Version 2 of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets
Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline ver...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 4914 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
15.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-8548 1867-1381 1867-8548 |
| DOI | 10.5194/amt-10-4905-2017 |
Cover
| Abstract | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
|---|---|
| AbstractList | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014). |
| Author | Whitburn, Simon Clarisse, Lieven Coheur, Pierre-François Clerbaux, Cathy Hurtmans, Daniel Van Damme, Martin |
| Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-1752-0558 surname: Van Damme fullname: Van Damme, Martin – sequence: 2 givenname: Simon orcidid: 0000-0003-3279-8152 surname: Whitburn fullname: Whitburn, Simon – sequence: 3 givenname: Lieven orcidid: 0000-0002-8805-2141 surname: Clarisse fullname: Clarisse, Lieven – sequence: 4 givenname: Cathy surname: Clerbaux fullname: Clerbaux, Cathy – sequence: 5 givenname: Daniel surname: Hurtmans fullname: Hurtmans, Daniel – sequence: 6 givenname: Pierre-François surname: Coheur fullname: Coheur, Pierre-François |
| BookMark | eNp1kM1LAzEQxYNUsK3ePQY8R5Nsstl4K0VtoejBj-sy3U3s1t1NTVKl_71Z9CCCpzfMvDc8fhM06l1vEDpn9FIyLa6gi4RRIjSVhFOmjtCYFbkihRTF6Nd8giYhbCnNBVN8jMyL8aFxPebYWRw3Bi9nj0t8v8AZ7s3eQ5skfjr_hr2JvjEfaQPtq_NN3HTX6QieeAMtiU1nMPR18kEP7SGYGtcQIZgYTtGxhTaYsx-doufbm6f5gqwe7pbz2YpUjKV-QqyFFVyLta5zqLJMSy2oUplNl8yItbWMKgpa1gwklTZJUVOqKsGZtDKboovvvzvv3vcmxHLr9j61CSXTSjFdcK6Si367Ku9C8MaWO9904A8lo-UAs0wwh3mAWQ4wUyT_E6maCDGBix6a9v_gF7tQenk |
| CitedBy_id | crossref_primary_10_1016_j_atmosres_2021_105490 crossref_primary_10_5194_acp_21_15883_2021 crossref_primary_10_5194_acp_22_14119_2022 crossref_primary_10_1088_1748_9326_abd5e0 crossref_primary_10_1038_s41597_020_00718_5 crossref_primary_10_5194_acp_24_7623_2024 crossref_primary_10_1029_2018JD029633 crossref_primary_10_5194_bg_19_1635_2022 crossref_primary_10_1038_s41586_018_0747_1 crossref_primary_10_1016_j_atmosres_2019_104702 crossref_primary_10_5194_acp_20_13481_2020 crossref_primary_10_5194_amt_15_1779_2022 crossref_primary_10_3788_IRLA20210707 crossref_primary_10_1007_s00376_020_9249_9 crossref_primary_10_1029_2020GL087810 crossref_primary_10_1029_2020JD033977 crossref_primary_10_5194_amt_13_309_2020 crossref_primary_10_1038_s41893_024_01366_y crossref_primary_10_5194_amt_11_5125_2018 crossref_primary_10_5194_acp_23_13217_2023 crossref_primary_10_5194_acp_18_13173_2018 crossref_primary_10_1038_s41561_019_0385_8 crossref_primary_10_5194_acp_18_16439_2018 crossref_primary_10_5194_acp_20_16055_2020 crossref_primary_10_1029_2019JD030419 crossref_primary_10_5194_acp_21_16001_2021 crossref_primary_10_1016_j_scitotenv_2024_176188 crossref_primary_10_1088_1748_9326_acb835 crossref_primary_10_5194_acp_20_8727_2020 crossref_primary_10_5194_gmd_16_1641_2023 crossref_primary_10_3390_s20082352 crossref_primary_10_5194_amt_14_905_2021 crossref_primary_10_5194_acp_21_16277_2021 crossref_primary_10_34133_2021_9804583 crossref_primary_10_1016_j_chemosphere_2024_142497 crossref_primary_10_5194_acp_19_2577_2019 crossref_primary_10_5194_acp_22_9099_2022 crossref_primary_10_3390_atmos13101552 crossref_primary_10_5194_acp_19_12051_2019 crossref_primary_10_3390_atmos16030346 crossref_primary_10_5194_acp_21_2067_2021 crossref_primary_10_5194_acp_23_12505_2023 crossref_primary_10_3390_atmos15030251 crossref_primary_10_1088_1748_9326_ac3695 crossref_primary_10_5194_acp_18_4403_2018 crossref_primary_10_1038_s41597_023_02607_z crossref_primary_10_1016_j_scitotenv_2019_134508 crossref_primary_10_1016_j_scitotenv_2024_176846 crossref_primary_10_5194_acp_21_12091_2021 crossref_primary_10_5194_acp_18_12845_2018 crossref_primary_10_3390_atmos13071101 crossref_primary_10_5194_amt_16_5009_2023 crossref_primary_10_1073_pnas_2311728120 crossref_primary_10_1029_2018JD029990 crossref_primary_10_1021_acs_est_9b02701 crossref_primary_10_5194_amt_18_129_2025 crossref_primary_10_1029_2018GL079092 crossref_primary_10_1016_j_scitotenv_2023_169053 crossref_primary_10_5194_amt_16_3693_2023 crossref_primary_10_1109_JSTARS_2019_2918093 crossref_primary_10_5194_acp_22_10375_2022 crossref_primary_10_1073_pnas_2002579118 crossref_primary_10_1038_s41561_022_00899_1 crossref_primary_10_1038_s41598_019_39935_3 crossref_primary_10_5194_acp_23_15235_2023 crossref_primary_10_5194_amt_15_6653_2022 crossref_primary_10_1016_j_chemosphere_2022_137124 crossref_primary_10_1038_s41467_022_34098_8 crossref_primary_10_1038_s41598_022_15836_w crossref_primary_10_5194_acp_23_9473_2023 crossref_primary_10_1016_j_scitotenv_2022_160756 crossref_primary_10_5194_acp_18_17933_2018 crossref_primary_10_1016_j_atmosenv_2022_119256 crossref_primary_10_1016_j_scitotenv_2023_163733 crossref_primary_10_1016_j_scitotenv_2020_139189 crossref_primary_10_5194_acp_20_181_2020 crossref_primary_10_1016_j_envpol_2020_114421 crossref_primary_10_34133_remotesensing_0289 crossref_primary_10_5194_acp_21_6275_2021 crossref_primary_10_1016_j_scitotenv_2020_139986 crossref_primary_10_1029_2019GL082052 crossref_primary_10_5194_amt_16_2107_2023 crossref_primary_10_1029_2020GB006916 crossref_primary_10_1016_j_jclepro_2020_122875 crossref_primary_10_1016_j_agrformet_2023_109432 crossref_primary_10_3390_rs12244107 crossref_primary_10_5194_acp_22_12907_2022 crossref_primary_10_5194_acp_21_4431_2021 crossref_primary_10_1016_j_atmosenv_2019_04_050 crossref_primary_10_5194_acp_21_7187_2021 crossref_primary_10_3390_rs12172777 crossref_primary_10_5194_acp_19_6701_2019 crossref_primary_10_1016_j_atmosres_2023_107170 crossref_primary_10_1016_j_envpol_2017_11_052 crossref_primary_10_5194_amt_12_5457_2019 crossref_primary_10_3390_atmos12080946 crossref_primary_10_1029_2020JD033475 crossref_primary_10_1029_2021JD035237 crossref_primary_10_5194_acp_19_12261_2019 crossref_primary_10_5194_acp_24_9355_2024 crossref_primary_10_5194_amt_11_6679_2018 crossref_primary_10_1029_2021GL093010 crossref_primary_10_1016_j_envpol_2018_03_078 crossref_primary_10_1038_s41467_024_55606_y crossref_primary_10_1029_2018JD029701 crossref_primary_10_5194_acp_22_1883_2022 crossref_primary_10_5194_amt_13_3923_2020 crossref_primary_10_1029_2020GL090579 crossref_primary_10_3390_atmos12020160 crossref_primary_10_5194_gmd_16_1053_2023 crossref_primary_10_1021_acs_est_3c05266 crossref_primary_10_1021_acs_est_4c11922 crossref_primary_10_1029_2019GL086239 crossref_primary_10_5194_acp_21_6389_2021 crossref_primary_10_5194_acp_20_577_2020 crossref_primary_10_3390_rs12152393 |
| Cites_doi | 10.5194/amt-8-1323-2015 10.5194/acp-11-10743-2011 10.5194/amt-4-1567-2011 10.1038/ngeo551 10.1016/j.atmosenv.2015.03.015 10.5194/amt-5-581-2012 10.5194/acp-9-5655-2009 10.1016/j.jqsrt.2016.12.022 10.1029/2009JD013291 10.1016/j.jqsrt.2012.02.028 10.1002/2015GL065496 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2 10.1002/qj.828 10.5194/acp-14-2905-2014 10.1016/j.jqsrt.2012.02.036 10.1002/2014JD021911 10.5194/acp-13-2195-2013 10.1029/2008GL033642 10.1029/2011JD016810 10.1002/2016JD024828 10.5194/amt-9-721-2016 10.5194/acp-16-5467-2016 |
| ContentType | Journal Article |
| Copyright | Copyright Copernicus GmbH 2017 |
| Copyright_xml | – notice: Copyright Copernicus GmbH 2017 |
| DBID | AAYXX CITATION 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.5194/amt-10-4905-2017 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 4914 |
| ExternalDocumentID | 10_5194_amt_10_4905_2017 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IPNFZ ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO Q2X RIG RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c1167-44b4f4294b9d6ac3395940773f44b3e4bff1070a95d1a505fd1a8d007c4215f53 |
| IEDL.DBID | BENPR |
| ISSN | 1867-8548 1867-1381 |
| IngestDate | Sat Jul 26 00:04:58 EDT 2025 Wed Oct 01 05:01:35 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1167-44b4f4294b9d6ac3395940773f44b3e4bff1070a95d1a505fd1a8d007c4215f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1752-0558 0000-0002-8805-2141 0000-0003-3279-8152 |
| OpenAccessLink | https://www.proquest.com/docview/1977198227?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 1977198227 |
| PQPubID | 105742 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1977198227 crossref_primary_10_5194_amt_10_4905_2017 crossref_citationtrail_10_5194_amt_10_4905_2017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-15 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2017 |
| Publisher | Copernicus GmbH |
| Publisher_xml | – name: Copernicus GmbH |
| References | ref13 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref14 doi: 10.5194/amt-8-1323-2015 – ident: ref15 doi: 10.5194/acp-11-10743-2011 – ident: ref19 doi: 10.5194/amt-4-1567-2011 – ident: ref1 – ident: ref7 doi: 10.1038/ngeo551 – ident: ref22 doi: 10.1016/j.atmosenv.2015.03.015 – ident: ref9 doi: 10.5194/amt-5-581-2012 – ident: ref11 doi: 10.5194/acp-9-5655-2009 – ident: ref4 doi: 10.1016/j.jqsrt.2016.12.022 – ident: ref8 doi: 10.1029/2009JD013291 – ident: ref2 doi: 10.1016/j.jqsrt.2012.02.028 – ident: ref18 doi: 10.1002/2015GL065496 – ident: ref6 doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2 – ident: ref12 doi: 10.1002/qj.828 – ident: ref16 doi: 10.5194/acp-14-2905-2014 – ident: ref13 doi: 10.1016/j.jqsrt.2012.02.036 – ident: ref17 doi: 10.1002/2014JD021911 – ident: ref10 doi: 10.5194/acp-13-2195-2013 – ident: ref5 doi: 10.1029/2008GL033642 – ident: ref20 doi: 10.1029/2011JD016810 – ident: ref23 doi: 10.1002/2016JD024828 – ident: ref3 doi: 10.5194/amt-9-721-2016 – ident: ref21 doi: 10.5194/acp-16-5467-2016 |
| SSID | ssj0064172 |
| Score | 2.136721 |
| Snippet | Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding... Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 4905 |
| SubjectTerms | Algorithms Ammonia Artificial neural networks Atmospheric sounding Clouds Data Datasets Filtration Infrared interferometers Mathematical models Neural networks Real time Satellite observation Satellites Surface temperature Training |
| Title | Version 2 of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets |
| URI | https://www.proquest.com/docview/1977198227 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9uKLeMV5GXkQwYewxiRrK4jocG7ChngB30qapirMTrf6_z0na728-NSWpIGenJ58J5fvAzikWSUROsMjayzH8TjgxmjNbRrZOHehFpLOO4_G3cGjunnST0swrs_C0LbKOib6QJ1NLc2RdwQCFUFkc-H5-wcn1ShaXa0lNEwlrZCdeYqxZWieEDNWA5qXV-Pbuzo2d5Xwck7E4kbse2KxcIkoRnXMW0kxScWBRtfxAma_Bqq_cdoPPv01WK1QI7tYdPM6LLliA1ojBLzTmZ8XZ0esN3lF9OmfNsFV82DshE1zhiCPDS_uh2w8YJIRhSU2Viw2gLOZ19RCh2Nm8oxfXL68nWKhmXHEkxNO4vPMFBnWM57AxGWMtpXOXTnfgsf-1UNvwCtFBW6FJzhXqcpxBFJpnHWNlTLWMWZ0ocyxRDqV5jmmg4GJdSYMYqMcL1GGMMIqhAa5ltvQKKaF2wEWZtKFkcQuVZEiGntENoGyIbYbmFDKFnRq8yW2ohsn1YtJgmkHGTxBg9M9GTwhg7fg-PuN9wXVxj919-seSaqfbp78uMju_8V7sEKN0K4UofehUc4-3QFiizJtw3LUv25XbtP2GfoXP2_NZw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQPcAFsYqy-gBIHKzGtdMkSBUqpagFWiEWiVtwHAeQ2hTaIMTP8W3MuAnLhVtPSeTEh_HE82Zsv0fIHlaVuGcU87XSDOKxw5RyXaYjXweJ8Vwu8Lxzt1dr38nze_d-hnwWZ2FwW2UxJ9qJOh5qrJFXOAAVjmRz3vHLK0PVKFxdLSQ0VC6tENctxVh-sOPCfLxDCjeud05hvPer1bPWbbPNcpUBprkl_ZaRTGBWllEQ15QWInADyHI8kUCLMDJKEkiRHBW4MVeAFxK4-DGEVi0hXCaoGgEhoCSFDCD5K520elfXRSyoSW7lo5A1Dtn--GShFFCTrKhBhnOgDBwXXNUKpv0KjH_jgg12Z4tkIUeptDFxqyUyY9JlUu4CwB6ObB2eHtBm_xnQrn1aISavu9EqHSYUQCXtNG46tNemgiJlJnSWTjac05HV8AIHp6r_CBbOngZH0KhGDPBrn6HYPVVpDO8pS5hiYorbWMcmG6-Su6nYdo3MpsPUrBPqxcJ4vgAXkr5E2nxAUo7UHvTrKE-IMqkU5gt1Tm-OKhv9ENIcNHgIBsd7NHiIBi-Tw-8vXibUHv-8u1WMSJj_5OPwxyU3_m_eJXPt2-5leNnpXWySeewQd8Rwd4vMZqM3sw24Jot2cueh5GHa_voF4i4GpQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VW6niQqGA2FKoD4DEwd147WwSpAr1a7VL2RUIKnpLHceGit1s2U1VwU_jr_TPdMZJKHDorQdOSeTEkpPnmTf25A3Ac1pVEpHVPDbacPTHAdc6DLnJYpM4G4VC0v_Oo3FvcKTeHofHS_Cr-ReG0iobm-gNdT4ztEbeEUhUBInNRR1Xp0W83--_OfvOqYIU7bQ25TQqiBzaHxcYvi22h_v4rV90u_2DT3sDXlcY4EZ4wW-VKYcWWWVJ3tNGyiRMMMKJpMMWaVXmHIZHgU7CXGjkCg4PcY5u1Sh0lY4qRqD5X45JBK0Fy7v90YfPjR_oKeFLR5FiHCn9iWqTFBmT6uhpSfZPJUGIMPXF0v5win_7BO_o-qtw2byiKr_l29Z5mW2Zn_-oR_6f7_Ae3K35N9upJsx9WLLFGrRHGDrM5n6Hgb1ke5NT5PH-6gHYekWRddnMMaTLbLjzccjGAyYZiYFiZ0WVSs_mvjoZTl2mJ19wrOXX6Wts1HOOzHzCy9OpZbrI8T7tpWBszihBd2HLxUM4upVRP4JWMSvsY2BRLm0US5wcKlZUEAA5YqBMhP0GOpKyDZ0GHKmphdupfsgkxQCO4JQinOic4JQSnNrw6vcTZ5VoyQ33bjRYSWvztUivgbJ-c_MmrCCC0nfD8eETuEP9UaqPCDegVc7P7VMkbGX2rJ4ZDE5uG0hXEadMSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH+3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Van+Damme%2C+Martin&rft.au=Whitburn%2C+Simon&rft.au=Clarisse%2C+Lieven&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.issn=1867-8548&rft.eissn=1867-8548&rft.volume=10&rft.issue=12&rft.spage=4905&rft.epage=4914&rft_id=info:doi/10.5194%2Famt-10-4905-2017&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_amt_10_4905_2017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |