割草机器人自适应时域MPC路径跟踪控制方法

[目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过程中的跟踪效果和适应性都较差。因此,设计了一种自适应时域MPC控制器并使其满足自主割草等复杂作业要求。[方法]首先,根据割草机器人的速度确定前方参考路径的预瞄区域,并计算预瞄区域内的参考路径曲度因子和曲度变化因子,分别用于描述曲率和曲率变化大小。然后,将二者作为模糊控制器的输入信息,用于自适应调节MPC的预测时域,同时,根据预测时域及曲度变化因子调整控制时域,以增强控制器对路径弯曲变化的适应性并降低计算资源。此外,设计一...

Full description

Saved in:
Bibliographic Details
Published in智慧农业(中英文) Vol. 6; no. 3; pp. 82 - 93
Main Authors 贺庆, 冀杰, 冯伟, 赵立军, 张博涵
Format Journal Article
LanguageChinese
Published 中国农业科学院农业信息研究所 30.05.2024
西南大学 工程技术学院,重庆 400715,中国%重庆市农业科学研究院 农业机械研究所,重庆 401329,中国%重庆文理学院 智能制造工程学院,重庆 402160,中国
Subjects
Online AccessGet full text
ISSN2096-8094
DOI10.12133/j.smartag.SA202401010

Cover

Abstract [目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过程中的跟踪效果和适应性都较差。因此,设计了一种自适应时域MPC控制器并使其满足自主割草等复杂作业要求。[方法]首先,根据割草机器人的速度确定前方参考路径的预瞄区域,并计算预瞄区域内的参考路径曲度因子和曲度变化因子,分别用于描述曲率和曲率变化大小。然后,将二者作为模糊控制器的输入信息,用于自适应调节MPC的预测时域,同时,根据预测时域及曲度变化因子调整控制时域,以增强控制器对路径弯曲变化的适应性并降低计算资源。此外,设计一种MPC事件触发执行机制,进一步提升MPC的实时性。[结果和讨论]与固定时域的MPC进行对比试验,自适应时域MPC控制器的最大横向误差绝对值和最大航向误差绝对值分别控制在11 cm和0.13 rad以内,其平均求解时间比最大时域MPC减少10.9 ms。[结论]自适应时域MPC不仅能够保证割草机器人对曲线路径的跟踪精度,同时降低了MPC求解计算量并提高了控制实时性,解决了固定时域MPC的控制精度与计算量之间的矛盾。
AbstractList S224.1+5%TP242.6; [目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过程中的跟踪效果和适应性都较差.因此,设计了一种自适应时域MPC控制器并使其满足自主割草等复杂作业要求.[方法]首先,根据割草机器人的速度确定前方参考路径的预瞄区域,并计算预瞄区域内的参考路径曲度因子和曲度变化因子,分别用于描述曲率和曲率变化大小.然后,将二者作为模糊控制器的输入信息,用于自适应调节MPC的预测时域,同时,根据预测时域及曲度变化因子调整控制时域,以增强控制器对路径弯曲变化的适应性并降低计算资源.此外,设计一种MPC事件触发执行机制,进一步提升MPC的实时性.[结果和讨论]与固定时域的MPC进行对比试验,自适应时域MPC控制器的最大横向误差绝对值和最大航向误差绝对值分别控制在11 cm和0.13 rad以内,其平均求解时间比最大时域MPC减少10.9 ms.[结论]自适应时域MPC不仅能够保证割草机器人对曲线路径的跟踪精度,同时降低了MPC求解计算量并提高了控制实时性,解决了固定时域MPC的控制精度与计算量之间的矛盾.
[目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过程中的跟踪效果和适应性都较差。因此,设计了一种自适应时域MPC控制器并使其满足自主割草等复杂作业要求。[方法]首先,根据割草机器人的速度确定前方参考路径的预瞄区域,并计算预瞄区域内的参考路径曲度因子和曲度变化因子,分别用于描述曲率和曲率变化大小。然后,将二者作为模糊控制器的输入信息,用于自适应调节MPC的预测时域,同时,根据预测时域及曲度变化因子调整控制时域,以增强控制器对路径弯曲变化的适应性并降低计算资源。此外,设计一种MPC事件触发执行机制,进一步提升MPC的实时性。[结果和讨论]与固定时域的MPC进行对比试验,自适应时域MPC控制器的最大横向误差绝对值和最大航向误差绝对值分别控制在11 cm和0.13 rad以内,其平均求解时间比最大时域MPC减少10.9 ms。[结论]自适应时域MPC不仅能够保证割草机器人对曲线路径的跟踪精度,同时降低了MPC求解计算量并提高了控制实时性,解决了固定时域MPC的控制精度与计算量之间的矛盾。
Abstract_FL [Objective]The traditional predictive control approach usually employs a fixed time horizon and often overlooks the impact of chang-es in curvature and road bends.This oversight leads to subpar tracking performance and inadequate adaptability of robots for navigat-ing curves and paths.Although extending the time horizon of the standard fixed time horizon model predictive control(MPC)can im-prove curve path tracking accuracy,it comes with high computational costs,making it impractical in situations with restricted comput-ing resources.Consequently,an adaptive time horizon MPC controller was developed to meet the requirements of complex tasks such as autonomous mowing. [Methods]Initially,it was crucial to establish a kinematic model for the mowing robot,which required employing Taylor linearization and Euler method discretization techniques to ensure accurate path tracking.The prediction equation for the error model was derived after conducting a comprehensive analysis of the robot's kinematics model employed in mowing.Second,the size of the previewing area was determined by utilizing the speed data and reference path information gathered from the mowing robot.The region located a certain distance ahead of the robot's current position,was identified to as the preview region,enabling a more accurate prediction of the robot's future traveling conditions.Calculations for both the curve factor and curve change factor were carried out within this pre-view region.The curvature factor represented the initial curvature of the path,while the curvature change factor indicated the extent of curvature variation in this region.These two variables were then fed into a fuzzy controller,which adjusted the prediction time hori-zon of the MPC.The integration enabled the mowing robot to promptly adjust to changes in the path's curvature,thereby improving its accuracy in tracking the desired trajectory.Additionally,a novel technique for triggering MPC execution was developed to reduce computational load and improve real-time performance.This approach ensured that MPC activation occurred only when needed,rath-er than at every time step,resulting in reduced computational expenses especially during periods of smooth robot motion where unnec-essary computation overhead could be minimized.By meeting kinematic and dynamic constraints,the optimization algorithm success-fully identified an optimal control sequence,ultimately enhancing stability and reliability of the control system.Consequently,these set of control algorithms facilitated precise path tracking while considering both kinematic and dynamic limitations in complex envi-ronments. [Results and Discussion]The adaptive time-horizon MPC controller effectively limited the maximum absolute heading error and maxi-mum absolute lateral error to within 0.13 rad and 11 cm,respectively,surpassing the performance of the MPC controller in the control group.Moreover,compared to both the first and fourth groups,the adaptive time-horizon MPC controller achieved a remarkable re-duction of 75.39%and 57.83%in mean values for lateral error and heading error,respectively(38.38%and 31.84%,respectively).Ad-ditionally,it demonstrated superior tracking accuracy as evidenced by its significantly smaller absolute standard deviation of lateral er-ror(0.025 6 m)and course error(0.025 5 rad),outperforming all four fixed time-horizon MPC controllers tested in the study.Further-more,this adaptive approach ensured precise tracking and control capabilities for the mowing robot while maintaining a remarkably low average solution time of only 0.004 9 s,notably faster than that observed with other control data sets-reducing computational load by approximately 10.9 ms compared to maximum time-horizon MPC. [Conclusions]The experimental results demonstrated that the adaptive time-horizon MPC tracking approach effectively addressed the trade-off between control accuracy and computational complexity encountered in fixed time-horizon MPC.By dynamically adjusting the time horizon length the and performing MPC calculations based on individual events,this approach can more effectively handle scenarios with restricted computational resources,ensuring superior control precision and stability.Furthermore,it achieves a balance between control precision and real-time performance in curve route tracking for mowing robots,offering a more practical and reliable solution for their practical application.
Author 冀杰
冯伟
张博涵
贺庆
赵立军
AuthorAffiliation 西南大学 工程技术学院,重庆 400715,中国%重庆市农业科学研究院 农业机械研究所,重庆 401329,中国%重庆文理学院 智能制造工程学院,重庆 402160,中国
AuthorAffiliation_xml – name: 西南大学 工程技术学院,重庆 400715,中国%重庆市农业科学研究院 农业机械研究所,重庆 401329,中国%重庆文理学院 智能制造工程学院,重庆 402160,中国
Author_FL FENG Wei
ZHANG Bohan
HE Qing
JI Jie
ZHAO Lijun
Author_FL_xml – sequence: 1
  fullname: HE Qing
– sequence: 2
  fullname: JI Jie
– sequence: 3
  fullname: FENG Wei
– sequence: 4
  fullname: ZHAO Lijun
– sequence: 5
  fullname: ZHANG Bohan
Author_xml – sequence: 1
  fullname: 贺庆
  organization: 西南大学工程技术学院,重庆400715,中国
– sequence: 2
  fullname: 冀杰
  organization: 西南大学工程技术学院,重庆400715,中国
– sequence: 3
  fullname: 冯伟
  organization: 重庆市农业科学研究院农业机械研究所,重庆401329,中国
– sequence: 4
  fullname: 赵立军
  organization: 重庆文理学院智能制造工程学院,重庆402160,中国
– sequence: 5
  fullname: 张博涵
  organization: 西南大学工程技术学院,重庆400715,中国
BookMark eNotj01LAkEcxudgkJlfoUPQce0__5l1d48ilYG9QELoZZkdHUNqBKeIOkkE5aFOvRAEHgsvQYHWHvo07bJ9ixaN5_BcfjwvCySju7pFyBKFAkXK2GqnYI5E71i0C3slBORAU2VIFsErWi54fJ7kjekAAHoU0bGzxIsG78nNIH4Oo6fXnzBMrka__YsovIsfx9FwuLVbTiZv0fdlMhkmn6P49iW6HscPX_HH_SKZU-LQtPL_niO19bVauWJVdzY2y6WqJSk6jsVtRankkimOSjCBQHnguoEHiEIqcIpNFrBii6l0FXdoU8nApSilTV3bQ5YjK7PYU6GV0G2_0z3p6bTQPz_QZ9OXDMBJueUZJ4Uxvjam6Tcq2_VGfX_KzKA_zAxoqA
ClassificationCodes S224.1+5%TP242.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12133/j.smartag.SA202401010
DatabaseName 国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Adaptive Time Horizon MPC Path Tracking Control Method for Mowing Robot
EndPage 93
ExternalDocumentID zhny202403007
ZHNYZYW2024003007
GroupedDBID ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
EDH
GROUPED_DOAJ
NSCOK
TCJ
TGD
U1G
U5N
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c1277-45f11c4c3f42fa3a2014b88b9022acf076d3b36e3f002471dfcb812cc5185923
ISSN 2096-8094
IngestDate Thu May 29 04:06:09 EDT 2025
Tue Jan 21 20:55:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 模型预测控制
割草机器人
路径跟踪
事件触发执行机制
模糊控制
model predictive control
fuzzy control
path tracking
event-triggered mechanism
mowing robot
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1277-45f11c4c3f42fa3a2014b88b9022acf076d3b36e3f002471dfcb812cc5185923
OpenAccessLink http://dx.doi.org/10.12133/j.smartag.SA202401010
PageCount 12
ParticipantIDs wanfang_journals_zhny202403007
cass_nssd_ZHNYZYW2024003007
PublicationCentury 2000
PublicationDate 2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-30
  day: 30
PublicationDecade 2020
PublicationTitle 智慧农业(中英文)
PublicationTitle_FL Smart Agriculture
PublicationYear 2024
Publisher 中国农业科学院农业信息研究所
西南大学 工程技术学院,重庆 400715,中国%重庆市农业科学研究院 农业机械研究所,重庆 401329,中国%重庆文理学院 智能制造工程学院,重庆 402160,中国
Publisher_xml – name: 中国农业科学院农业信息研究所
– name: 西南大学 工程技术学院,重庆 400715,中国%重庆市农业科学研究院 农业机械研究所,重庆 401329,中国%重庆文理学院 智能制造工程学院,重庆 402160,中国
SSID ssj0002912275
ssib057733647
ssib051372935
ssib042363126
Score 2.3929307
Snippet [目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过程中的跟踪效...
S224.1+5%TP242.6; [目的/意义]传统路径跟踪模型预测控制(Model Predictive Control,MPC)大多采用固定时域,较少考虑道路弯曲和曲率变化的影响,使得机器人在曲线路径作业过...
SourceID wanfang
cass
SourceType Aggregation Database
StartPage 82
Title 割草机器人自适应时域MPC路径跟踪控制方法
URI https://www.ncpssd.cn/Literature/articleinfo?id=ZHNYZYW2024003007&type=journalArticle
https://d.wanfangdata.com.cn/periodical/zhny202403007
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
  issn: 2096-8094
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 2096-8094
  databaseCode: ABDBF
  dateStart: 20210901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0002912275
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2096-8094
  databaseCode: M~E
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib057733647
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFI_GuHBBIECMwbQDPnbEjuPYx6RNNSExIVHEtksVJ812IUi0k6AnhJBgBzjxISSkHkG7IIG0QQ_8NbQq_wXvuW4bWIUAKYoc-_nlPb_Y72fHH45zNRBJpnA_7SyVrQp4PKhSPmtVMpVLoSXjnjazfDfE-m1-fdPfXDjxoDRraa-j19Lu3HUl_2NViAO74irZf7DslClEQBjsC3ewMNz_ysYk9olUJGIklkTWMBwLoqokCjFJKRJKEnN8xBigCUgIAYXzGyRDGohX3OQKSCRMrjpcN25WkT4C-rohi4nkNgYIMCANK0FkTMLASCINB2AlSGQkiTwyPttyAn9NqjLCQEZ_ktHIjHJKoiCpTqIqchvHhDUjeUQiapmDFpZmOophJOJWb7hLMUsxLwCFMXONRO5vKaggR26q_gs3H68YCiDCl1sxo_IoCePmB787_a5LEkM5gsS1eeoFqLaimASUoUB7oKnYPGII1EloNJfUyArZXWMzCChb4hItOmvTGfQYARSMz3WeOCBRqmdeyZmMT2WysGR8juQxh8cojsiDx2vfhc8w2Vm7FaL6uHOgO3Px04mX2-sbW9tbdwwJNO-4DcNJBv7QLQ1GQEsMGFt4dAbMfYp_d2fA2g9wF03bEUXMwxRlzOxqPdXQLsdHAa_NFQ9AUAodRLNarsiTYqcE7BpnnNO2R7YajqvXWWehu3vOUYP9T6Pn-8N3_cHbD9_7_dHTgx-PHg_6L4dvDge9HlSP0dHHwbcno6Pe6MvB8MX7wbPD4euvw8-vzjuNetyorlfsKSOVlOL8Be7nlKY89XLO8sRLABFzLaVWgG6TNHcDkXnaEy0vRzwb0CxPNaDiNPUB6kL36IKzWNwrWhed1Tz3haYJeFDOeKa01FToLFAtFxgmOl9yllHhZtFuZ81jllhyVmw5NG0T0252d4uHhgIJLv0x-7JzavbdX3YWO_f3WlcAL3f0ijHtT4jjjWI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%89%B2%E8%8D%89%E6%9C%BA%E5%99%A8%E4%BA%BA%E8%87%AA%E9%80%82%E5%BA%94%E6%97%B6%E5%9F%9FMPC%E8%B7%AF%E5%BE%84%E8%B7%9F%E8%B8%AA%E6%8E%A7%E5%88%B6%E6%96%B9%E6%B3%95&rft.jtitle=%E6%99%BA%E6%85%A7%E5%86%9C%E4%B8%9A%EF%BC%88%E4%B8%AD%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=%E8%B4%BA%E5%BA%86&rft.au=%E5%86%80%E6%9D%B0&rft.au=%E5%86%AF%E4%BC%9F&rft.au=%E8%B5%B5%E7%AB%8B%E5%86%9B&rft.date=2024-05-30&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6%E9%99%A2%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E7%A0%94%E7%A9%B6%E6%89%80&rft.issn=2096-8094&rft.volume=6&rft.issue=3&rft.spage=82&rft.epage=93&rft_id=info:doi/10.12133%2Fj.smartag.SA202401010&rft.externalDocID=ZHNYZYW2024003007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhny%2Fzhny.jpg