Version 2 of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets

Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline ver...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 10; no. 12; pp. 4905 - 4914
Main Authors Van Damme, Martin, Whitburn, Simon, Clarisse, Lieven, Clerbaux, Cathy, Hurtmans, Daniel, Coheur, Pierre-François
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 15.12.2017
Subjects
Online AccessGet full text
ISSN1867-8548
1867-1381
1867-8548
DOI10.5194/amt-10-4905-2017

Cover

Abstract Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
AbstractList Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Author Whitburn, Simon
Clarisse, Lieven
Coheur, Pierre-François
Clerbaux, Cathy
Hurtmans, Daniel
Van Damme, Martin
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-1752-0558
  surname: Van Damme
  fullname: Van Damme, Martin
– sequence: 2
  givenname: Simon
  orcidid: 0000-0003-3279-8152
  surname: Whitburn
  fullname: Whitburn, Simon
– sequence: 3
  givenname: Lieven
  orcidid: 0000-0002-8805-2141
  surname: Clarisse
  fullname: Clarisse, Lieven
– sequence: 4
  givenname: Cathy
  surname: Clerbaux
  fullname: Clerbaux, Cathy
– sequence: 5
  givenname: Daniel
  surname: Hurtmans
  fullname: Hurtmans, Daniel
– sequence: 6
  givenname: Pierre-François
  surname: Coheur
  fullname: Coheur, Pierre-François
BookMark eNp1kM1LAzEQxYNUsK3ePQY8R5Nsstl4K0VtoejBj-sy3U3s1t1NTVKl_71Z9CCCpzfMvDc8fhM06l1vEDpn9FIyLa6gi4RRIjSVhFOmjtCYFbkihRTF6Nd8giYhbCnNBVN8jMyL8aFxPebYWRw3Bi9nj0t8v8AZ7s3eQ5skfjr_hr2JvjEfaQPtq_NN3HTX6QieeAMtiU1nMPR18kEP7SGYGtcQIZgYTtGxhTaYsx-doufbm6f5gqwe7pbz2YpUjKV-QqyFFVyLta5zqLJMSy2oUplNl8yItbWMKgpa1gwklTZJUVOqKsGZtDKboovvvzvv3vcmxHLr9j61CSXTSjFdcK6Si367Ku9C8MaWO9904A8lo-UAs0wwh3mAWQ4wUyT_E6maCDGBix6a9v_gF7tQenk
CitedBy_id crossref_primary_10_1016_j_atmosres_2021_105490
crossref_primary_10_5194_acp_21_15883_2021
crossref_primary_10_5194_acp_22_14119_2022
crossref_primary_10_1088_1748_9326_abd5e0
crossref_primary_10_1038_s41597_020_00718_5
crossref_primary_10_5194_acp_24_7623_2024
crossref_primary_10_1029_2018JD029633
crossref_primary_10_5194_bg_19_1635_2022
crossref_primary_10_1038_s41586_018_0747_1
crossref_primary_10_1016_j_atmosres_2019_104702
crossref_primary_10_5194_acp_20_13481_2020
crossref_primary_10_5194_amt_15_1779_2022
crossref_primary_10_3788_IRLA20210707
crossref_primary_10_1007_s00376_020_9249_9
crossref_primary_10_1029_2020GL087810
crossref_primary_10_1029_2020JD033977
crossref_primary_10_5194_amt_13_309_2020
crossref_primary_10_1038_s41893_024_01366_y
crossref_primary_10_5194_amt_11_5125_2018
crossref_primary_10_5194_acp_23_13217_2023
crossref_primary_10_5194_acp_18_13173_2018
crossref_primary_10_1038_s41561_019_0385_8
crossref_primary_10_5194_acp_18_16439_2018
crossref_primary_10_5194_acp_20_16055_2020
crossref_primary_10_1029_2019JD030419
crossref_primary_10_5194_acp_21_16001_2021
crossref_primary_10_1016_j_scitotenv_2024_176188
crossref_primary_10_1088_1748_9326_acb835
crossref_primary_10_5194_acp_20_8727_2020
crossref_primary_10_5194_gmd_16_1641_2023
crossref_primary_10_3390_s20082352
crossref_primary_10_5194_amt_14_905_2021
crossref_primary_10_5194_acp_21_16277_2021
crossref_primary_10_34133_2021_9804583
crossref_primary_10_1016_j_chemosphere_2024_142497
crossref_primary_10_5194_acp_19_2577_2019
crossref_primary_10_5194_acp_22_9099_2022
crossref_primary_10_3390_atmos13101552
crossref_primary_10_5194_acp_19_12051_2019
crossref_primary_10_3390_atmos16030346
crossref_primary_10_5194_acp_21_2067_2021
crossref_primary_10_5194_acp_23_12505_2023
crossref_primary_10_3390_atmos15030251
crossref_primary_10_1088_1748_9326_ac3695
crossref_primary_10_5194_acp_18_4403_2018
crossref_primary_10_1038_s41597_023_02607_z
crossref_primary_10_1016_j_scitotenv_2019_134508
crossref_primary_10_1016_j_scitotenv_2024_176846
crossref_primary_10_5194_acp_21_12091_2021
crossref_primary_10_5194_acp_18_12845_2018
crossref_primary_10_3390_atmos13071101
crossref_primary_10_5194_amt_16_5009_2023
crossref_primary_10_1073_pnas_2311728120
crossref_primary_10_1029_2018JD029990
crossref_primary_10_1021_acs_est_9b02701
crossref_primary_10_5194_amt_18_129_2025
crossref_primary_10_1029_2018GL079092
crossref_primary_10_1016_j_scitotenv_2023_169053
crossref_primary_10_5194_amt_16_3693_2023
crossref_primary_10_1109_JSTARS_2019_2918093
crossref_primary_10_5194_acp_22_10375_2022
crossref_primary_10_1073_pnas_2002579118
crossref_primary_10_1038_s41561_022_00899_1
crossref_primary_10_1038_s41598_019_39935_3
crossref_primary_10_5194_acp_23_15235_2023
crossref_primary_10_5194_amt_15_6653_2022
crossref_primary_10_1016_j_chemosphere_2022_137124
crossref_primary_10_1038_s41467_022_34098_8
crossref_primary_10_1038_s41598_022_15836_w
crossref_primary_10_5194_acp_23_9473_2023
crossref_primary_10_1016_j_scitotenv_2022_160756
crossref_primary_10_5194_acp_18_17933_2018
crossref_primary_10_1016_j_atmosenv_2022_119256
crossref_primary_10_1016_j_scitotenv_2023_163733
crossref_primary_10_1016_j_scitotenv_2020_139189
crossref_primary_10_5194_acp_20_181_2020
crossref_primary_10_1016_j_envpol_2020_114421
crossref_primary_10_34133_remotesensing_0289
crossref_primary_10_5194_acp_21_6275_2021
crossref_primary_10_1016_j_scitotenv_2020_139986
crossref_primary_10_1029_2019GL082052
crossref_primary_10_5194_amt_16_2107_2023
crossref_primary_10_1029_2020GB006916
crossref_primary_10_1016_j_jclepro_2020_122875
crossref_primary_10_1016_j_agrformet_2023_109432
crossref_primary_10_3390_rs12244107
crossref_primary_10_5194_acp_22_12907_2022
crossref_primary_10_5194_acp_21_4431_2021
crossref_primary_10_1016_j_atmosenv_2019_04_050
crossref_primary_10_5194_acp_21_7187_2021
crossref_primary_10_3390_rs12172777
crossref_primary_10_5194_acp_19_6701_2019
crossref_primary_10_1016_j_atmosres_2023_107170
crossref_primary_10_1016_j_envpol_2017_11_052
crossref_primary_10_5194_amt_12_5457_2019
crossref_primary_10_3390_atmos12080946
crossref_primary_10_1029_2020JD033475
crossref_primary_10_1029_2021JD035237
crossref_primary_10_5194_acp_19_12261_2019
crossref_primary_10_5194_acp_24_9355_2024
crossref_primary_10_5194_amt_11_6679_2018
crossref_primary_10_1029_2021GL093010
crossref_primary_10_1016_j_envpol_2018_03_078
crossref_primary_10_1038_s41467_024_55606_y
crossref_primary_10_1029_2018JD029701
crossref_primary_10_5194_acp_22_1883_2022
crossref_primary_10_5194_amt_13_3923_2020
crossref_primary_10_1029_2020GL090579
crossref_primary_10_3390_atmos12020160
crossref_primary_10_5194_gmd_16_1053_2023
crossref_primary_10_1021_acs_est_3c05266
crossref_primary_10_1021_acs_est_4c11922
crossref_primary_10_1029_2019GL086239
crossref_primary_10_5194_acp_21_6389_2021
crossref_primary_10_5194_acp_20_577_2020
crossref_primary_10_3390_rs12152393
Cites_doi 10.5194/amt-8-1323-2015
10.5194/acp-11-10743-2011
10.5194/amt-4-1567-2011
10.1038/ngeo551
10.1016/j.atmosenv.2015.03.015
10.5194/amt-5-581-2012
10.5194/acp-9-5655-2009
10.1016/j.jqsrt.2016.12.022
10.1029/2009JD013291
10.1016/j.jqsrt.2012.02.028
10.1002/2015GL065496
10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
10.1002/qj.828
10.5194/acp-14-2905-2014
10.1016/j.jqsrt.2012.02.036
10.1002/2014JD021911
10.5194/acp-13-2195-2013
10.1029/2008GL033642
10.1029/2011JD016810
10.1002/2016JD024828
10.5194/amt-9-721-2016
10.5194/acp-16-5467-2016
ContentType Journal Article
Copyright Copyright Copernicus GmbH 2017
Copyright_xml – notice: Copyright Copernicus GmbH 2017
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.5194/amt-10-4905-2017
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection (LUT)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 4914
ExternalDocumentID 10_5194_amt_10_4905_2017
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
RIG
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c1167-44b4f4294b9d6ac3395940773f44b3e4bff1070a95d1a505fd1a8d007c4215f53
IEDL.DBID BENPR
ISSN 1867-8548
1867-1381
IngestDate Sat Jul 26 00:04:58 EDT 2025
Wed Oct 01 05:01:35 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1167-44b4f4294b9d6ac3395940773f44b3e4bff1070a95d1a505fd1a8d007c4215f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1752-0558
0000-0002-8805-2141
0000-0003-3279-8152
OpenAccessLink https://www.proquest.com/docview/1977198227?pq-origsite=%requestingapplication%&accountid=15518
PQID 1977198227
PQPubID 105742
PageCount 10
ParticipantIDs proquest_journals_1977198227
crossref_primary_10_5194_amt_10_4905_2017
crossref_citationtrail_10_5194_amt_10_4905_2017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2017
Publisher Copernicus GmbH
Publisher_xml – name: Copernicus GmbH
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.5194/amt-8-1323-2015
– ident: ref15
  doi: 10.5194/acp-11-10743-2011
– ident: ref19
  doi: 10.5194/amt-4-1567-2011
– ident: ref1
– ident: ref7
  doi: 10.1038/ngeo551
– ident: ref22
  doi: 10.1016/j.atmosenv.2015.03.015
– ident: ref9
  doi: 10.5194/amt-5-581-2012
– ident: ref11
  doi: 10.5194/acp-9-5655-2009
– ident: ref4
  doi: 10.1016/j.jqsrt.2016.12.022
– ident: ref8
  doi: 10.1029/2009JD013291
– ident: ref2
  doi: 10.1016/j.jqsrt.2012.02.028
– ident: ref18
  doi: 10.1002/2015GL065496
– ident: ref6
  doi: 10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
– ident: ref12
  doi: 10.1002/qj.828
– ident: ref16
  doi: 10.5194/acp-14-2905-2014
– ident: ref13
  doi: 10.1016/j.jqsrt.2012.02.036
– ident: ref17
  doi: 10.1002/2014JD021911
– ident: ref10
  doi: 10.5194/acp-13-2195-2013
– ident: ref5
  doi: 10.1029/2008GL033642
– ident: ref20
  doi: 10.1029/2011JD016810
– ident: ref23
  doi: 10.1002/2016JD024828
– ident: ref3
  doi: 10.5194/amt-9-721-2016
– ident: ref21
  doi: 10.5194/acp-16-5467-2016
SSID ssj0064172
Score 2.136721
Snippet Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding...
