SMAN2: Soft-Max Multilayer Adversarial Neural Network-Based Cross-Project Software Defect Prediction
Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that dec...
Saved in:
| Published in | SN computer science Vol. 4; no. 6; p. 780 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
12.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-023-02224-y |
Cover
| Abstract | Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN
2
) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a
Z
-score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN
2
algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN
2
algorithm performs better than the previous methods. |
|---|---|
| AbstractList | Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN
2
) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a
Z
-score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN
2
algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN
2
algorithm performs better than the previous methods. Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN2) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a Z-score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN2 algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN2 algorithm performs better than the previous methods. |
| ArticleNumber | 780 |
| Author | Ruckmani, V. Prakasam, S. |
| Author_xml | – sequence: 1 givenname: V. surname: Ruckmani fullname: Ruckmani, V. email: ruckmanivcs@yahoo.com organization: Computer Science and Applications, SCSVMV University Enathur – sequence: 2 givenname: S. surname: Prakasam fullname: Prakasam, S. organization: Computer Science and Applications, SCSVMV University Enathur |
| BookMark | eNp9UMlOwzAQtVCRKKU_wCkSZ4PtLHa4lVIWqS2VCmfLScYoJcTFTij5e9wGCU4cRjOjt8zonaJBbWpA6JySS0oIv3IRS3mKCQt9MRbh7ggNWZJQLFLCB3_mEzR2bkMIYTGJoiQeomK9mCzZdbA2usEL9RUs2qopK9WBDSbFJ1inbKmqYAmtPbRmZ-wbvlEOimBqjXN4Zc0G8uZgsVMWglvQ-31loSjzpjT1GTrWqnIw_ukj9HI3e54-4PnT_eN0Msc5pXGHNUuyPI-zqOAkCUXIBeUcqGZURIXOdZiBAEgyQlKuMg-EQD1GExHTNCVxOEIXve_Wmo8WXCM3prW1PylZyigRNBLMs1jPyvfvW9Bya8t3ZTtJidwHKvtApQ9UHgKVnReFvch5cv0K9tf6H9U3zfF6Pg |
| Cites_doi | 10.1109/ACCESS.2017.2771460 10.1109/ACCESS.2022.3144598 10.1109/ACCESS.2021.3051957 10.1109/ACCESS.2019.2961129 10.1109/TSE.2016.2543218 10.1109/TR.2019.2895462 10.1109/ACCESS.2020.3001440 10.1109/ACCESS.2020.2972644 10.1109/ACCESS.2020.2981869 10.1109/TSE.2019.2939303 10.1109/TR.2018.2847353 10.1109/ACCESS.2019.2925313 10.1109/TR.2018.2804922 10.3390/app9102138 10.26599/TST.2020.9010040 10.1109/ACCESS.2019.2953696 10.1109/DSA.2017.39 10.1109/QRS.2017.42 10.1109/TSE.2021.3073920 10.1109/COMPSAC.2017.127 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-023-02224-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_023_02224_y |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c115y-f26bcc5b4d70638378177e1f2184dfcf3be8ee6b0097abe1f3e12181685199053 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Fri Jul 25 23:31:52 EDT 2025 Wed Oct 01 00:37:47 EDT 2025 Fri Feb 21 02:42:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | score filter Normalized data Another neat tool (ANT) software dataset Spider optimization mutual feature selection (SOMFS) ) Soft-max multilayer adversarial neural network (SMAN Cross-project software defect prediction (CPSDP) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c115y-f26bcc5b4d70638378177e1f2184dfcf3be8ee6b0097abe1f3e12181685199053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2921081482 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921081482 crossref_primary_10_1007_s42979_023_02224_y springer_journals_10_1007_s42979_023_02224_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231012 |
| PublicationDateYYYYMMDD | 2023-10-12 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231012 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Pan, Lu, Xu, Gao (CR20) 2019; 9 Lin, Lu (CR4) 2021; 9 Tong, Liu, Wang (CR16) 2021; 47 Sheng, Lu, Lin (CR15) 2020; 8 CR6 CR8 Šikić, Kurdija, Vladimir, Šilić (CR5) 2022; 10 Xia, Lo, Pan, Nagappan, Wang (CR14) 2016; 42 CR18 Zhang, Wu, Chen, Zheng, Lyu (CR7) 2020; 8 Yang, Wen (CR17) 2018; 67 Chen, Chen, Li, Xie, Mu (CR3) 2019; 7 CR12 Gong, Jiang, Bo, Jiang, Qian (CR10) 2020; 69 Liang, Yu, Jiang, Xie (CR19) 2019; 7 Tang, Huang, Zheng, Liu, Zong, Ding (CR1) 2022; 27 Li, Huang, Wang, Fang (CR11) 2017; 5 Cai, Lu, Qiu (CR2) 2019; 7 Yuan, Chen, Cui, Mu (CR13) 2020; 8 Wu (CR9) 2018; 67 2224_CR8 J Zhang (2224_CR7) 2020; 8 L Šikić (2224_CR5) 2022; 10 H Tong (2224_CR16) 2021; 47 2224_CR6 X Xia (2224_CR14) 2016; 42 L Gong (2224_CR10) 2020; 69 Y Li (2224_CR11) 2017; 5 2224_CR12 F Wu (2224_CR9) 2018; 67 S Tang (2224_CR1) 2022; 27 J Lin (2224_CR4) 2021; 9 Z Yuan (2224_CR13) 2020; 8 H Liang (2224_CR19) 2019; 7 2224_CR18 D Chen (2224_CR3) 2019; 7 L Sheng (2224_CR15) 2020; 8 X Yang (2224_CR17) 2018; 67 Z Cai (2224_CR2) 2019; 7 C Pan (2224_CR20) 2019; 9 |
| References_xml | – volume: 5 start-page: 25646 year: 2017 end-page: 25656 ident: CR11 article-title: Evaluating data filter on cross-project defect prediction: comparison and improvements publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2771460 – ident: CR18 – volume: 10 start-page: 10402 year: 2022 end-page: 10415 ident: CR5 article-title: Graph neural network for source code defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144598 – volume: 9 start-page: 13112 year: 2021 end-page: 13124 ident: CR4 article-title: Semantic feature learning via dual sequences for defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051957 – volume: 7 start-page: 184832 year: 2019 end-page: 184848 ident: CR3 article-title: DeepCPDP: deep learning based cross-project defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961129 – volume: 42 start-page: 977 issue: 10 year: 2016 end-page: 998 ident: CR14 article-title: HYDRA: massively compositional model for cross-project defect prediction publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2016.2543218 – ident: CR12 – volume: 69 start-page: 40 issue: 1 year: 2020 end-page: 54 ident: CR10 article-title: A novel class-imbalance learning approach for both within-project and cross-project defect prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2895462 – volume: 8 start-page: 110059 year: 2020 end-page: 110072 ident: CR7 article-title: CDS: a cross-version software defect prediction model with data selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001440 – volume: 8 start-page: 30037 year: 2020 end-page: 30049 ident: CR13 article-title: ALTRA: cross-project software defect prediction via active learning and tradaboost publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972644 – volume: 8 start-page: 55241 year: 2020 end-page: 55253 ident: CR15 article-title: An adversarial discriminative convolutional neural network for cross-project defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981869 – volume: 47 start-page: 1886 issue: 9 year: 2021 end-page: 1906 ident: CR16 article-title: Kernel spectral embedding transfer ensemble for heterogeneous defect prediction publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2019.2939303 – volume: 67 start-page: 885 issue: 3 year: 2018 end-page: 896 ident: CR17 article-title: Ridge and Lasso regression models for cross-version defect prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2847353 – ident: CR6 – volume: 7 start-page: 83812 year: 2019 end-page: 83824 ident: CR19 article-title: Seml: a semantic LSTM model for software defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925313 – volume: 67 start-page: 581 issue: 2 year: 2018 end-page: 597 ident: CR9 article-title: Cross-project and within-project semisupervised software defect prediction: a unified approach publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2804922 – ident: CR8 – volume: 9 start-page: 2138 issue: 10 year: 2019 ident: CR20 article-title: An improved CNN model for within-project software defect prediction publication-title: Appl Sci doi: 10.3390/app9102138 – volume: 27 start-page: 41 issue: 1 year: 2022 end-page: 57 ident: CR1 article-title: A novel cross-project software defect prediction algorithm based on transfer learning publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2020.9010040 – volume: 7 start-page: 170844 year: 2019 end-page: 170853 ident: CR2 article-title: An abstract syntax tree encoding method for cross-project defect prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953696 – volume: 8 start-page: 30037 year: 2020 ident: 2224_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972644 – volume: 10 start-page: 10402 year: 2022 ident: 2224_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144598 – volume: 7 start-page: 170844 year: 2019 ident: 2224_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953696 – volume: 9 start-page: 13112 year: 2021 ident: 2224_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051957 – volume: 7 start-page: 184832 year: 2019 ident: 2224_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961129 – ident: 2224_CR8 doi: 10.1109/DSA.2017.39 – volume: 67 start-page: 885 issue: 3 year: 2018 ident: 2224_CR17 publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2847353 – volume: 42 start-page: 977 issue: 10 year: 2016 ident: 2224_CR14 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2016.2543218 – volume: 69 start-page: 40 issue: 1 year: 2020 ident: 2224_CR10 publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2895462 – volume: 8 start-page: 110059 year: 2020 ident: 2224_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001440 – volume: 8 start-page: 55241 year: 2020 ident: 2224_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981869 – volume: 27 start-page: 41 issue: 1 year: 2022 ident: 2224_CR1 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2020.9010040 – volume: 5 start-page: 25646 year: 2017 ident: 2224_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2771460 – volume: 47 start-page: 1886 issue: 9 year: 2021 ident: 2224_CR16 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2019.2939303 – volume: 7 start-page: 83812 year: 2019 ident: 2224_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925313 – ident: 2224_CR18 doi: 10.1109/QRS.2017.42 – ident: 2224_CR12 doi: 10.1109/TSE.2021.3073920 – volume: 9 start-page: 2138 issue: 10 year: 2019 ident: 2224_CR20 publication-title: Appl Sci doi: 10.3390/app9102138 – ident: 2224_CR6 doi: 10.1109/COMPSAC.2017.127 – volume: 67 start-page: 581 issue: 2 year: 2018 ident: 2224_CR9 publication-title: IEEE Trans Reliab doi: 10.1109/TR.2018.2804922 |
| SSID | ssj0002504465 |
| Score | 2.236876 |
| Snippet | Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 780 |
| SubjectTerms | Advances in Computational Approaches for Image Processing Algorithms Classification Cloud Applications and Network Security Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Defects Feature selection Information Systems and Communication Service Literature reviews Methods Multilayers Neural networks Optimization Original Research Pattern Recognition and Graphics Prediction models Raw materials Semantics Software Software Engineering/Programming and Operating Systems Software reliability Software testing Standard scores Testing time Vision Wireless Networks |
| Title | SMAN2: Soft-Max Multilayer Adversarial Neural Network-Based Cross-Project Software Defect Prediction |
| URI | https://link.springer.com/article/10.1007/s42979-023-02224-y https://www.proquest.com/docview/2921081482 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uHgRRcVqLXvwpottXpsIIk01FqGhWAu9hWR3c5K2thXtv3dmm7Qo6CmHhU2Y3cx88_oG4NLx217eVjZXUgTooHQCnnmuzUWgnUxYqXQVhQYGsdcfO88Td1KBuOyFobLKUicaRa1mkmLkN1aAzolPrJX383dOU6Mou1qO0EiL0QrqzlCMVaFuETNWDerhYzx82UZdiLDLMfMl0TBZPAjcSdFJY_rpUDnjF6MZ4-QHOXz901rtIOivrKkxRtEB7BcoknU3x34IFT09AjUadGPrlo1Qs_JB-sVMc-1biqCambnLy5RuGyM-DvMwBeA8RDumWI_ez4ebuIzZ4jNdaPagqdyDDReUz6EzPIZx9Pja6_NiiAKXCPbWPLe8TEo3c5QgdGILvyOE7uTk2qlc5namfa29jBo60gwXbN0hs-8hFENL5donUJvOpvoUmC0lOjCeLz0XcYiT-8oRxHTaDrTSiAsbcFUKK5lvuDKSLSuyEW2Cok2MaJN1A5qlPJPiv1kmu1NuwHUp493y37ud_b_bOezRnHhuSlGaUFstPvQFoolV1oKqHz21oN6NwjBuFRfmG-Faxxg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QOOjFaNSIou5BT7oR2u3LhBieAXmECCTcaru7PRlAwCB_zt_mzNJCNNEbpx422SbT6XzfzO7MR8gNd_N2lJcmk8LxIEEpeCy0LZM5nuKhYwTCklga6HTtxpA_j6xRinwlvTB4rTKJiTpQy4nAGvmD4UFy4uLUyqfpO0PVKDxdTSQ0glhaQRb1iLG4saOlVktI4ebFZhW-961h1GuDSoPFKgNMABtasciwQyGskEsH4dt03ILjqEKEuY-MRGSGylXKDrHjIQhhwVQFxEUbuAqEclSNAAjIcJN7kPxlyrVu72VT5cEBYVzrWQIQGszzrFHcuaP79wAMwEIAmwzzLs5WP9FxS3l_ndJq8KsfkoOYtdLS2s2OSEqNj4nsd0pd45H2IZKzTvBJdTPvWwAknmqd53mA3k1x_od-6AvnrAy4KWkF38966zqQ3mIZzBStKrxeQnszPD9Cnzkhw52Y85Skx5OxOiPUFAISJtsVtgW8h0eu5A5OVs17SirgoVlylxjLn65nc_ibKczatD6Y1tem9VdZkkvs6cf_6dzfelWW3Cc23i7_vdv5_7tdk73GoNP2281u64Lso0Y909dgciS9mH2oS2Ayi_AqdhdKXnftod8TNgDX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMAN2%3A+Soft-Max+Multilayer+Adversarial+Neural+Network-Based+Cross-Project+Software+Defect+Prediction&rft.jtitle=SN+computer+science&rft.au=Ruckmani%2C+V.&rft.au=Prakasam%2C+S.&rft.date=2023-10-12&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-023-02224-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_023_02224_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |