猪三维点云体尺自动计算模型Pig Back Transformer

[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间。本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点。在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度。[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer。模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种...

Full description

Saved in:
Bibliographic Details
Published in智慧农业(中英文) Vol. 6; no. 4; pp. 76 - 90
Main Authors 王宇啸, 石源源, 陈招达, 吴珍芳, 蔡更元, 张素敏, 尹令
Format Journal Article
LanguageChinese
Published 中国农业科学院农业信息研究所 30.07.2024
国家生猪种业工程技术研究中心,广东广州 510642,中国
国家生猪种业工程技术研究中心,广东广州 510642,中国%华南农业大学 数学与信息学院,广东广州 510642,中国%国家生猪种业工程技术研究中心,广东广州 510642,中国
猪禽种业全国重点实验室,广东广州 510640,中国%华南农业大学 数学与信息学院,广东广州 510642,中国
华南农业大学 动物科学学院,广东广州 510642,中国
猪禽种业全国重点实验室,广东广州 510640,中国
Subjects
Online AccessGet full text
ISSN2096-8094
DOI10.12133/j.smartag.SA202401023

Cover

Abstract [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间。本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点。在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度。[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer。模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块为关键点生成模块,使用了back attention机制的back encoder,其中加入了与质心和第一模块生成的全局关键点的偏移量,并将偏移量与点云注意力通过按位max pooling操作结合,最后通过生成猪的体尺测量关键点和背脊走向点。最后设计了使用关键点和背脊走向点作为输入的体尺算法。[结果和讨论] 对比关键点和背脊走向点生成任务上Pig Back Transformer表现最佳,并对比体尺计算结果与人工测量结果,体长相对误差为0.63%,相对PointNet++、Point Transformer V2、Point Cloud Transforme、OctFormer PointTr等模型有较大提升。[结论]Pig Back Transformer能相对准确地生成猪体尺关键点,提高体尺测量数据准确度,并且通过点云特征定位体尺关键点节省了计算资源,为无接触牲畜体尺测量提供了新思路。
AbstractList S2; [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间.本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点.在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度.[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer.模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块为关键点生成模块,使用了back attention机制的back encoder,其中加入了与质心和第一模块生成的全局关键点的偏移量,并将偏移量与点云注意力通过按位max pooling操作结合,最后通过生成猪的体尺测量关键点和背脊走向点.最后设计了使用关键点和背脊走向点作为输入的体尺算法.[结果和讨论]对比关键点和背脊走向点生成任务上Pig Back Transformer表现最佳,并对比体尺计算结果与人工测量结果,体长相对误差为0.63%,相对PointNet++、Point Transformer V2、Point Cloud Transforme、OctFormer PointTr等模型有较大提升.[结论]Pig Back Transformer能相对准确地生成猪体尺关键点,提高体尺测量数据准确度,并且通过点云特征定位体尺关键点节省了计算资源,为无接触牲畜体尺测量提供了新思路.
[目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间。本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点。在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度。[方法]针对猪三维表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer。模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块为关键点生成模块,使用了back attention机制的back encoder,其中加入了与质心和第一模块生成的全局关键点的偏移量,并将偏移量与点云注意力通过按位max pooling操作结合,最后通过生成猪的体尺测量关键点和背脊走向点。最后设计了使用关键点和背脊走向点作为输入的体尺算法。[结果和讨论] 对比关键点和背脊走向点生成任务上Pig Back Transformer表现最佳,并对比体尺计算结果与人工测量结果,体长相对误差为0.63%,相对PointNet++、Point Transformer V2、Point Cloud Transforme、OctFormer PointTr等模型有较大提升。[结论]Pig Back Transformer能相对准确地生成猪体尺关键点,提高体尺测量数据准确度,并且通过点云特征定位体尺关键点节省了计算资源,为无接触牲畜体尺测量提供了新思路。
Abstract_FL [Objective]Nowadays most no contact body size measurement studies are based on point cloud segmentation method,they use a trained point cloud segmentation neural network to segment point cloud of pigs,then locate measurement points based on them.But point cloud segmentation neural network always need a larger graphics processing unit(GPU)memory,moreover,the result of the measurement key point still has room of improvement.This study aims to design a key point generating neural network to extract mea-surement key points from pig's point cloud.Reducing the GPU memory usage and improve the result of measurement points at the same time,improve both the efficiency and accuracy of the body size measurement. [Methods]A neural network model was proposed using improved Transformer attention mechanic called Pig Back Transformer for generating key points and back orientation points which were related to pig body dimensions.In the first part of the network,it was in-troduced an embedding structure for initial feature extraction and a Transformer encoder structure with edge attention which was a self-attention mechanic improved from Transformer's encoder.The embedding structure using two shared multilayer perceptron(MLP)and a distance embedding algorithm,it takes a set of points from the edge of pig back's point cloud as input and then extract in-formation from the edge points set.In the encoder part,information about the offset distances between edge points and mass point which were their feature that extracted by the embedding structure mentioned before incorporated.Additionally,an extraction algo-rithm for back edge point was designed for extracting edge points to generate the input of the neural network model.In the second part of the network,it was proposed a Transformer encoder with improved self-attention called back attention.In the design of back atten-tion,it also had an embedding structure before the encoder structure,this embedding structure extracted features from offset values,these offset values were calculated by the points which are none-edge and down sampled by farthest point sampling(FPS)to both the relative centroid point and model generated global key point from the first part that introduced before.Then these offset values were processed with max pooling with attention generated by the extracted features of the points'axis to extract more information that the original Transformer encoder couldn't extract with the same number of parameters.The output part of the model was designed to gen-erate a set of offsets of the key points and points for back direction fitting,than add the set offset to the global key point to get points for pig body measurements.At last,it was introduced the methods for calculating body dimensions which were length,height,shoulder width,abdomen width,hip width,chest circumference and abdomen circumference using key points and back direction fitting points. [Results and Discussions]In the task of generating key points and points for back direction fitting,the improved Pig Back Transformer performed the best in the accuracy wise in the models tested with the same size of parameters,and the back orientation points generat-ed by the model were evenly distributed which was a good preparation for a better body length calculation.A melting test for edge de-tection part with two attention mechanic and edge trim method both introduced above had being done,when the edge detection and the attention mechanic got cut off,the result had been highly impact,it made the model couldn't perform as well as before,when the edge trim method of preprocessing part had been cut off,there's a moderate impact on the trained model,but it made the loss of the model more inconsistence while training than before.When comparing the body measurement algorithm with human handy results,the relative error in length was 0.63%,which was an improvement compared to other models.On the other hand,the relative error of shoulder width,abdomen width and hip width had edged other models a little but there was no significant improvement so the perfor-mance of these measurement accuracy could be considered negligible,the relative error of chest circumference and abdomen circum-ference were a little bit behind by the other methods existed,it's because the calculate method of circumferences were not complicated enough to cover the edge case in the dataset which were those point cloud that have big holes in the bottom of abdomen and chest,it impacted the result a lot. [Conclusions]The improved Pig Back Transformer demonstrates higher accuracy in generating key points and is more resource-effi-cient,enabling the calculation of more accurate pig body measurements.And provides a new perspective for non-contact livestock body size measurements.
Author 吴珍芳
蔡更元
尹令
王宇啸
石源源
陈招达
张素敏
AuthorAffiliation 国家生猪种业工程技术研究中心,广东广州 510642,中国%华南农业大学 数学与信息学院,广东广州 510642,中国%国家生猪种业工程技术研究中心,广东广州 510642,中国;华南农业大学 动物科学学院,广东广州 510642,中国;猪禽种业全国重点实验室,广东广州 510640,中国%华南农业大学 数学与信息学院,广东广州 510642,中国;国家生猪种业工程技术研究中心,广东广州 510642,中国;猪禽种业全国重点实验室,广东广州 510640,中国
AuthorAffiliation_xml – name: 国家生猪种业工程技术研究中心,广东广州 510642,中国%华南农业大学 数学与信息学院,广东广州 510642,中国%国家生猪种业工程技术研究中心,广东广州 510642,中国;华南农业大学 动物科学学院,广东广州 510642,中国;猪禽种业全国重点实验室,广东广州 510640,中国%华南农业大学 数学与信息学院,广东广州 510642,中国;国家生猪种业工程技术研究中心,广东广州 510642,中国;猪禽种业全国重点实验室,广东广州 510640,中国
Author_FL WANG Yuxiao
ZHANG Sumin
CAI Gengyuan
SHI Yuanyuan
CHEN Zhaoda
YIN Ling
WU Zhenfang
Author_FL_xml – sequence: 1
  fullname: WANG Yuxiao
– sequence: 2
  fullname: SHI Yuanyuan
– sequence: 3
  fullname: CHEN Zhaoda
– sequence: 4
  fullname: WU Zhenfang
– sequence: 5
  fullname: CAI Gengyuan
– sequence: 6
  fullname: ZHANG Sumin
– sequence: 7
  fullname: YIN Ling
Author_xml – sequence: 1
  fullname: 王宇啸
  organization: 国家生猪种业工程技术研究中心,广东广州510642,中国
– sequence: 2
  fullname: 石源源
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
– sequence: 3
  fullname: 陈招达
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
– sequence: 4
  fullname: 吴珍芳
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
– sequence: 5
  fullname: 蔡更元
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
– sequence: 6
  fullname: 张素敏
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
– sequence: 7
  fullname: 尹令
  organization: 华南农业大学数学与信息学院,广东广州510642,中国
BookMark eNotjz1Lw0Acxm-oYK39ClIEx9T_3eVyCU61qBWKClakXcIlTaLRXiCniI4u4ssiDm5Ct9KhODhoxW-TmH4MQ-P08MCP52UJlWQkPYRWMNQxwZSuh3U1EPGFCOqHDQJEBwyEllCZgGVoJlj6IqoqFQIAsTAhnJXRRvY0Tj7vs--P7PYrmT4nPy_p-3R2N04fRrPJMJu8_o6G6dvjwWlQ2xTuWa0TC6n8KB548TJa8MW58qr_WkFH21udZktr7-_sNhttzcWEc83ELvN8x2TUZGB4TLdyhw0hCOWW6FPK8mkUqO4AdRn3gDvYcXTTtMARvkFpBa0VuVdC-kIGdhhdxjJvtG9O5PX8qA7Ac2614FyhlC2V6tu91l631z2eMwX0B3VzZJI
ClassificationCodes S2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12133/j.smartag.SA202401023
DatabaseName 国家哲学社会科学文献中心
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Pig Back Transformer:Automatic 3D Pig Body Measurement Model
EndPage 90
ExternalDocumentID zhny202404007
ZHNYZYW2024004007
GroupedDBID ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
EDH
GROUPED_DOAJ
NSCOK
TCJ
TGD
U1G
U5N
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c1277-81c5efb8538506e549efb16aa2379ad3358093034b03c57e07b1bb48890baf633
ISSN 2096-8094
IngestDate Thu May 29 04:06:09 EDT 2025
Mon Feb 17 13:28:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 三维点云
自注意力机制
Transformer
Back
体尺自动测量
深度相机
Pig
测量关键点定位
key point positioning
body size automic measurement
3D point cloud
self-atten-tion mechanism
Pig Back Transformer
depth camera
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1277-81c5efb8538506e549efb16aa2379ad3358093034b03c57e07b1bb48890baf633
OpenAccessLink http://dx.doi.org/10.12133/j.smartag.SA202401023
PageCount 15
ParticipantIDs wanfang_journals_zhny202404007
cass_nssd_ZHNYZYW2024004007
PublicationCentury 2000
PublicationDate 2024-07-30
PublicationDateYYYYMMDD 2024-07-30
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-30
  day: 30
PublicationDecade 2020
PublicationTitle 智慧农业(中英文)
PublicationTitle_FL Smart Agriculture
PublicationYear 2024
Publisher 中国农业科学院农业信息研究所
国家生猪种业工程技术研究中心,广东广州 510642,中国
国家生猪种业工程技术研究中心,广东广州 510642,中国%华南农业大学 数学与信息学院,广东广州 510642,中国%国家生猪种业工程技术研究中心,广东广州 510642,中国
猪禽种业全国重点实验室,广东广州 510640,中国%华南农业大学 数学与信息学院,广东广州 510642,中国
华南农业大学 动物科学学院,广东广州 510642,中国
猪禽种业全国重点实验室,广东广州 510640,中国
Publisher_xml – name: 中国农业科学院农业信息研究所
– name: 华南农业大学 动物科学学院,广东广州 510642,中国
– name: 国家生猪种业工程技术研究中心,广东广州 510642,中国%华南农业大学 数学与信息学院,广东广州 510642,中国%国家生猪种业工程技术研究中心,广东广州 510642,中国
– name: 国家生猪种业工程技术研究中心,广东广州 510642,中国
– name: 猪禽种业全国重点实验室,广东广州 510640,中国
– name: 猪禽种业全国重点实验室,广东广州 510640,中国%华南农业大学 数学与信息学院,广东广州 510642,中国
SSID ssj0002912275
ssib057733647
ssib051372935
ssib042363126
Score 2.3918827
Snippet [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰。然而点云分割网络...
S2; [目的/意义]为了提高体尺关键点定位准确率,猪三维点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络...
SourceID wanfang
cass
SourceType Aggregation Database
StartPage 76
Title 猪三维点云体尺自动计算模型Pig Back Transformer
URI https://www.ncpssd.cn/Literature/articleinfo?id=ZHNYZYW2024004007&type=eJournalArticle&typename=中文期刊文章&nav=1&langType=1&pageUrl=https%253A%252F%252Fwww.ncpssd.org%252Fjournal%252Fdetails%253Fgch%253D211192%2526nav%253D1%2526langType%253D2
https://d.wanfangdata.com.cn/periodical/zhny202404007
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-8094
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 2096-8094
  databaseCode: ABDBF
  dateStart: 20210901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2096-8094
  databaseCode: M~E
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib057733647
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNLT14kUUFWu17MF3kq2Zj2QSPGV2ZymCRbDFtpdlPlsVV3BXxB69iB8X8eBN6K30UDx40Ir_puv2Z_hedroz0EVUWIbMy3tv3sck7yWbZBi7wTNP-AUvmpmvdNNXrtNUMnWbfiFFnGHCX9hzuu-uyOU1_866WJ-ZfVHfXTJIltKdqftK_serCEO_0i7Zf_DshCkCsIz-xSt6GK9_5WOIAlAtMAYiH0IFShMkDCH0bZULobZVBrRjC23QHkQCQk7ACEkCSy5AGTCKICYC4xA5FnQAkSQ4QQToCFR47-HWzTBOH4_PRaect1zg--hEKAlaW_YSlAATWPYIbJViaqzqQNgCpUqIaVtZUHDHkkuSq8SZzFRYlUgC4ofCKctYozKqjqKRzCMupDWfFCoUTeLRoyXx0iE9OozwV6EIoiyN2AE1ls4g3_okievb2Vc-ea1rygjiG7anaR6QRbS1J2IaWQpk3GnIWOhY46OsDpiOJeegrWgGrSxtFerDqy7dxQEj5gTjzzqfxB9Za2Z-LZYEspaVjM10Kt65Dk3IY8DrP8G3MN5aum9IfToo0Ksi_GTd5ebyysbmxgOLQr13MMvOuBgOeW0uAjtiTLGl51R5uXDoz90qrxYBHaJZjkMp5XG147r2UOuJhuVufBLw1lTxMAdKcXxoN8v1iri3VcvrVs-zc-WArGHGresCm9nZvshuj97vH317M_rxdfTq-9Hhh6OfH4dfDo9f7w_f7h0f7I4OPv3a2x1-fodtoUFtoVFrC5fYWidabS03y8-MNFOHFjAoJxV5kWDeSqc35sLXeOfIOHa9QMeZRwsFNGZ6fsK9VAQ5DxInSTDwaZ7EhfS8y2yu97SXX2ENlSEgyRIeaETIY8wkfK6TPNPcS3JRzLMF0rnb6_ez7ilnzLPF0hTdspPpd3e2ey8tBiFc_SP5AjtbvfrX2Nzg2fP8OmbMg2TRevc3BwCMQg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%8C%AA%E4%B8%89%E7%BB%B4%E7%82%B9%E4%BA%91%E4%BD%93%E5%B0%BA%E8%87%AA%E5%8A%A8%E8%AE%A1%E7%AE%97%E6%A8%A1%E5%9E%8BPig+Back+Transformer&rft.jtitle=%E6%99%BA%E6%85%A7%E5%86%9C%E4%B8%9A%EF%BC%88%E4%B8%AD%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=%E7%8E%8B%E5%AE%87%E5%95%B8&rft.au=%E7%9F%B3%E6%BA%90%E6%BA%90&rft.au=%E9%99%88%E6%8B%9B%E8%BE%BE&rft.au=%E5%90%B4%E7%8F%8D%E8%8A%B3&rft.date=2024-07-30&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6%E9%99%A2%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E7%A0%94%E7%A9%B6%E6%89%80&rft.issn=2096-8094&rft.volume=6&rft.issue=4&rft.spage=76&rft.epage=90&rft_id=info:doi/10.12133%2Fj.smartag.SA202401023&rft.externalDocID=ZHNYZYW2024004007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhny%2Fzhny.jpg