Recently, Whitburn et al.(2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4905
SubjectTerms Algorithms
Ammonia
Artificial neural networks
Atmospheric sounding
Clouds
Data
Datasets
Filtration
Infrared interferometers
Mathematical models
Neural networks
Real time
Satellite observation
Satellites
Surface temperature
Training
Title Version 2 of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets
URI https://www.proquest.com/docview/1977198227
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-8548
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXgRn1gfZQ8ieAjtmk3TFUS0WFuhRXyAtzCb7KpQU23j_3dmm_i4eErCbhYyO5n59vV9AIfWybbGmI_9og0U2jAwFIsDo1PTxdTpzPFAcTTuDB7VzVP0tATj6iwMb6usYqIP1Nk05TnyliSgIplsLj5__whYNYpXVysJDSylFbIzTzG2DPUTZsaqQf3yanx7V8XmjpJezolZ3Jh9Ty4WLgnFqBa-FRyTlG5H5DpewOxXovobp33y6a_BaokaxcWim9dhyeYb0BgR4J3O_Ly4OBK9ySuhT_-0CbacBxMnYuoEgTwxvLgfivFAhIIpLKmxfLEBXMy8phY5nMDJM31x8fJ2SoU4CwhPTgIWnxeYZ1QPPYGJzQRvK53bYr4Fj_2rh94gKBUVglR6gnNllKMMpIzOOpiGoY40jeji0FFJaJVx1HVxG3WUSSRs5OjSzQhGpIqggYvCbajl09zugKDUj05ray12FQVJ1LE02nYcSsNRoAGtynxJWtKNs-rFJKFhBxs8IYPzPRs8YYM34Pj7jfcF1cY_dferHknKn26e_LjI7v_Fe7DCjfCuFBntQ62YfdoDwhaFacJyt3_dLN2m6UfoX3h7z90
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQHOCCWEVZfQAkDlHrxmlqJIRKAbVAK8QicQvjxAakNoU2CPFzfBszbsJy4cYpiexYymQy88ax32Ns21hRURDStl8wngTjexpjsadVrOsQW5VYKhQ73VrrVp7dBXcT7KPYC0PLKouY6AJ1MohpjrwsEKgIIpsLD59fPFKNor-rhYQG5NIKyYGjGMs3dpyb9zcs4UYH7WN83zvV6unJTbPl5SoDXiwc6bfU0mJUllolNYh9XwUKq5zQt9jiG6ktPk5YARUkAhAvWDzUE0ytscR0aUk1AlPAlPSlwuJv6uike3lV5IKaFE4-iljjiO1PjH-UImqSZehnFAOlqgToqk4w7Udi_J0XXLI7nWOzOUrljbFbzbMJky6wUgcB9mDo5uH5Lm_2nhDtuqtFZvJ5N17lA8sRVPJ247rNuy3uc6LMxMHS8YJzPnQaXujgHHoPaOHssb-PjTD0EL_2PBK755Am2A8cYYpJOC1jHZlstMRu_8W2y2wyHaRmhXGEGmCVMsZAXWJQBhUKrUzNgtAUdUqsXJgvinN6c1LZ6EVY5pDBIzQ4nZPBIzJ4ie193fE8pvb4o-968Uai_CMfRd8uufp38xabbt10LqKLdvd8jc3QgLQiRgTrbDIbvpoNxDWZ3sydh7P7__bXT41qCRs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dS8MwFA2iIL6InzidmgcVfChb1nRdBJGxOTenQ9DB3mrSJips3dwq4l_z13lv2vrx4tue2pI00Nvbe0_Sm3MIOdKGlYX0cduv1A6X2nUUxGJHiVDVZGhEZHCieNurtvv8euANFshnvhcGyyrzmGgDdTQOcY28xACoMCSb80smK4u4a7YuJq8OKkjhn9ZcTiN1ka7-eIfp2-y804R3fVyptC4fGm0nUxhwQmYJv7niBiIyVyKqytB1hSdghuO7BlpczZWBR_HLUngRk4AVDBxqEaTVkEOqNKgYAeF_yUcWd9yl3rrKs0CVMyschXxxyPPH0l-kgJd4SY4SjH5clD1wUiuV9isl_s0INs211shqhk9pPXWodbKg4w1SuAVoPZ7aFXh6QhvDF8C59mqT6GzFjVbo2FCAk7RTv-_QXpu6FMkyYbA4LTWnU6veBa5N5fAJ7Jk8j86gUU4dQK5DB2XuqYwj6CctVYqOKBawznQy2yL9uVh2myzG41jvEAogQxohtNayxiEcS-EzJXTVSKYw3hRIKTdfEGbE5qivMQxggoMGD8DgeI4GD9DgBXL6fcckJfX4p28xfyNB9nnPgh9n3P2_-ZAsg5cGN51ed4-s4HhYCsO8IllMpm96HwBNog6s51DyOG9X_QI_IQa1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Version+2+of+the+IASI+NH+3+neural+network+retrieval+algorithm%3A+near-real-time+and+reanalysed+datasets&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Martin+Van+Damme&rft.au=Whitburn%2C+Simon&rft.au=Lieven+Clarisse&rft.au=Clerbaux%2C+Cathy&rft.date=2017-12-15&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=10&rft.issue=12&rft.spage=4905&rft_id=info:doi/10.5194%2Famt-10-4905-2017&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon