Evaluating the Performance of Engineering’s Students in Mathematic Subject based on Academic Decision-Making Techniques
Data mining is characterized as a quest for useful knowledge via large quantities of data. Some basic and most common techniques for data extraction are association rules, grouping, clustering, estimation, sequence modeling. For a wide range of applications, data mining techniques are used. Techniqu...
Saved in:
| Published in | Webology Vol. 18; no. 2; pp. 154 - 165 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Tehran
Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science
23.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1735-188X 1735-188X |
| DOI | 10.14704/WEB/V18I2/WEB18313 |
Cover
| Abstract | Data mining is characterized as a quest for useful knowledge via large quantities of data. Some basic and most common techniques for data extraction are association rules, grouping, clustering, estimation, sequence modeling. For a wide range of applications, data mining techniques are used. Techniques of data analysis are essential to the preparation and implementation of the administration of the learning system, including behavioral guidance and personal behavior appraisal. The article applies data analytical methods to the role of student classification. Several tests are used for the interpretation of the findings. In keeping with the methodology proposed in the paper, the classification using cognitive skills provides more detailed results than the findings of other study published. Five algorithms were used (J48, Naïve Bayes, Multilayer Perception, K Star and SMO). This essay discusses and measures the application of the various algorithms so that factors affecting the success and failure of students can be identified, student performance can be estimated, and the significant consequences of the mathematics system for the second university year can be identified. However the number of exams can be minimized using data mining techniques. In terms of time and consequences, this shortened analysis plays a key role. |
|---|---|
| AbstractList | Data mining is characterized as a quest for useful knowledge via large quantities of data. Some basic and most common techniques for data extraction are association rules, grouping, clustering, estimation, sequence modeling. For a wide range of applications, data mining techniques are used. Techniques of data analysis are essential to the preparation and implementation of the administration of the learning system, including behavioral guidance and personal behavior appraisal. The article applies data analytical methods to the role of student classification. Several tests are used for the interpretation of the findings. In keeping with the methodology proposed in the paper, the classification using cognitive skills provides more detailed results than the findings of other study published. Five algorithms were used (J48, Naïve Bayes, Multilayer Perception, K Star and SMO). This essay discusses and measures the application of the various algorithms so that factors affecting the success and failure of students can be identified, student performance can be estimated, and the significant consequences of the mathematics system for the second university year can be identified. However the number of exams can be minimized using data mining techniques. In terms of time and consequences, this shortened analysis plays a key role. Data mining is characterized as a quest for useful