0275 Deep Learning-based Sleep Detection using Torso Patch Vital Signs Improves Sleep-Wake Detection over Wrist Actigraphy

Introduction Motion-based wearable sensors, typically on wrist, have long been used for free-living sleep detection and quantification. However, it is hard to differentiate sleep from sedentary awake time by immobility alone. Vital signs, like heart rate and respiration rate, can greatly enhance det...

Full description

Saved in:
Bibliographic Details
Published inSleep (New York, N.Y.) Vol. 46; no. Supplement_1; p. A122
Main Authors Pipke, Matt, Alla, Srilakshmi, Sekaric, Jadranka, Richards, Dylan, Gendy, Maged, Abbott, Sabra, Grimaldi, Daniela, Reid, Kathryn, Zee, Phyllis
Format Journal Article
LanguageEnglish
Published Westchester Oxford University Press 29.05.2023
Subjects
Online AccessGet full text
ISSN0161-8105
1550-9109
1550-9109
DOI10.1093/sleep/zsad077.0275

Cover

Abstract Introduction Motion-based wearable sensors, typically on wrist, have long been used for free-living sleep detection and quantification. However, it is hard to differentiate sleep from sedentary awake time by immobility alone. Vital signs, like heart rate and respiration rate, can greatly enhance determination of wake-sleep state, and are easily monitored with newer wearable sensors. Deep learning techniques are particularly adept at learning labeled physiological states. By combining movement plus vital signs in a deep neural network algorithm, improved sleep detection, fragmentation and sleep staging should be possible compared to activity alone. We report on performance of a deep learning sleep detection and REM/NREM algorithm providing 24-hour evaluation with high specificity using data from a torso-wearable patch sensor as compared to polysomnography (PSG). Methods Twenty-six healthy adults (mean age 53.7 years, 81% female) contributed 150 nights of PSG during laboratory visits, during which participants simultaneously wore a multi-day skin-adherent patch with continuous single-lead ECG and 3-axis accelerometer streams, as well as a wrist activity monitor. A pre-trained deep neural network algorithm generated epoch-level Wake/REM/NREM classification (Sleep equals REM plus NREM) using vital signs and movement derived from the patch sensor ECG and accelerometer waveforms and was then compared to expert human staging of PSGs. The wrist actigraphy sleep-wake determinations (Actiware) were also compared to PSG. Results Data includes 900 hours sleeping and 139 hours awake, of which 195 hours of sleep were in REM state. Using patch data, the deep neural net algorithm achieved 92% sensitivity and 85% specificity to detect sleep as compared to PSG; REM was detected with 85% sensitivity and 97% specificity. By comparison, the wrist motion-based algorithm only exhibited 33% specificity and 95% sensitivity, essentially overcalling immobile wake as sleep. Conclusion Sleep evaluation in free-living environments with wearable sensors can be greatly improved over conventional motion-based wrist sensors by leveraging continuous vital signs. Deep learning-trained neural network algorithms are particularly effective for use with such data, as demonstrated with this algorithm. Support (if any) R01 HL140580 and P01 AG011412
AbstractList Introduction Motion-based wearable sensors, typically on wrist, have long been used for free-living sleep detection and quantification. However, it is hard to differentiate sleep from sedentary awake time by immobility alone. Vital signs, like heart rate and respiration rate, can greatly enhance determination of wake-sleep state, and are easily monitored with newer wearable sensors. Deep learning techniques are particularly adept at learning labeled physiological states. By combining movement plus vital signs in a deep neural network algorithm, improved sleep detection, fragmentation and sleep staging should be possible compared to activity alone. We report on performance of a deep learning sleep detection and REM/NREM algorithm providing 24-hour evaluation with high specificity using data from a torso-wearable patch sensor as compared to polysomnography (PSG). Methods Twenty-six healthy adults (mean age 53.7 years, 81% female) contributed 150 nights of PSG during laboratory visits, during which participants simultaneously wore a multi-day skin-adherent patch with continuous single-lead ECG and 3-axis accelerometer streams, as well as a wrist activity monitor. A pre-trained deep neural network algorithm generated epoch-level Wake/REM/NREM classification (Sleep equals REM plus NREM) using vital signs and movement derived from the patch sensor ECG and accelerometer waveforms and was then compared to expert human staging of PSGs. The wrist actigraphy sleep-wake determinations (Actiware) were also compared to PSG. Results Data includes 900 hours sleeping and 139 hours awake, of which 195 hours of sleep were in REM state. Using patch data, the deep neural net algorithm achieved 92% sensitivity and 85% specificity to detect sleep as compared to PSG; REM was detected with 85% sensitivity and 97% specificity. By comparison, the wrist motion-based algorithm only exhibited 33% specificity and 95% sensitivity, essentially overcalling immobile wake as sleep. Conclusion Sleep evaluation in free-living environments with wearable sensors can be greatly improved over conventional motion-based wrist sensors by leveraging continuous vital signs. Deep learning-trained neural network algorithms are particularly effective for use with such data, as demonstrated with this algorithm. Support (if any) R01 HL140580 and P01 AG011412
Author Abbott, Sabra
Alla, Srilakshmi
Gendy, Maged
Reid, Kathryn
Zee, Phyllis
Richards, Dylan
Pipke, Matt
Sekaric, Jadranka
Grimaldi, Daniela
Author_xml – sequence: 1
  givenname: Matt
  surname: Pipke
  fullname: Pipke, Matt
– sequence: 2
  givenname: Srilakshmi
  surname: Alla
  fullname: Alla, Srilakshmi
– sequence: 3
  givenname: Jadranka
  surname: Sekaric
  fullname: Sekaric, Jadranka
– sequence: 4
  givenname: Dylan
  surname: Richards
  fullname: Richards, Dylan
– sequence: 5
  givenname: Maged
  surname: Gendy
  fullname: Gendy, Maged
– sequence: 6
  givenname: Sabra
  surname: Abbott
  fullname: Abbott, Sabra
– sequence: 7
  givenname: Daniela
  surname: Grimaldi
  fullname: Grimaldi, Daniela
– sequence: 8
  givenname: Kathryn
  surname: Reid
  fullname: Reid, Kathryn
– sequence: 9
  givenname: Phyllis
  surname: Zee
  fullname: Zee, Phyllis
BookMark eNqNkEtPwzAQhC1UJNrCH-BkiXNa23k4PlblVakSSC30aDnJpk1JnWAnoPbX45AeOHJaeWe-kXdGaKArDQjdUjKhRPhTWwLU05NVGeF8QhgPL9CQhiHxhNMHaEhoRL2YkvAKjazdE_cOhD9Ep86L7x2Nl6CMLvTWS5SFDK-6SKc0kDZFpXFrnYbXlbEVflVNusPvRaNKvCq22uLFoTbVF9ge8zbqA_6wTjF4Ywrb4JnbbI2qd8drdJmr0sLNeY7R2-PDev7sLV-eFvPZ0kupu8CLCWQ5TZI4yFkYga8UcMF4xgQNgpQI51KC0xSAsjxLiOJBAKGIWR6RzFeRP0Z-n9vqWh2_VVnK2hQHZY6SEtnVJ3_rk-f6ZFeJo-56yt312YJt5L5qjXYflT4LYi4CHnYu1rtSU1lrIP9P9A_fO4Ws
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
88G
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2M
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
ADTOC
UNPAY
DOI 10.1093/sleep/zsad077.0275
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Psychology
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1550-9109
EndPage A122
ExternalDocumentID 10.1093/sleep/zsad077.0275
10_1093_sleep_zsad077_0275
GroupedDBID ---
-DZ
-ET
..I
0R~
123
2WC
48X
5RE
5WD
6PF
7X7
88E
8FI
8FJ
8G5
AABZA
AACZT
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABNHQ
ABPTD
ABQNK
ABUWG
ABVGC
ABXVV
ACGFS
ACYHN
ADBBV
ADGZP
ADHKW
ADIPN
ADQBN
ADRTK
ADVEK
AEMDU
AEMQT
AENEX
AENZO
AETBJ
AEWNT
AFFZL
AFKRA
AFOFC
AFXAL
AGINJ
AGUTN
AHGBF
AHMBA
AHMMS
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALXQX
APIBT
ATGXG
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BPHCQ
BTRTY
BVXVI
C45
CCPQU
CDBKE
CITATION
DAKXR
DIK
DWQXO
E3Z
EBS
ENERS
F5P
FECEO
FLUFQ
FOEOM
FOTVD
FYUFA
GAUVT
GJXCC
GNUQQ
GUQSH
H13
HMCUK
IAO
IHR
ITC
JXSIZ
KOP
KSI
KSN
M1P
M2M
M2O
MHKGH
NOMLY
NOYVH
NU-
O9-
OAUYM
OCZFY
ODMLO
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
ROX
ROZ
RUSNO
SJN
TEORI
TJX
TR2
TWZ
UKHRP
YAYTL
YKOAZ
YXANX
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
.55
.GJ
1TH
53G
AAJQQ
AAUQX
ACFRR
ACUTJ
ACVCV
ADTOC
ADXHL
AFFNX
AGMDO
AGORE
APJGH
AQKUS
EJD
J5H
KBUDW
MBLQV
MVM
UNPAY
WOQ
X7M
ZGI
ZXP
ID FETCH-LOGICAL-c1155-80edf1bb84f256e3aae7927d29144c09c11a971cee12fdb0a744e5982f60d3a63
IEDL.DBID BENPR
ISSN 0161-8105
1550-9109
IngestDate Tue Aug 19 19:17:00 EDT 2025
Tue Oct 07 07:10:11 EDT 2025
Wed Oct 01 02:12:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_1
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1155-80edf1bb84f256e3aae7927d29144c09c11a971cee12fdb0a744e5982f60d3a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/sleep/article-pdf/46/Supplement_1/A122/50466557/zsad077.0275.pdf
PQID 3248794755
PQPubID 2046369
ParticipantIDs unpaywall_primary_10_1093_sleep_zsad077_0275
proquest_journals_3248794755
crossref_primary_10_1093_sleep_zsad077_0275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-29
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-29
  day: 29
PublicationDecade 2020
PublicationPlace Westchester
PublicationPlace_xml – name: Westchester
PublicationTitle Sleep (New York, N.Y.)
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0016493
Score 2.4167864
Snippet Introduction Motion-based wearable sensors, typically on wrist, have long been used for free-living sleep detection and quantification. However, it is hard to...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage A122
SubjectTerms Algorithms
Deep learning
Neural networks
Sensors
Sleep
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEutFAQpQX5gLiA83CcOD5G0KpCoqrULm1PkWM7C-qSrsiuUPfXM44dWDjBgWvssePnfGN_MwZ4JTWqiTZX1LKGU15aRmVWaiq0dK6aKhXaeSN_PC1OpvzDVX61BdejL4wKrPBodGno59Yu4tCNdGHamBfx8OLlcHxWp3GVMhbnaOcVOVr3616ZRIjIXcdFmP0ebBc5wvQJbE9Pz6prH-s7paWnNzqEjgs-kcGhBg38UOVmQb8rrV9I9P6qW6i772o-31BKxzuwHpvjuSg30WrZRHr9R6TH_9LeXXgYoCypfCGPYMt2j2Gv6tCM_3pHXpOBXDqc2u_B2gmS91gpCRFdZ9QpUEPO3Z9gynLghHXEEfFn5OIWDQFyhnriM_nk3jUh519mXU_8GYjtvRi9VDd2Q9bRUcml27ZIhV98MO4nMD0-unh3QsOzD1QjPM1RZ1rTpk1T8hbxmM2UskIyYZhE408nEnMpKVLU7ilrTZMowbl1cQjbIjGZKrKnMOluO_sMCBdCCZ1pk3E0Q01btqXSDCW1ULpQah_ejONaL3x0j9rfymf1MBB16N7a9dI-HI5DX4eV3tcISEvc00SOyW9_Toe_KO35v2U_gAfupXtHXGDyECbLbyv7AvHQsnkZZvYP8R8KcQ
  priority: 102
  providerName: Unpaywall
Title 0275 Deep Learning-based Sleep Detection using Torso Patch Vital Signs Improves Sleep-Wake Detection over Wrist Actigraphy
URI https://www.proquest.com/docview/3248794755
https://academic.oup.com/sleep/article-pdf/46/Supplement_1/A122/50466557/zsad077.0275.pdf
UnpaywallVersion publishedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1550-9109
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0016493
  issn: 0161-8105
  databaseCode: DIK
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1550-9109
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016493
  issn: 0161-8105
  databaseCode: 7X7
  dateStart: 20161001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1550-9109
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016493
  issn: 0161-8105
  databaseCode: BENPR
  dateStart: 20161001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BOLQXRKFVw0t7qHqh2yT22msfKpQWEAURRYWU9GSNd9ehanBCHVTBr--MHzwuVY9rex_aWc98s_MCeBcbEhNZgNJ5qZIqcp6M_chIbWIO1cSeNhyNfDYIj0fqZByMl2DQxMKwW2XDE0tGbWeG78g7JPgjOjs6CPbnN5KrRrF1tSmhgXVpBfupTDG2DCseZ8Zqwcrnw8Hw24NdIVRVGl7COTIiaFGH0ZBa3ymmzs079wXartYf2Zr3XFQ94s8Xt_kc7_7gdPpEFB2twWqNIUW_IvorWHL5Omz0c9Kfr-_Ee1F6dZbX5Rtwz1OIA5pU1KlUJ5IllxXnvBJ6syidsXLBHvATcTEjBC6GxKCvxHcuKCLOf07yQlSXD66ouslL_OWe9GU_UHHJ_EL06UmVBfs1jI4OL74cy7regjSECwMSVs5mvTSNVEZAyPmITseetl5MWpfpxvQVxrpHYrXnZTbtolbKcQLALOxaH0P_DbTyWe7eglBaoza-sb4i_c9mURah8ain0WhCxDbsNVubzKu0GkllDveTkhBJTYiEd6kN283uJ_UvViSPB6INHx4o8h-jbf57tC14ySXl2UPAi7ehtfh963YIeCzSXVjWY71bnylqHXw9pdZoMOz_-At8st2W
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PU9QwFH-DcMCLo6LjCmoO6kXjdpO0aQ6MswrMIrDDyCLcapqkK-PaXe0yzPLh_Gy-tCngxfHCtW3Sznuv7_de3j-Al8ogTBSxpo7lgorUMap4aqg0ypdq6p40vhr5YJgMjsWn0_h0CX63tTA-rbLVibWitlPjz8i7CPwpyo6M4_ezn9RPjfLR1XaEhg6jFexm3WIsFHbsucUFunDV5u4W8vsVYzvbo48DGqYMUIPWUIwq2tmil-epKBD-HdfaScWkZQp9DRMpfEor2UMw6bHC5pGWQjjf9q5IIst1wnHfO7AiuFDo_K182B4efr6KYySiafuLdhVN0ZQJZTuR4t1q4tyse1lpG0n5zkcP_4bGa3t39byc6cWFnkxuQN_OfbgXbFbSb4TsASy58iGs9Uv0138syGtSZ5HWx_NrcOlfQbbwpSS0bh1Tj5SWHPkvwTvzOvmrJD7jfkxGU7T4ySECwjfyxQ8wIUdn47IizWGHq5pl9ER_dzfW-rxTcuL1E-njlabr9iM4vhXKP4blclq6J0CElFoabiwX6G_aIi1SbRiuNFKbROsOvGlJm82aNh5ZE37nWc2ILDAi81TqwEZL_Sz80lV2LYAdeHvFkf_Y7em_d3sBq4PRwX62vzvcW4e7fpy9z05gagOW57_O3TM0eub58yBZBL7etjD_AZaMFqM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEutFAQpQX5gLiA83CcOD5G0KpCoqrULm1PkWM7C-qSrsiuUPfXM44dWDjBgWvssePnfGN_MwZ4JTWqiTZX1LKGU15aRmVWaiq0dK6aKhXaeSN_PC1OpvzDVX61BdejL4wKrPBodGno59Yu4tCNdGHamBfx8OLlcHxWp3GVMhbnaOcVOVr3616ZRIjIXcdFmP0ebBc5wvQJbE9Pz6prH-s7paWnNzqEjgs-kcGhBg38UOVmQb8rrV9I9P6qW6i772o-31BKxzuwHpvjuSg30WrZRHr9R6TH_9LeXXgYoCypfCGPYMt2j2Gv6tCM_3pHXpOBXDqc2u_B2gmS91gpCRFdZ9QpUEPO3Z9gynLghHXEEfFn5OIWDQFyhnriM_nk3jUh519mXU_8GYjtvRi9VDd2Q9bRUcml27ZIhV98MO4nMD0-unh3QsOzD1QjPM1RZ1rTpk1T8hbxmM2UskIyYZhE408nEnMpKVLU7ilrTZMowbl1cQjbIjGZKrKnMOluO_sMCBdCCZ1pk3E0Q01btqXSDCW1ULpQah_ejONaL3x0j9rfymf1MBB16N7a9dI-HI5DX4eV3tcISEvc00SOyW9_Toe_KO35v2U_gAfupXtHXGDyECbLbyv7AvHQsnkZZvYP8R8KcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=0275+Deep+Learning-based+Sleep+Detection+using+Torso+Patch+Vital+Signs+Improves+Sleep-Wake+Detection+over+Wrist+Actigraphy&rft.jtitle=Sleep+%28New+York%2C+N.Y.%29&rft.au=Pipke%2C+Matt&rft.au=Srilakshmi+Alla&rft.au=Sekaric%2C+Jadranka&rft.au=Richards%2C+Dylan&rft.date=2023-05-29&rft.pub=Oxford+University+Press&rft.issn=0161-8105&rft.eissn=1550-9109&rft.volume=46&rft.spage=A122&rft_id=info:doi/10.1093%2Fsleep%2Fzsad077.0275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-8105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-8105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-8105&client=summon