SMAN2: Soft-Max Multilayer Adversarial Neural Network-Based Cross-Project Software Defect Prediction

Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that dec...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 6; p. 780
Main Authors Ruckmani, V., Prakasam, S.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 12.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-023-02224-y

Cover

Abstract Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN 2 ) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a Z -score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN 2 algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN 2 algorithm performs better than the previous methods.
AbstractList Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN 2 ) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a Z -score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN 2 algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN 2 algorithm performs better than the previous methods.
Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers to allocate limited resources to identify errors and prioritize testing efforts. Predicting earlier defects is a convenient operation that decreases software testing time and costs. CPSDP is difficult because predictors built into raw materials rarely generalize to the target projects. However, there are more perfect events in a real software program than defective ones, which results in severe class distribution bias and poor assortment performance. The existing method does not consider the relational features in the software required to create accurate prediction models. This paper presents soft-max multilayer adversarial neural network (SMAN2) and spider optimization mutual feature selection (SOMFS) algorithm to address this problem. First, a Z-score normalization filter is used to prepare a dataset, like checking missing values and changing them into normalized data. Then, we use the SOMFS technique to choose the finest attributes from the normalized software dataset to reduce the dimensionality. Later, dimensionality reduced dataset trained into the proposed SMAN2 algorithm analyses software defects. Concerning parameters, precision, recall, classification performance, and F1-score performance indicators find that the proposed SMAN2 algorithm performs better than the previous methods.
ArticleNumber 780
Author Ruckmani, V.
Prakasam, S.
Author_xml – sequence: 1
  givenname: V.
  surname: Ruckmani
  fullname: Ruckmani, V.
  email: ruckmanivcs@yahoo.com
  organization: Computer Science and Applications, SCSVMV University Enathur
– sequence: 2
  givenname: S.
  surname: Prakasam
  fullname: Prakasam, S.
  organization: Computer Science and Applications, SCSVMV University Enathur
BookMark eNp9UMlOwzAQtVCRKKU_wCkSZ4PtLHa4lVIWqS2VCmfLScYoJcTFTij5e9wGCU4cRjOjt8zonaJBbWpA6JySS0oIv3IRS3mKCQt9MRbh7ggNWZJQLFLCB3_mEzR2bkMIYTGJoiQeomK9mCzZdbA2usEL9RUs2qopK9WBDSbFJ1inbKmqYAmtPbRmZ-wbvlEOimBqjXN4Zc0G8uZgsVMWglvQ-31loSjzpjT1GTrWqnIw_ukj9HI3e54-4PnT_eN0Msc5pXGHNUuyPI-zqOAkCUXIBeUcqGZURIXOdZiBAEgyQlKuMg-EQD1GExHTNCVxOEIXve_Wmo8WXCM3prW1PylZyigRNBLMs1jPyvfvW9Bya8t3ZTtJidwHKvtApQ9UHgKVnReFvch5cv0K9tf6H9U3zfF6Pg
Cites_doi 10.1109/ACCESS.2017.2771460
10.1109/ACCESS.2022.3144598
10.1109/ACCESS.2021.3051957
10.1109/ACCESS.2019.2961129
10.1109/TSE.2016.2543218
10.1109/TR.2019.2895462
10.1109/ACCESS.2020.3001440
10.1109/ACCESS.2020.2972644
10.1109/ACCESS.2020.2981869
10.1109/TSE.2019.2939303
10.1109/TR.2018.2847353
10.1109/ACCESS.2019.2925313
10.1109/TR.2018.2804922
10.3390/app9102138
10.26599/TST.2020.9010040
10.1109/ACCESS.2019.2953696
10.1109/DSA.2017.39
10.1109/QRS.2017.42
10.1109/TSE.2021.3073920
10.1109/COMPSAC.2017.127
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02224-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02224_y
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c115y-f26bcc5b4d70638378177e1f2184dfcf3be8ee6b0097abe1f3e12181685199053
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 23:31:52 EDT 2025
Wed Oct 01 00:37:47 EDT 2025
Fri Feb 21 02:42:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords score filter
Normalized data
Another neat tool (ANT) software dataset
Spider optimization mutual feature selection (SOMFS)
)
Soft-max multilayer adversarial neural network (SMAN
Cross-project software defect prediction (CPSDP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c115y-f26bcc5b4d70638378177e1f2184dfcf3be8ee6b0097abe1f3e12181685199053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921081482
PQPubID 6623307
ParticipantIDs proquest_journals_2921081482
crossref_primary_10_1007_s42979_023_02224_y
springer_journals_10_1007_s42979_023_02224_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231012
PublicationDateYYYYMMDD 2023-10-12
PublicationDate_xml – month: 10
  year: 2023
  text: 20231012
  day: 12
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Pan, Lu, Xu, Gao (CR20) 2019; 9
Lin, Lu (CR4) 2021; 9
Tong, Liu, Wang (CR16) 2021; 47
Sheng, Lu, Lin (CR15) 2020; 8
CR6
CR8
Šikić, Kurdija, Vladimir, Šilić (CR5) 2022; 10
Xia, Lo, Pan, Nagappan, Wang (CR14) 2016; 42
CR18
Zhang, Wu, Chen, Zheng, Lyu (CR7) 2020; 8
Yang, Wen (CR17) 2018; 67
Chen, Chen, Li, Xie, Mu (CR3) 2019; 7
CR12
Gong, Jiang, Bo, Jiang, Qian (CR10) 2020; 69
Liang, Yu, Jiang, Xie (CR19) 2019; 7
Tang, Huang, Zheng, Liu, Zong, Ding (CR1) 2022; 27
Li, Huang, Wang, Fang (CR11) 2017; 5
Cai, Lu, Qiu (CR2) 2019; 7
Yuan, Chen, Cui, Mu (CR13) 2020; 8
Wu (CR9) 2018; 67
2224_CR8
J Zhang (2224_CR7) 2020; 8
L Šikić (2224_CR5) 2022; 10
H Tong (2224_CR16) 2021; 47
2224_CR6
X Xia (2224_CR14) 2016; 42
L Gong (2224_CR10) 2020; 69
Y Li (2224_CR11) 2017; 5
2224_CR12
F Wu (2224_CR9) 2018; 67
S Tang (2224_CR1) 2022; 27
J Lin (2224_CR4) 2021; 9
Z Yuan (2224_CR13) 2020; 8
H Liang (2224_CR19) 2019; 7
2224_CR18
D Chen (2224_CR3) 2019; 7
L Sheng (2224_CR15) 2020; 8
X Yang (2224_CR17) 2018; 67
Z Cai (2224_CR2) 2019; 7
C Pan (2224_CR20) 2019; 9
References_xml – volume: 5
  start-page: 25646
  year: 2017
  end-page: 25656
  ident: CR11
  article-title: Evaluating data filter on cross-project defect prediction: comparison and improvements
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2771460
– ident: CR18
– volume: 10
  start-page: 10402
  year: 2022
  end-page: 10415
  ident: CR5
  article-title: Graph neural network for source code defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144598
– volume: 9
  start-page: 13112
  year: 2021
  end-page: 13124
  ident: CR4
  article-title: Semantic feature learning via dual sequences for defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051957
– volume: 7
  start-page: 184832
  year: 2019
  end-page: 184848
  ident: CR3
  article-title: DeepCPDP: deep learning based cross-project defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961129
– volume: 42
  start-page: 977
  issue: 10
  year: 2016
  end-page: 998
  ident: CR14
  article-title: HYDRA: massively compositional model for cross-project defect prediction
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2016.2543218
– ident: CR12
– volume: 69
  start-page: 40
  issue: 1
  year: 2020
  end-page: 54
  ident: CR10
  article-title: A novel class-imbalance learning approach for both within-project and cross-project defect prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2895462
– volume: 8
  start-page: 110059
  year: 2020
  end-page: 110072
  ident: CR7
  article-title: CDS: a cross-version software defect prediction model with data selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001440
– volume: 8
  start-page: 30037
  year: 2020
  end-page: 30049
  ident: CR13
  article-title: ALTRA: cross-project software defect prediction via active learning and tradaboost
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972644
– volume: 8
  start-page: 55241
  year: 2020
  end-page: 55253
  ident: CR15
  article-title: An adversarial discriminative convolutional neural network for cross-project defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981869
– volume: 47
  start-page: 1886
  issue: 9
  year: 2021
  end-page: 1906
  ident: CR16
  article-title: Kernel spectral embedding transfer ensemble for heterogeneous defect prediction
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2019.2939303
– volume: 67
  start-page: 885
  issue: 3
  year: 2018
  end-page: 896
  ident: CR17
  article-title: Ridge and Lasso regression models for cross-version defect prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2847353
– ident: CR6
– volume: 7
  start-page: 83812
  year: 2019
  end-page: 83824
  ident: CR19
  article-title: Seml: a semantic LSTM model for software defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925313
– volume: 67
  start-page: 581
  issue: 2
  year: 2018
  end-page: 597
  ident: CR9
  article-title: Cross-project and within-project semisupervised software defect prediction: a unified approach
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2804922
– ident: CR8
– volume: 9
  start-page: 2138
  issue: 10
  year: 2019
  ident: CR20
  article-title: An improved CNN model for within-project software defect prediction
  publication-title: Appl Sci
  doi: 10.3390/app9102138
– volume: 27
  start-page: 41
  issue: 1
  year: 2022
  end-page: 57
  ident: CR1
  article-title: A novel cross-project software defect prediction algorithm based on transfer learning
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2020.9010040
– volume: 7
  start-page: 170844
  year: 2019
  end-page: 170853
  ident: CR2
  article-title: An abstract syntax tree encoding method for cross-project defect prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953696
– volume: 8
  start-page: 30037
  year: 2020
  ident: 2224_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972644
– volume: 10
  start-page: 10402
  year: 2022
  ident: 2224_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144598
– volume: 7
  start-page: 170844
  year: 2019
  ident: 2224_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953696
– volume: 9
  start-page: 13112
  year: 2021
  ident: 2224_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051957
– volume: 7
  start-page: 184832
  year: 2019
  ident: 2224_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961129
– ident: 2224_CR8
  doi: 10.1109/DSA.2017.39
– volume: 67
  start-page: 885
  issue: 3
  year: 2018
  ident: 2224_CR17
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2847353
– volume: 42
  start-page: 977
  issue: 10
  year: 2016
  ident: 2224_CR14
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2016.2543218
– volume: 69
  start-page: 40
  issue: 1
  year: 2020
  ident: 2224_CR10
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2895462
– volume: 8
  start-page: 110059
  year: 2020
  ident: 2224_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001440
– volume: 8
  start-page: 55241
  year: 2020
  ident: 2224_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981869
– volume: 27
  start-page: 41
  issue: 1
  year: 2022
  ident: 2224_CR1
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2020.9010040
– volume: 5
  start-page: 25646
  year: 2017
  ident: 2224_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2771460
– volume: 47
  start-page: 1886
  issue: 9
  year: 2021
  ident: 2224_CR16
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2019.2939303
– volume: 7
  start-page: 83812
  year: 2019
  ident: 2224_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925313
– ident: 2224_CR18
  doi: 10.1109/QRS.2017.42
– ident: 2224_CR12
  doi: 10.1109/TSE.2021.3073920
– volume: 9
  start-page: 2138
  issue: 10
  year: 2019
  ident: 2224_CR20
  publication-title: Appl Sci
  doi: 10.3390/app9102138
– ident: 2224_CR6
  doi: 10.1109/COMPSAC.2017.127
– volume: 67
  start-page: 581
  issue: 2
  year: 2018
  ident: 2224_CR9
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2804922
SSID ssj0002504465
Score 2.236876
Snippet Cross-project software defect prediction (CPSDP) is an excessive way to enhance test performance and ensure software reliability. The CPSDP allows developers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 780
SubjectTerms Advances in Computational Approaches for Image Processing
Algorithms
Classification
Cloud Applications and Network Security
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Defects
Feature selection
Information Systems and Communication Service
Literature reviews
Methods
Multilayers
Neural networks
Optimization
Original Research
Pattern Recognition and Graphics
Prediction models
Raw materials
Semantics
Software
Software Engineering/Programming and Operating Systems
Software reliability
Software testing
Standard scores
Testing time
Vision
Wireless Networks
Title SMAN2: Soft-Max Multilayer Adversarial Neural Network-Based Cross-Project Software Defect Prediction
URI https://link.springer.com/article/10.1007/s42979-023-02224-y
https://www.proquest.com/docview/2921081482
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uHgRRcVqLXvwpottXpsIIk01FqGhWAu9hWR3c5K2thXtv3dmm7Qo6CmHhU2Y3cx88_oG4NLx217eVjZXUgTooHQCnnmuzUWgnUxYqXQVhQYGsdcfO88Td1KBuOyFobLKUicaRa1mkmLkN1aAzolPrJX383dOU6Mou1qO0EiL0QrqzlCMVaFuETNWDerhYzx82UZdiLDLMfMl0TBZPAjcSdFJY_rpUDnjF6MZ4-QHOXz901rtIOivrKkxRtEB7BcoknU3x34IFT09AjUadGPrlo1Qs_JB-sVMc-1biqCambnLy5RuGyM-DvMwBeA8RDumWI_ez4ebuIzZ4jNdaPagqdyDDReUz6EzPIZx9Pja6_NiiAKXCPbWPLe8TEo3c5QgdGILvyOE7uTk2qlc5namfa29jBo60gwXbN0hs-8hFENL5donUJvOpvoUmC0lOjCeLz0XcYiT-8oRxHTaDrTSiAsbcFUKK5lvuDKSLSuyEW2Cok2MaJN1A5qlPJPiv1kmu1NuwHUp493y37ud_b_bOezRnHhuSlGaUFstPvQFoolV1oKqHz21oN6NwjBuFRfmG-Faxxg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QOOjFaNSIou5BT7oR2u3LhBieAXmECCTcaru7PRlAwCB_zt_mzNJCNNEbpx422SbT6XzfzO7MR8gNd_N2lJcmk8LxIEEpeCy0LZM5nuKhYwTCklga6HTtxpA_j6xRinwlvTB4rTKJiTpQy4nAGvmD4UFy4uLUyqfpO0PVKDxdTSQ0glhaQRb1iLG4saOlVktI4ebFZhW-961h1GuDSoPFKgNMABtasciwQyGskEsH4dt03ILjqEKEuY-MRGSGylXKDrHjIQhhwVQFxEUbuAqEclSNAAjIcJN7kPxlyrVu72VT5cEBYVzrWQIQGszzrFHcuaP79wAMwEIAmwzzLs5WP9FxS3l_ndJq8KsfkoOYtdLS2s2OSEqNj4nsd0pd45H2IZKzTvBJdTPvWwAknmqd53mA3k1x_od-6AvnrAy4KWkF38966zqQ3mIZzBStKrxeQnszPD9Cnzkhw52Y85Skx5OxOiPUFAISJtsVtgW8h0eu5A5OVs17SirgoVlylxjLn65nc_ibKczatD6Y1tem9VdZkkvs6cf_6dzfelWW3Cc23i7_vdv5_7tdk73GoNP2281u64Lso0Y909dgciS9mH2oS2Ayi_AqdhdKXnftod8TNgDX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMAN2%3A+Soft-Max+Multilayer+Adversarial+Neural+Network-Based+Cross-Project+Software+Defect+Prediction&rft.jtitle=SN+computer+science&rft.au=Ruckmani%2C+V.&rft.au=Prakasam%2C+S.&rft.date=2023-10-12&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-023-02224-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_023_02224_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon