99%BA%E6%85%A7%E5%86%9C%E4%B8%9A%EF%BC%88%E4%B8%AD%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=%E5%88%98%E6%B4%8B&rft.au=%E5%86%80%E6%9D%B0&rft.au=%E6%BD%98%E7%99%BB&rft.au=%E8%B5%B5%E7%AB%8B%E5%86%9B&rft.date=2024-05-30&rft.pub=%E8%A5%BF%E5%8D%97%E5%A4%A7%E5%AD%A6+%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+400715%2C%E4%B8%AD%E5%9B%BD%25%E4%B8%AD%E5%9B%BD%E6%B1%BD%E8%BD%A6%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E9%99%A2%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E9%87%8D%E5%BA%86+401122%2C%E4%B8%AD%E5%9B%BD%25%E9%87%8D%E5%BA%86%E6%96%87%E7%90%86%E5%AD%A6%E9%99%A2%E6%99%BA%E8%83%BD%E5%88%B6%E9%80%A0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+402160%2C%E4%B8%AD%E5%9B%BD&rft.issn=2096-8094&rft.volume=6&rft.issue=3&rft.spage=94&rft.epage=106&rft_id=info:doi/10.12133%2Fj.smartag.SA202401009&rft.externalDocID=zhny202403008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhny%2Fzhny.jpg