知识与句法融合的因果关系抽取网络

因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注。现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于从句法结构层面进行分析,随着深度学习技术的发展,预训练模型结合背景知识的方法成为主流。然而上述两种方法均未完全融合句内信息和外部知识,带来了不同程度的信息缺失。为了解决这一问题,提出了结合句法结构和背景知识的因果关系抽取模型。该模型将句子解析为同时包含句法和知识的知识句法图结构,使用图卷积网络进行信息融合。模型同时考虑了句法和知识两部分信息,从而进一步丰富了实体嵌入,达到了良好的因果关系抽取效果。本模型在EventStoryLine数据集上取得...

Full description

Saved in:
Bibliographic Details
Published in大数据 Vol. 10; no. 3; pp. 82 - 92
Main Authors 汪诗蕊, 解博涵, 丁玲, 陈建廷, 向阳
Format Journal Article
LanguageChinese
Published 人民邮电出版社有限公司 15.05.2024
同济大学电子与信息工程学院,上海 200000
China InfoCom Media Group
Subjects
Online AccessGet full text
ISSN2096-0271
DOI10.11959/j.issn.2096-0271.2024008

Cover

Abstract 因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注。现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于从句法结构层面进行分析,随着深度学习技术的发展,预训练模型结合背景知识的方法成为主流。然而上述两种方法均未完全融合句内信息和外部知识,带来了不同程度的信息缺失。为了解决这一问题,提出了结合句法结构和背景知识的因果关系抽取模型。该模型将句子解析为同时包含句法和知识的知识句法图结构,使用图卷积网络进行信息融合。模型同时考虑了句法和知识两部分信息,从而进一步丰富了实体嵌入,达到了良好的因果关系抽取效果。本模型在EventStoryLine数据集上取得了良好效果,F1值达到0.445,与现有方法相比提高了2.3%。
AbstractList 因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注。现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于从句法结构层面进行分析,随着深度学习技术的发展,预训练模型结合背景知识的方法成为主流。然而上述两种方法均未完全融合句内信息和外部知识,带来了不同程度的信息缺失。为了解决这一问题,提出了结合句法结构和背景知识的因果关系抽取模型。该模型将句子解析为同时包含句法和知识的知识句法图结构,使用图卷积网络进行信息融合。模型同时考虑了句法和知识两部分信息,从而进一步丰富了实体嵌入,达到了良好的因果关系抽取效果。本模型在EventStoryLine数据集上取得了良好效果,F1值达到0.445,与现有方法相比提高了2.3%。
TP391.1; 因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注.现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于从句法结构层面进行分析,随着深度学习技术的发展,预训练模型结合背景知识的方法成为主流.然而上述两种方法均未完全融合句内信息和外部知识,带来了不同程度的信息缺失.为了解决这一问题,提出了结合句法结构和背景知识的因果关系抽取模型.该模型将句子解析为同时包含句法和知识的知识句法图结构,使用图卷积网络进行信息融合.模型同时考虑了句法和知识两部分信息,从而进一步丰富了实体嵌入,达到了良好的因果关系抽取效果.本模型在EventStoryLine数据集上取得了良好效果,F1值达到0.445,与现有方法相比提高了2.3%.
Abstract_FL Event causality identification is an important task of relationship extraction, which has received much attention recent years. Most of the existing methods separate syntactic structure from the background knowledge information. The early causality extraction methods focus on the analysis of syntactic structure level. With the development of deep learning, the methods that use the pre-training model combined with background knowledge has become the mainstream. However, neither of the above two kinds of methods fully integrates the sentence information and external knowledge, resulting in different degrees of information loss. To address this problem, we proposed a novel model of event causality identification combining syntactic structure and background knowledge. Our model parses sentences into knowledge syntactic graph structures that contain both syntax and knowledge, and uses the graph convolution network for information fusion. It considers both syntax and knowledge information, which further enriches the event representation and performs effectively. In experiments on the widely-used dataset EventStoryLine, the F1 score of our model achieves 0.445, a 2.3% improvement over existing methods.
Author 丁玲
向阳
汪诗蕊
陈建廷
解博涵
AuthorAffiliation 同济大学电子与信息工程学院,上海 200000
AuthorAffiliation_xml – name: 同济大学电子与信息工程学院,上海 200000
Author_FL DING Ling
XIANG Yang
XIE Bohan
WANG Shirui
CHEN Jianting
Author_FL_xml – sequence: 1
  fullname: WANG Shirui
– sequence: 2
  fullname: XIE Bohan
– sequence: 3
  fullname: DING Ling
– sequence: 4
  fullname: CHEN Jianting
– sequence: 5
  fullname: XIANG Yang
Author_xml – sequence: 1
  fullname: 汪诗蕊
  organization: 同济大学电子与信息工程学院,上海200000
– sequence: 2
  fullname: 解博涵
  organization: 同济大学电子与信息工程学院,上海200000
– sequence: 3
  fullname: 丁玲
  organization: 同济大学电子与信息工程学院,上海200000
– sequence: 4
  fullname: 陈建廷
  organization: 同济大学电子与信息工程学院,上海200000
– sequence: 5
  fullname: 向阳
  organization: 同济大学电子与信息工程学院,上海200000
BookMark eNo9kLtKA0EYhaeIYIx5BcHCcuNcdmdnS4m3SMBCrYe57IZd4q7sKGKvIoJGCy00RJvUFmmEkLdxs3kMh0Ss_sPh8P2HswIqaZaGAKwj2EAo8ILNpBEbkzYwDKgDsY-swi6ErAKq_94yqBsTS0ioSyijpApg-TGcfd3-fD8WveF09DIbPBRPd-XbdfH-OR30i5tRORpP7ydF77WcPJfj_ipYikTXhPW_WwMnuzvHzX2nfbjXam61HWXrMCdExL7A0BMyiDQLJHYJ8xnVxFOuJyPP1ZopQiGkxJUaiSjUWgeuF0oWQC8iNdBacHUmEn6Wx6civ-KZiPncyPIOF_l5rLoh11JL5SOMNFZuQEOmLd9XAistECbMsjYWrEuRRiLt8CS7yFPbnmthkvlOxC5lc2uLnBLG8NQYzbePDhY7zgO_Bzh7nQ
ClassificationCodes TP391.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID NSCOK
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.11959/j.issn.2096-0271.2024008
DatabaseName 国家哲学社会科学文献中心
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Event causality identification network based on knowledge and syntactic structure
EndPage 92
ExternalDocumentID oai_doaj_org_article_dbdbc7121d2c496e8dbf57ca2cda1238
dasj202403008
DSJ2024003008
GroupedDBID -0I
-SI
-S~
2RA
5VR
92M
9D9
9DI
AAXDM
ALMA_UNASSIGNED_HOLDINGS
CAJEI
FA0
GROUPED_DOAJ
JUIAU
NSCOK
NTYSC
PB1
PB5
Q--
Q-8
R-I
RT9
S..
T8Y
U1F
U5I
~NM
~NO
2B.
4A8
92I
93N
AAITT
AFUIB
CQIGP
PSX
TCJ
ID FETCH-LOGICAL-c1198-e13436205ab9fd89b2438786d35c45bf54dd8c3600634bd1afeddd945eb8905f3
IEDL.DBID DOA
ISSN 2096-0271
IngestDate Tue Oct 14 18:50:39 EDT 2025
Thu May 29 03:56:13 EDT 2025
Tue Jan 21 20:55:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords 因果关系抽取
图卷积网络
自然语言处理
预训练模型
natural language processing
event causality identification
syntactic structure
graph convolution network
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1198-e13436205ab9fd89b2438786d35c45bf54dd8c3600634bd1afeddd945eb8905f3
OpenAccessLink https://doaj.org/article/dbdbc7121d2c496e8dbf57ca2cda1238
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_dbdbc7121d2c496e8dbf57ca2cda1238
wanfang_journals_dasj202403008
cass_nssd_DSJ2024003008
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle 大数据
PublicationTitle_FL Big Data Research
PublicationYear 2024
Publisher 人民邮电出版社有限公司
同济大学电子与信息工程学院,上海 200000
China InfoCom Media Group
Publisher_xml – name: 人民邮电出版社有限公司
– name: 同济大学电子与信息工程学院,上海 200000
– name: China InfoCom Media Group
SSID ssib036436863
ssib024184013
ssib051371281
ssib057785240
ssib035218648
ssj0002857271
ssib058759006
Score 2.3839023
Snippet 因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注。现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于从句法结...
TP391.1; 因果关系抽取作为关系抽取的一个重要任务,近年来得到了广泛关注.现有的因果关系抽取方法大多将句法结构和背景知识割裂开进行研究,早期的因果关系抽取方法偏重于...
SourceID doaj
wanfang
cass
SourceType Open Website
Aggregation Database
StartPage 82
SubjectTerms 因果关系抽取
图卷积网络
自然语言处理
预训练模型
Title 知识与句法融合的因果关系抽取网络
URI https://www.ncpssd.cn/Literature/articleinfo?id=DSJ2024003008&type=journalArticle
https://d.wanfangdata.com.cn/periodical/dasj202403008
https://doaj.org/article/dbdbc7121d2c496e8dbf57ca2cda1238
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-0271
  databaseCode: DOA
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002857271
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 2096-0271
  databaseCode: ABDBF
  dateStart: 20220301
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib035218648
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2096-0271
  databaseCode: M~E
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib058759006
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQkRALAvF1fJyKxBoaO3Zsjz3aU1WpLFCpW2T7OaAbAuLKwsAEqKpEWwYYoCosnRluQar635BL_wyenai9rUuXKImjvPg9-72fneefCXnsjSklUJ5Yl9qEewnoB5VNmADJtecYdMLUwNqzfGWdr26IjZmtvkJOWEsP3CpuASxYJymjwBzXuVdgSyGdYQ4Met24zDdVemYwhS0Jw5KaHTggyqAqPwP-WR6I18-IpwTNZPildHotpRKsY0EZxSkogYE-jN5YGrN2Jb1CHkWPo4VeGMUe--S0DM9CbqZCP-8QA3f7AcR1QVVpqpczIWx4nVzrsOf8YlvnG-TS-1c3Sdr8Ojz58_nf351693A6-XZy8KXe22p-fKx__p4e7NefJs3kaLp9XO9-b46_Nkf7t8j6cPnF05Wk20Yhcfh1KvE0w9qyVBirS1DaMp4pqXLIhOMCtckBlMvygFa4BWpKDwCaC2-VTkWZ3SZz1evK3yXzzgnD0eheqMAzoyw3iGcUPstkiWU9cifUt6jGYyiWnq-2ashQEz0yCCoo3rQcGkVgtY430NZFZ-viPFv3SL9TYNH1tHEBZjyKYoKUexch5T65Gl4YUgSoeEDmNt--8w8ReWzaPrm8OFgaDPuxseFx7cPyf3C23Mk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%9F%A5%E8%AF%86%E4%B8%8E%E5%8F%A5%E6%B3%95%E8%9E%8D%E5%90%88%E7%9A%84%E5%9B%A0%E6%9E%9C%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96%E7%BD%91%E7%BB%9C&rft.jtitle=%E5%A4%A7%E6%95%B0%E6%8D%AE&rft.au=%E6%B1%AA%E8%AF%97%E8%95%8A&rft.au=%E8%A7%A3%E5%8D%9A%E6%B6%B5&rft.au=%E4%B8%81%E7%8E%B2&rft.au=%E9%99%88%E5%BB%BA%E5%BB%B7&rft.date=2024-05-15&rft.pub=%E4%BA%BA%E6%B0%91%E9%82%AE%E7%94%B5%E5%87%BA%E7%89%88%E7%A4%BE%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8&rft.issn=2096-0271&rft.volume=10&rft.issue=3&rft.spage=82&rft.epage=92&rft_id=info:doi/10.11959%2Fj.issn.2096-0271.2024008&rft.externalDocID=DSJ2024003008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdasj%2Fdasj.jpg