Development of New Machine Learning Based Algorithm for the Diagnosis of Obstructive Sleep Apnea from ECG Data

In this study, a machine learning algorithm is proposed to be used in the detection of Obstructive Sleep Apnea (OSA) from the analysis of single-channel ECG recordings. Eighteen ECG recordings from the PhysioNet Apnea-ECG dataset were used in the study. In the feature extraction stage, dynamic time...

Full description

Saved in:
Bibliographic Details
Published inJournal of Computer Science Research Vol. 5; no. 3; pp. 15 - 21
Main Author Tuncer, Erdem
Format Journal Article
LanguageEnglish
Published 14.07.2023
Online AccessGet full text
ISSN2630-5151
2630-5151
DOI10.30564/jcsr.v5i3.5762

Cover

Abstract In this study, a machine learning algorithm is proposed to be used in the detection of Obstructive Sleep Apnea (OSA) from the analysis of single-channel ECG recordings. Eighteen ECG recordings from the PhysioNet Apnea-ECG dataset were used in the study. In the feature extraction stage, dynamic time warping and median frequency features were obtained from the coefficients obtained from different frequency bands of the ECG data by using the wavelet transform-based algorithm. In the classification phase, OSA patients and normal ECG recordings were classified using Random Forest (RF) and Long Short-Term Memory (LSTM) classifier algorithms. The performance of the classifiers was evaluated as 90% training and 10% testing. According to this evaluation, the accuracy of the RF classifier was 82.43% and the accuracy of the LSTM classifier was 77.60%. Considering the results obtained, it is thought that it may be possible to use the proposed features and classifier algorithms in OSA classification and maybe a different alternative to existing machine learning methods. The proposed method and the feature set used are promising because they can be implemented effectively thanks to low computing overhead. 
AbstractList In this study, a machine learning algorithm is proposed to be used in the detection of Obstructive Sleep Apnea (OSA) from the analysis of single-channel ECG recordings. Eighteen ECG recordings from the PhysioNet Apnea-ECG dataset were used in the study. In the feature extraction stage, dynamic time warping and median frequency features were obtained from the coefficients obtained from different frequency bands of the ECG data by using the wavelet transform-based algorithm. In the classification phase, OSA patients and normal ECG recordings were classified using Random Forest (RF) and Long Short-Term Memory (LSTM) classifier algorithms. The performance of the classifiers was evaluated as 90% training and 10% testing. According to this evaluation, the accuracy of the RF classifier was 82.43% and the accuracy of the LSTM classifier was 77.60%. Considering the results obtained, it is thought that it may be possible to use the proposed features and classifier algorithms in OSA classification and maybe a different alternative to existing machine learning methods. The proposed method and the feature set used are promising because they can be implemented effectively thanks to low computing overhead. 
Author Tuncer, Erdem
Author_xml – sequence: 1
  givenname: Erdem
  orcidid: 0000-0003-1234-7055
  surname: Tuncer
  fullname: Tuncer, Erdem
BookMark eNqF0MFOAjEQgOHGYCIiZ699AaDbbrvsEQHRBOWgnjezZRZqlnbTFghvrysejAc9zVy-meS_Jh3rLBJym7ChYFKlo3cd_PAgjRjKTPEL0uVKsIFMZNL5sV-RfgimZGmapWKcqS6xMzxg7Zod2khdRZ_xSJ9Ab41FukTw1tgNvYOAazqpN86buN3Rynkat0hnBjbWBRNauSpD9HsdzQHpS43Y0EljEWjl3Y7Opws6gwg35LKCOmD_e_bI2_38dfowWK4Wj9PJcqATnvFBhTxnJctFmmgOyCRmvBTpGMs1U2sNKctULqXIswQrqUrIU1BScK0ylkvkokfY-e7eNnA6Ql0XjTc78KciYcVXsqJNVrTJijbZJ5Fnor0LwWNVaBMhGmejB1P_4Ua_3H-fPgAsk4Qu
CitedBy_id crossref_primary_10_1007_s13198_024_02674_4
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.30564/jcsr.v5i3.5762
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2630-5151
EndPage 21
ExternalDocumentID 10.30564/jcsr.v5i3.5762
10_30564_jcsr_v5i3_5762
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c1272-fe290b09341c2ae05e72b348ebd06dca40769553971ef56ba94a6532c67095e23
IEDL.DBID UNPAY
ISSN 2630-5151
IngestDate Tue Aug 19 21:22:28 EDT 2025
Tue Jul 01 03:15:14 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1272-fe290b09341c2ae05e72b348ebd06dca40769553971ef56ba94a6532c67095e23
ORCID 0000-0003-1234-7055
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.bilpubgroup.com/index.php/jcsr/article/download/5762/4919
PageCount 7
ParticipantIDs unpaywall_primary_10_30564_jcsr_v5i3_5762
crossref_citationtrail_10_30564_jcsr_v5i3_5762
crossref_primary_10_30564_jcsr_v5i3_5762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-14
PublicationDateYYYYMMDD 2023-07-14
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-14
  day: 14
PublicationDecade 2020
PublicationTitle Journal of Computer Science Research
PublicationYear 2023
SSID ssib044743876
Score 2.2279544
Snippet In this study, a machine learning algorithm is proposed to be used in the detection of Obstructive Sleep Apnea (OSA) from the analysis of single-channel ECG...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 15
Title Development of New Machine Learning Based Algorithm for the Diagnosis of Obstructive Sleep Apnea from ECG Data
URI https://journals.bilpubgroup.com/index.php/jcsr/article/download/5762/4919
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2630-5151
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044743876
  issn: 2630-5151
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LS8QwEMaDrgdPPlBRUcnBgx7abdOka46rrorgA3RBTyWPWV23dhd3VfTg3-6kjU8QEbxPSjoTMl_gyy-ErDMTJx0UbYHF5RJwWZoAhAi0UVw7-IjVpUH2OD1o88MLceH9T-4ujM_gMNTdHCf0cbWhhAc6YkT9xgzv6j6vdeuQ8n1l8WCfsjqXjgA6kQrU5TUy0T4-bV661-XSJAqwcccV28epZl5-JnwQ3SR0Q7-0pcn7YqCeHlWef-o1e9Ok9zbLymLSC-9HOjTP3wCO__MbM2TKS1LarIJmyRgUc6T45Cai_Q7FzZAelcZLoJ7JekW3sQVa2syv-nfd0fUtRQFMUVDS3cq_1x26kSfaM2ofgJ7lAAPaHBSgqLvYQls7-3RXjdQ8ae-1zncOAv82Q2Bi1mBBB5iMdCSxCRqmIBLQYDrhW6BtlFosdNRIpRCodmLoiFQryVUqEmYcL04ASxZIregXsEiolFaA1Q70HHO7xVEDougEHhmJahH4EgnfSpMZDy5372fkGR5gylpmLpeZq2Xm8rdENt4HDCpmx8-hm--1_i12-Q-xK6SGqYVVFCwjvUbGj15aa349vgKXpPLc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3JS8QwFMaDjAdPLqioqOTgQQ_ttGnSMcdxHQQX0IHxVLK80dHaGWZR9K_3pY0riAjeX0r6Xsj7Al9-IWSLmTjpomgLLC6XgMvSBCBEoI3i2sFHrC4Nsmdpq81POqLj_U_uLozP4CjUvRwn9HG1oYQHOmJE_c6MhnWf17p1SPm-sniwT1mdS0cAnU4F6vIamW6fXTSv3etyaRIF2Ljjiu3jVDMvPxM-il4SuqFf2tLMpBio5yeV5596zdEcuX-bZWUxuQ8nYx2al28Ax__5jXky6yUpbVZBC2QKikVSfHIT0X6X4mZIT0vjJVDPZL2he9gCLW3mN_1hb3z7QFEAUxSU9KDy7_VGbuS59ozaR6CXOcCANgcFKOouttDD_WN6oMZqibSPDq_2W4F_myEwMWuwoAtMRjqS2AQNUxAJaDCd8F3QNkotFjpqpFIIVDsxdEWqleQqFQkzjhcngCXLpFb0C1ghVEorwGoHeo653eWoAVF0Ao-MRLUIfJWEb6XJjAeXu_cz8gwPMGUtM5fLzNUyc_lbJdvvAwYVs-Pn0J33Wv8Wu_aH2HVSw9TCBgqWsd70K_EV6vjxqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+New+Machine+Learning+Based+Algorithm+for+the+Diagnosis+of+Obstructive+Sleep+Apnea+from+ECG+Data&rft.jtitle=Journal+of+Computer+Science+Research&rft.au=Tuncer%2C+Erdem&rft.date=2023-07-14&rft.issn=2630-5151&rft.eissn=2630-5151&rft.volume=5&rft.issue=3&rft.spage=15&rft.epage=21&rft_id=info:doi/10.30564%2Fjcsr.v5i3.5762&rft.externalDBID=n%2Fa&rft.externalDocID=10_30564_jcsr_v5i3_5762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2630-5151&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2630-5151&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2630-5151&client=summon