knowledge via large quantities of data. Some basic and most common techniques for data extraction are association rules, grouping, clustering, estimation, sequence modeling. For a wide range of applications, data mining techniques are used. Techniques of data analysis are essential to the preparation and implementation of the administration of the learning system, including behavioral guidance and personal behavior appraisal. The article applies data analytical methods to the role of student classification. Several tests are used for the interpretation of the findings. In keeping with the methodology proposed in the paper, the classification using cognitive skills provides more detailed results than the findings of other study published. Five algorithms were used (J48, Naive Bayes, Multilayer Perception, K Star and SMO). This essay discusses and measures the application of the various algorithms so that factors affecting the success and failure of students can be identified, student performance can be estimated, and the significant consequences of the mathematics system for the second university year can be identified. However the number of exams can be minimized using data mining techniques. In terms of time and consequences, this shortened analysis plays a key role. |
| Author | Mhawes, Abbas Atwan Al-Aqbi, Ali Talib Qasim Saedi, Ahmed Yousif Falih Salman, Lamees Abdalhasan |
| Author_xml | – sequence: 1 givenname: Abbas Atwan surname: Mhawes fullname: Mhawes, Abbas Atwan – sequence: 2 givenname: Ahmed Yousif Falih surname: Saedi fullname: Saedi, Ahmed Yousif Falih – sequence: 3 givenname: Ali Talib Qasim surname: Al-Aqbi fullname: Al-Aqbi, Ali Talib Qasim – sequence: 4 givenname: Lamees Abdalhasan surname: Salman fullname: Salman, Lamees Abdalhasan |
| BookMark | eNplUctOwzAQtBBIUOALuFjiHOpXmuTIo0ClViC1PG6W46whJXGKnYB64zf4Pb4EtwUJidOOtDO7o5ke2raNBYSOKDmhIiGi_zA869_TdMRWiKac8i20RxMeRzRNH7f_4F3U835OiBCMkD20HL6pqlNtaZ9w-wz4FpxpXK2sBtwYPLRPpQVwYf318enxtO0KsK3HpcUTFQR1kGo87fI56BbnykOBG4tPtSqgDpsL0KUvGxtN1Mvqxwz0sy1fO_AHaMeoysPhz9xHd5fD2fl1NL65Gp2fjiNNg-lI50yxQZJnFHTMlckAaJERAwNGs0wwE0POecK5SZgBqpIih6yIBSlikwigfB-Jzd3OLtTyXVWVXLiyVm4pKZHr-OQ75PKNpiVboXV8QXa8kS1cs7LbynnTORucSjbgySClIk4Di29Y2jXeOzD_b4dC5Loa-VsN_wZSG4Yq |
| ContentType | Journal Article |
| Copyright | Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science Dec 2021 |
| Copyright_xml | – notice: Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science Dec 2021 |
| DBID | AAYXX CITATION ABUWG AFKRA ALSLI BENPR CCPQU CNYFK CWDGH DWQXO E3H F2A M1O PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PRQQA ADTOC UNPAY |
| DOI | 10.14704/WEB/V18I2/WEB18313 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central ProQuest One Community College Library & Information Science Collection Middle East & Africa Database ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Library Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Social Science Premium Collection ProQuest One Social Sciences ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Library Science Middle East & Africa Database ProQuest One Academic UKI Edition ProQuest Central Korea Library & Information Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Social Science Premium Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science Education Mathematics |
| EISSN | 1735-188X |
| EndPage | 165 |
| ExternalDocumentID | 10.14704/web/v18i2/web18313 10_14704_WEB_V18I2_WEB18313 |
| GroupedDBID | 123 29R 2WC 5VS 77I 8R4 8R5 AAYXX ABUWG ACGFO ADBBV AEGXH AFFHD AFKRA AIAGR ALMA_UNASSIGNED_HOLDINGS ALSLI BCNDV BENPR BPHCQ CCPQU CITATION CNYFK CWDGH DWQXO E3Z EBS EJD FRS KQ8 M1O OK1 OVT P2P PHGZM PHGZT PQQKQ PROAC PRQQA Q2X RNS TR2 XSB .4I ABDBF E3H ELW F2A MK~ PKEHL PQEST PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c1173-cb2a267b91ec53af9ee1d90fe6219942f5eb33733f72fe1a7dbe9d540d5f74e13 |
| IEDL.DBID | M1O |
| ISSN | 1735-188X |
| IngestDate | Tue Aug 19 22:28:31 EDT 2025 Fri Jul 25 04:48:57 EDT 2025 Thu Oct 30 05:57:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1173-cb2a267b91ec53af9ee1d90fe6219942f5eb33733f72fe1a7dbe9d540d5f74e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.14704/web/v18i2/web18313 |
| PQID | 2637681458 |
| PQPubID | 287914 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_14704_web_v18i2_web18313 proquest_journals_2637681458 crossref_primary_10_14704_WEB_V18I2_WEB18313 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-23 |
| PublicationDateYYYYMMDD | 2021-12-23 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Tehran |
| PublicationPlace_xml | – name: Tehran |
| PublicationTitle | Webology |
| PublicationYear | 2021 |
| Publisher | Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science |
| Publisher_xml | – name: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science |
| SSID | ssj0044200 |
| Score | 2.1946402 |
| Snippet | Data mining is characterized as a quest for useful knowledge via large quantities of data. Some basic and most common techniques for data extraction are... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 154 |
| SubjectTerms | Algorithms Classification Cognition & reasoning Cognitive ability Computer engineering Data analysis Data mining Datasets Decision making Decision trees Distance learning Education Machine learning Mathematics Methods Students Success |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NLgRBEO7IOnDxL5YldRAnjf6dmeNiBcmKhGWdJj0z3SJkiNklnLyG1_Mkumd7WETCrQ_TnU591V1VPVVfIbSqSCqJtWyYGmUDFMMjnEgRYJ2ZlKuUSV0-XbSP5H6HH3ZF1_Nsu1qY4f_3PNjiLltn84GEV9SNrP65DrWjUljHu4ZGO0fHzYuy5JEJTMKw63mFfpn51fZ8OpRj_fxOPT2qm5sh27I3OSjaLkpKQpdScr3R7yUb6fM3wsY_bnsKTXgfE5oDpZhGIzqfQcu-QgHWwJcgOUjAn-1Z9NTyvN_5JVinEI4_Kwrg1sAQb-Hby2sBJwNOzAKucmh_UL-CvYfcww4445iBXb_Kv4dd38wHt8v-V3BakccWc6iz1zrd2ce-LwNOiZU0ThOqqAySiOhUMGUirUkWbRktqWMapkbYCJ0FjJmAGk1UkCU6yqxrmAkTcE3YPKrlt7leQCDsHEVZRiIuuWGZCmkSUZMmhhgqdFRH6xVi8d2AfiN2YYuTcXze2o7PSHhA3aiUcR01KlRjfxaLmEp7iYaEi7CO8AfSP5ezQMUlZHEF2eI_v19C49SlvBCKKWugWu--r5etz9JLVryuvgOln-wG priority: 102 providerName: Unpaywall |
| Title | Evaluating the Performance of Engineering’s Students in Mathematic Subject based on Academic Decision-Making Techniques |
| URI | https://www.proquest.com/docview/2637681458 https://doi.org/10.14704/web/v18i2/web18313 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1735-188X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044200 issn: 1735-188X databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1735-188X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044200 issn: 1735-188X databaseCode: M1O dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1735-188X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044200 issn: 1735-188X databaseCode: CWDGH dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1735-188X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044200 issn: 1735-188X databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BewAOUEIrAm01BwQX3NSPfZ1QS1O1lRKitoH2ZHn9QBXVJrAJFfx67I23KSBx4OZdaWd3NZ9nxuPxNwCvFNUp9Z6NMKf8AsWJgpRpkhFrnBZK89Q2qYvBMD0ai5OL5CIm3OpYVtnaxMZQm4kOOfIeS_1UyKlI8nfTryR0jQq7q7GFxn1YDZuPoYPBgH5oLbEQHgKRaUhku6L3qb_f-0jzYxZGHsuU_-6NliHmg3k1VT9u1PX1HW9z-ARk-52LIpMvO_NZuaN__kHh-P8_sgaPYyCKewvkPIV7tuqEHs6x3qMDW_FIA77GeGYp3MdoDDrwaHDL-Fo_g5t-pA2vPqO_jaPlgQScOLxDe_imxrMFoWaNVxUupaA3YiErhMGzGvTvaov38SB2AiKDpnkWnrfMs_U6jA_75--PSGzqQLRXESe6ZIqlWVlQqxOuXGEtNcWusykLNMXMJX55zzPOXcacpSozpS2MjytN4jJhKd-AlWpS2eeAiX9GMW5oIVLhuFE5KwvmdOmoY4ktuvC2Va6cLrg7ZFjzBCxIjwDZYEG2WOjCZqswGSdyLZfa6gK5BcXf4rzPk99pfsXCqBH34t_iXsJDFspjKCOMb8LK7Nvcbvn4ZlZuw-p-fzg63W7A7K_Gw9He5S-YmAFb |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V9FB64BFADbTgA5QLbuqx93XgAE1KQpsKiZT2tnjXdlW12qTdhKj8KP4Kfwl7420KSNx64GZZ2lnJ-83LO_MNwEvJ8pBZz0bRSJugGJHQLAwiqpXJhcx5qKuri8FB2DsUH4-D4yX4UffCuLLK2iZWhlqNcndH3sbQqkLMRBD7Cso9fTWz-Vn5tt-xH_MV4m53uNOjfoQAzRmLOM0zlBhGWcJ0HnBpEq2ZSraNDtGR4qIJbDLJI85NhEYzGalMJ8pGMSowkdCMW7mb4wvqplS5v7l-ZMcdWLY4Z9iA5Z2jzodebfuFsKDz3EYi2hbto-779hcW99GtrPYw_rv_WwS1K9NiLK9m8vz8hn_bvQ8_65OZl7WcbU0n2Vb-_Q_SyP_n6B7APR9qk3dz3XgIS7pouinVvqKlCRu-aYNsEt-V5faJN3dNWB1cc9qWj2DW9cToxQmx2-TTouWCjAy5Qez4uiSf55ShJTktyEIKsWba3XsRFzsoYt9VtyeQjp91RAfVeDAyrLl1y8dweCsH9wQaxajQa0AC-4xErlgiQmG4kjFmCZo8M8xgoJMWvKnBlI7n7CSpy-oc9lKLuLTCXlpjrwXrNUBSb6rKdIGOFtBrEP4tznr19BuLT9GtKnFP_y3uBaz0hoP9dL9_sPcM7qIrBmJIka9DY3I51Rs2mptkz70KEfh622j8BT2DXPM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVuJx4BFABFrYA48L23QfXtsHhKBJSCipKtHS3sza3kUVlRNwQlR-Gn-FP8Oss9sUkLj1wG21ksfS-pvXeuYbgMeaFYqhZ6PcakxQrExprqKYmtIWUhdCmebqYrSrBgfy7VF0tAI_Qi-MK6sMNrEx1OW4cHfkHa5QFRImo6RjfVnEXrf_cvKFuglS7k9rGKexgMiOOZ1j-la_GHbxWz_hvN_b3x5QP2GAFozFghY511zFecpMEQltU2NYmW5Zo7jjzOU2wlxTxELYmFvDdFzmJi0xyCkjG0vDBMq9BGuJihUahbXtw-6bQfADUiIAPc-RjLdk57D3uvOBJUPuVqhJTPzuC5cB7pVZNdGnc31ycs7X9W_Az3BKixKXz5uzab5ZfP-DQPL_PMabcN2H4OTVQmduwYqpWm56ta90acGGb-YgT4nv1nL7xJvBFlwbnXHd1rdh3vOE6dUngttkb9mKQcaWnCN8fFaT9wsq0ZocV2QphaD5dvdhxMUUJcF3hbYF0vUzkOioGRtG9gPnbn0HDi7klO7CajWuzD0gET6juShZKpW0otQJz1Nui9wyyyOTtuF5AFY2WbCWZC7bczjMEH1Zg8Ms4LAN6wEsmTdhdbZEShvoGSD_FofePvvGkmPuVo24-_8W9wguI-Syd8PdnQdwlbsaIcYpF-uwOv06MxsY5E3zh16bCHy8aOT9AuqtZbs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NLgRBEO7IOnDxL5YldRAnjf6dmeNiBcmKhGWdJj0z3SJkiNklnLyG1_Mkumd7WETCrQ_TnU591V1VPVVfIbSqSCqJtWyYGmUDFMMjnEgRYJ2ZlKuUSV0-XbSP5H6HH3ZF1_Nsu1qY4f_3PNjiLltn84GEV9SNrP65DrWjUljHu4ZGO0fHzYuy5JEJTMKw63mFfpn51fZ8OpRj_fxOPT2qm5sh27I3OSjaLkpKQpdScr3R7yUb6fM3wsY_bnsKTXgfE5oDpZhGIzqfQcu-QgHWwJcgOUjAn-1Z9NTyvN_5JVinEI4_Kwrg1sAQb-Hby2sBJwNOzAKucmh_UL-CvYfcww4445iBXb_Kv4dd38wHt8v-V3BakccWc6iz1zrd2ce-LwNOiZU0ThOqqAySiOhUMGUirUkWbRktqWMapkbYCJ0FjJmAGk1UkCU6yqxrmAkTcE3YPKrlt7leQCDsHEVZRiIuuWGZCmkSUZMmhhgqdFRH6xVi8d2AfiN2YYuTcXze2o7PSHhA3aiUcR01KlRjfxaLmEp7iYaEi7CO8AfSP5ezQMUlZHEF2eI_v19C49SlvBCKKWugWu--r5etz9JLVryuvgOln-wG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Performance+of+Engineering%27s+Students+in+Mathematic+Subject+based+on+Academic+Decision-Making+Techniques&rft.jtitle=Webology&rft.au=Mhawes%2C+Abbas+Atwan&rft.au=Saedi%2C+Ahmed+Yousif+Falih&rft.au=Al-Aqbi%2C+Ali+Talib+Qasim&rft.au=Salman%2C+Lamees+Abdalhasan&rft.date=2021-12-23&rft.pub=Dr.+Alireza+Noruzi%2C+University+of+Tehran%2C+Department+of+Library+and+Information+Science&rft.eissn=1735-188X&rft.volume=18&rft.issue=2&rft.spage=154&rft.epage=165&rft_id=info:doi/10.14704%2FWEB%2FV18I2%2FWEB18313&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-188X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-188X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-188X&client=summon |