ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions
Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorith...
Saved in:
Published in | Advances in computational intelligence Vol. 4; no. 3; p. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2730-7794 2730-7808 |
DOI | 10.1007/s43674-024-00077-3 |
Cover
Abstract | Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorithm to deal with single and multiple objective problems. This research paper presents a novel population-based, metaheuristic bio-inspired optimization algorithm. The algorithm contrived the propagation concept of antibiotic-resistant bacteria named as antibiotic-resistant bacteria propagation (ARBP) algorithm where properties of bacteria to acquire antibiotic resistance over time are used as a base concept. The optimization algorithm imitates the two prime mechanisms of horizontal gene transfer—Conjugation Gene Transfer Mechanism (CGTM) and Transformation Gene Transfer Mechanism (TGTM) to propagate antibiotic-resistant bacteria. CGTM and TGTM are used to explore the search space to handle single and multiple objective optimization problems. Conjugation mechanism is used for exploration of search space and exploitation concept is driven by transformation mechanism. The efficiency and importance of the ARBP algorithm are validated on varying classical and complex benchmark functions. An extensive comparative study is performed to detail the effectiveness of ARBP over other well-known swarm and evolutionary algorithms. This comparative analysis clearly depicts that the performance of ARBP is superior in terms of finding a better solution with high convergence as compared to other considered algorithms. |
---|---|
AbstractList | Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorithm to deal with single and multiple objective problems. This research paper presents a novel population-based, metaheuristic bio-inspired optimization algorithm. The algorithm contrived the propagation concept of antibiotic-resistant bacteria named as antibiotic-resistant bacteria propagation (ARBP) algorithm where properties of bacteria to acquire antibiotic resistance over time are used as a base concept. The optimization algorithm imitates the two prime mechanisms of horizontal gene transfer—Conjugation Gene Transfer Mechanism (CGTM) and Transformation Gene Transfer Mechanism (TGTM) to propagate antibiotic-resistant bacteria. CGTM and TGTM are used to explore the search space to handle single and multiple objective optimization problems. Conjugation mechanism is used for exploration of search space and exploitation concept is driven by transformation mechanism. The efficiency and importance of the ARBP algorithm are validated on varying classical and complex benchmark functions. An extensive comparative study is performed to detail the effectiveness of ARBP over other well-known swarm and evolutionary algorithms. This comparative analysis clearly depicts that the performance of ARBP is superior in terms of finding a better solution with high convergence as compared to other considered algorithms. |
ArticleNumber | 10 |
Author | Aggarwal, Kirti Arora, Anuja |
Author_xml | – sequence: 1 givenname: Kirti surname: Aggarwal fullname: Aggarwal, Kirti email: aggarwalkirti25@gmail.com organization: Department of CSE and IT, Jaypee Institute of Information Technology – sequence: 2 givenname: Anuja orcidid: 0000-0001-5215-1300 surname: Arora fullname: Arora, Anuja organization: Department of CSE and IT, Jaypee Institute of Information Technology |
BookMark | eNp9kM1OAyEUhYmpiVX7Aq5IXKMXGKDjrjb-JU00RteEYZiW2jJTmC58e6mjceeCwCXfOffknKJRaIND6ILCFQVQ16ngUhUEWD55VoQfoTFTHIiawnT0-1ZlcYImKa0zxBQFxtgY7Wavty832ITeV77tvSXRJZ_6_IErY3sXvcFdbDuzNL1vA84U8SF1Proam82yjb5fbbNBjX2fcOdi08atCdbhA-2CXW1N_MDNPtiDQTpHx43ZJDf5uc_Q-_3d2_yRLJ4fnuazBbGUCk4aUzApypKCqmgJhTJMOseAC6gaBq4xwCRIKxsB3EomWD0tRMVrwYSi0vEzdDn45vS7vUu9Xrf7GPJKzSlQXjJVyEyxgbKxTSm6RnfR58CfmoI-tKuHdnVuV3-3q3kW8UGUMhyWLv5Z_6P6AuIifr0 |
Cites_doi | 10.1080/0951192X.2014.1002810 10.1016/j.swevo.2013.11.003 10.1016/j.swevo.2011.06.001 10.1016/j.swevo.2013.04.001 10.1016/j.swevo.2013.11.001 10.1108/02644401211235834 10.1016/j.swevo.2011.06.003 10.1016/j.eswa.2010.02.009 10.1016/j.swevo.2014.01.003 10.1016/j.rcim.2012.04.006 10.1109/TEVC.2010.2059031 10.1504/ijcse.2011.041221 10.1016/j.ejor.2008.07.025 10.1016/j.ecoinf.2006.07.003 10.1016/j.eswa.2011.04.126 10.1016/j.swevo.2012.12.001 10.1016/j.ins.2012.09.012 10.1016/j.plasmid.2015.01.001 10.1016/j.swevo.2012.11.003 10.1128/mmbr.67.2.277-301.2003 10.1007/s12559-015-9370-8 10.1016/j.asoc.2011.10.015 10.1007/s00521-019-04452-x 10.1016/j.swevo.2013.04.003 10.1007/978-3-540-72950-1_77 10.1016/j.apm.2010.01.002 10.1016/j.swevo.2013.02.003 10.1016/j.swevo.2011.12.002 10.2307/24939139 10.1137/1.9781611975604 10.1023/A:1008202821328 10.1016/j.ins.2009.03.004 10.1016/j.ins.2012.08.023 10.1016/j.swevo.2011.07.001 10.1093/bmb/ldv041 10.1109/MCS.2002.1004010 10.1016/j.apm.2013.05.002 10.1109/4235.585893 10.1109/MCI.2006.329691 10.1016/S0031-3203(01)00136-4 10.1016/j.advengsoft.2016.01.008 10.1109/ICNN.1995.488968 10.1109/TSMCA.2009.2012436 10.1145/2480741.2480752 10.1038/sj.bjp.0707607 10.1016/S0167-8655(98)00025-7 10.1016/j.swevo.2015.05.002 10.1371/journal.pone.0001055 10.1007/s00707-009-0270-4 10.1016/j.swevo.2013.02.002 10.1007/s11831-018-9289-9 10.1016/B978-1-4557-4801-3.00018-7 10.1007/11543138_2 10.1038/s41598-017-09499-1 10.3390/life3040518 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s43674-024-00077-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 2730-7808 |
ExternalDocumentID | 10_1007_s43674_024_00077_3 |
GroupedDBID | 0R~ 406 88I AACDK AAFHI AAJBT AASML AATNV AAUYE ABAKF ABJNI ABTEG ABTKH ABUWG ACAOD ACDTI ACHSB ACPIV ACYDH ACZOJ ADTPH AEFQL AEMSY AESKC AFBBN AFKRA AGMZJ AGQEE AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS AZQEC BENPR BGLVJ CCPQU DPUIP DWQXO EBLON EBS FIGPU GNUQQ HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM M2P NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK ABRTQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c1153-fa426599107b19047a26ee20350bf20efa02606c6f503c6252d845b3d525716e3 |
IEDL.DBID | 8FG |
ISSN | 2730-7794 |
IngestDate | Tue Sep 02 03:25:53 EDT 2025 Tue Jul 01 01:37:59 EDT 2025 Fri Feb 21 02:42:11 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Metaheuristic Optimization algorithm Antibiotic-resistant bacteria Evolutionary algorithm Bio-inspired algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1153-fa426599107b19047a26ee20350bf20efa02606c6f503c6252d845b3d525716e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5215-1300 |
PQID | 3101392746 |
PQPubID | 6623282 |
ParticipantIDs | proquest_journals_3101392746 crossref_primary_10_1007_s43674_024_00077_3 springer_journals_10_1007_s43674_024_00077_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Salerno |
PublicationTitle | Advances in computational intelligence |
PublicationTitleAbbrev | Adv. in Comp. Int |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | FisterIYangXSBrestJFisterDA brief review of nature-inspired algorithms for optimizationElektrotehniski Vestnik/electrotechnical Rev2013803116122 TanKCChiamSCMamunAAGohCKBalancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimizationEur J Oper Res2009197270171310.1016/j.ejor.2008.07.025 NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evol Comput20141611810.1016/j.swevo.2013.11.003 GrohmannEMuthGEspinosaMConjugative plasmid transfer in Gram-Positive bacteriaMicrobiol Mol Biol Rev200367227730110.1128/mmbr.67.2.277-301.2003 Griffiths AJF (2000) Tetrad—an introduction to genetic analysis. NCBI Bookshelf, 860. https://www.ncbi.nlm.nih.gov/books/NBK21878/def-item/A5444/. Accessed Mar 2020 Koza JR (1992) Genetic programming: on the programming of computers. Means of natural selection LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput201524112410.1016/j.swevo.2015.05.002 StornRPriceKDifferential evolution - a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:1008202821328 LiuHCHuangJSPattern recognition using evolution algorithms with fast simulated annealingPattern Recogn Lett1998195–640341310.1016/S0167-8655(98)00025-7 ManikandanPRamyachitraDBacterial foraging optimization–genetic algorithm for multiple sequence alignment with multi-objectivesSci Rep20177111410.1038/s41598-017-09499-1 BeheshtiZShamsuddinSMHA review of population-based meta-heuristic algorithm GPUMLib: deep learning SOM library for surface reconstruction view project web caching view project a review of population-based Meta-Heuristic algorithmInt J Adv Soft Comput Appl201351135 SiddiqueNAdeliHNature inspired computing: an overview and some future directionsCogn Comput20157670671410.1007/s12559-015-9370-8 BinithaSSathyaSSA survey of bio inspired optimization algorithmsInt J Soft Comput Eng (IJSCE)201222137151 DraaABouazizAAn artificial bee colony algorithm for image contrast enhancementSwarm Evol Comput201416698410.1016/j.swevo.2014.01.003 LudwigSAMemetic algorithms applied to the optimization of workflow compositionsSwarm Evol Comput201310314010.1016/j.swevo.2012.12.001 PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200210.1109/MCS.2002.1004010 AhnCWPractical genetic algorithmsStud Comput Intell200610.1007/11543138_2 RashediENezamabadi-PourHSaryazdiSGSA: a gravitational search algorithmInf Sci2009179132232224810.1016/j.ins.2009.03.004 SuganthanPNStructural pattern recognition using genetic algorithmsPattern Recogn20023591883189310.1016/S0031-3203(01)00136-4 SaraswatMAryaKVSharmaHLeukocyte segmentation in tissue images using differential evolution algorithmSwarm Evol Comput201311465410.1016/j.swevo.2013.02.003 GoldansazSMJolaiFZahedi AnarakiAHA hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shopAppl Math Model2013372396039616311748110.1016/j.apm.2013.05.002 YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput (swansea, Wales)201229546448310.1108/02644401211235834 SenthilnathJOmkarSNManiVClustering using firefly algorithm: performance studySwarm Evol Comput20111316417110.1016/j.swevo.2011.06.003 DhalKGRaySDasADasSA survey on nature-inspired optimization algorithms and their application in image enhancement domainArch Comput Methods Eng2019401928910.1007/s11831-018-9289-9 SureshKKumarappanNHybrid improved binary particle swarm optimization approach for generation maintenance scheduling problemSwarm Evol Comput20139698910.1016/j.swevo.2012.11.003 GaraiGChaudhuriiBBA novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognitionInf Sci2013221284810.1016/j.ins.2012.09.012 Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley SundarSSinghAA swarm intelligence approach to the early/tardy scheduling problemSwarm Evol Comput20124253210.1016/j.swevo.2011.12.002 DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/MCI.2006.329691 Meysam MousaviSTavakkoli-MoghaddamRVahdaniBHashemiHSanjariMJA new support vector model-based imperialist competitive algorithm for time estimation in new product development projectsRobot Comput-Integr Manuf201329115716810.1016/j.rcim.2012.04.006 LayeghJJolaiFA memetic algorithm for minimizing the total weighted completion time on a single machine under linear deteriorationAppl Math Model2010341029102925265161210.1016/j.apm.2010.01.002 SoltaniRJolaiFZandiehMTwo robust meta-heuristics for scheduling multiple job classes on a single machine with multiple criteriaExpert Syst Appl20103785951595910.1016/j.eswa.2010.02.009 DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201015143110.1109/TEVC.2010.2059031 FallSMercierABertollaFCalteauAGueguenLPerrièreGVogelTMSimonetPHorizontal gene transfer regulation in bacteria as a “Spandrel” of DNA repair mechanismsPLoS ONE200710.1371/journal.pone.0001055 AzadehASeifJSheikhalishahiMYazdaniMAn integrated support vector regression-imperialist competitive algorithm for reliability estimation of a shearing machineInt J Comput Integr Manuf2016291162410.1080/0951192X.2014.1002810 Čech M, Lampa M, Vilamová Š (2014) Ecology inspired optimization: Survey on recent and possible applications in metallurgy and proposal of taxonomy revision. METAL 2014 - 23rd international conference on metallurgy and materials, conference proceedings, pp 1635–1639 RechenbergISimulationsmethoden in der Medizin und Biologie1978Berlin, HeidelbergSpringer ChenJXinBPengZDouLZhangJOptimal contraction theorem for exploration-exploitation tradeoff in search and optimizationIEEE Trans Syst Man Cybern Part A Syst Hum200939368069110.1109/TSMCA.2009.2012436 ArivudainambiDRekhaDMemetic algorithm for minimum energy broadcast problem in wireless ad hoc networksSwarm Evol Comput201312576410.1016/j.swevo.2013.04.001 Gill PE, Murray W, Wright MH (2019) Practical optimization. Society for industrial and applied mathematics. https://epubs.siam.org/doi/abs/10.1137/1.9781611975604.fm HatamlouABlack hole: a new heuristic optimization approach for data clusteringInf Sci2013222175184299850710.1016/j.ins.2012.08.023 HofmannJLimmerSFeyDPerformance investigations of genetic algorithms on graphics cardsSwarm Evol Comput201312334710.1016/j.swevo.2013.04.003 YangXSNature-inspired optimization algorithms2014AmsterdamElsevier FornarelliGGiaquintoAAn unsupervised multi-swarm clustering technique for image segmentationSwarm Evol Comput201311314510.1016/j.swevo.2013.02.002 HollandJHGenetic algorithmsJSTOR19922671667310.2307/24939139 ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput Appl201910.1007/s00521-019-04452-x Yang XS, Deb S (2010) Cuckoo search via levy flights. Ieeexplore. IEEE.Org, 210–214. https://ieeexplore.ieee.org/abstract/document/5393690/. Accessed Mar 2020 Dalwani S, Agarwal A (2018) Review on classification of nature inspired approach. Int J Comput Math Sci HosseiniHSPrincipal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisationInt J Comput Sci Eng201161/213210.1504/ijcse.2011.041221 MehrabianARLucasCA novel numerical optimization algorithm inspired from weed colonizationEco Inform20061435536610.1016/j.ecoinf.2006.07.003 DasSBiswasADasguptaSAbrahamABacterial foraging optimization algorithm: theoretical foundations, analysis, and applicationsFoundations of computational intelligence2009Berlin, HeidelbergSpringer2355 CrepinsekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv201345313310.1145/2480741.2480752 Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 4529 LNAI, 789–798. https://doi.org/10.1007/978-3-540-72950-1_77 ChangdarCMahapatraGSKumar PalRAn efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzzinessSwarm Evol Comput201415273710.1016/j.swevo.2013.11.001 KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-4 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp 1942–1948). IEEE BehnamianJFatemi GhomiSMTJolaiFAmirtaheriOMinimizing makespan on a three-machine flowshop batch scheduling problem with transportation using genetic algorithmAppl Soft Comput J201212276877710.1016/j.asoc.2011.10.015 MalviyaRPratiharDKTuning of neural networks using particle swarm optimization to model MIG welding processSwarm Evol Comput20111422323510.1016/j.swevo.2011.07.001 MirjaliliSLewisAThe Whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199710.1109/4235.585893 Opal SM, Pop-Vicas A (2015) Molecular mechanisms of antibiotic resistance in bacteria. In: Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. WB Saunders, pp 235–251 Actor JK (2011) Elsevier’s integrated review. Immunology and microbiology Brown-JaqueMCalero-CáceresWMuniesaMTransfer of antibiotic-resistance genes via phage-related mobile elementsPlasmid2015791710.1016/j.plasmid.2015.01.001 BennettPMPlasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteriaBr J Pharmacol2008153SUPPL. 1S347S35710.1038/sj.bjp.0707607 Jheeta S (2013) Horizontal gene transfer and its part in the reorganisation of genetics during the LUCA epoch. In Life (Vol. 3, Issue 4, 77_CR40 A Draa (77_CR21) 2014; 16 J Chen (77_CR14) 2009; 39 S Sundar (77_CR64) 2012; 4 AR Mehrabian (77_CR48) 2006; 1 A Azadeh (77_CR5) 2016; 29 KG Dhal (77_CR19) 2019 J Hofmann (77_CR32) 2013; 12 S Mirjalili (77_CR50) 2016; 95 W Zhao (77_CR71) 2019 B Alatas (77_CR3) 2011; 38 S Das (77_CR17) 2010; 15 N Sabtu (77_CR57) 2015; 116 E Rashedi (77_CR55) 2009; 179 D Arivudainambi (77_CR4) 2013; 12 SA Ludwig (77_CR43) 2013; 10 HC Liu (77_CR42) 1998; 19 G Garai (77_CR25) 2013; 221 KC Tan (77_CR66) 2009; 197 XS Yang (77_CR68) 2014 Z Beheshti (77_CR6) 2013; 5 R Storn (77_CR62) 1997; 11 J Layegh (77_CR41) 2010; 34 77_CR37 S Das (77_CR18) 2009 77_CR36 I Fister (77_CR23) 2013; 80 A Hatamlou (77_CR31) 2013; 222 SJ Nanda (77_CR51) 2014; 16 77_CR39 J Senthilnath (77_CR59) 2011; 1 SM Goldansaz (77_CR27) 2013; 37 J Behnamian (77_CR7) 2012; 12 P Manikandan (77_CR47) 2017; 7 R Panda (77_CR53) 2011; 1 M Brown-Jaque (77_CR11) 2015; 79 77_CR1 PN Suganthan (77_CR63) 2002; 35 I Rechenberg (77_CR56) 1978 PM Bennett (77_CR9) 2008; 153 S Binitha (77_CR10) 2012; 2 JH Holland (77_CR33) 1992; 267 M Saraswat (77_CR58) 2013; 11 77_CR26 N Lynn (77_CR44) 2015; 24 77_CR69 K Suresh (77_CR65) 2013; 9 KM Passino (77_CR54) 2002 DH Wolpert (77_CR67) 1997 77_CR29 77_CR28 77_CR52 R Soltani (77_CR61) 2010; 37 77_CR12 HS Hosseini (77_CR34) 2011; 6 R Malviya (77_CR46) 2011; 1 S Meysam Mousavi (77_CR49) 2013; 29 M Dorigo (77_CR20) 2006; 1 G Fornarelli (77_CR24) 2013; 11 M Crepinsek (77_CR15) 2013; 45 N Siddique (77_CR60) 2015; 7 XS Yang (77_CR70) 2012; 29 S Fall (77_CR22) 2007 E Grohmann (77_CR30) 2003; 67 77_CR16 CW Ahn (77_CR2) 2006 C Changdar (77_CR13) 2014; 15 A Kaveh (77_CR38) 2010; 213 |
References_xml | – reference: LudwigSAMemetic algorithms applied to the optimization of workflow compositionsSwarm Evol Comput201310314010.1016/j.swevo.2012.12.001 – reference: Koza JR (1992) Genetic programming: on the programming of computers. Means of natural selection – reference: BennettPMPlasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteriaBr J Pharmacol2008153SUPPL. 1S347S35710.1038/sj.bjp.0707607 – reference: HatamlouABlack hole: a new heuristic optimization approach for data clusteringInf Sci2013222175184299850710.1016/j.ins.2012.08.023 – reference: HollandJHGenetic algorithmsJSTOR19922671667310.2307/24939139 – reference: HofmannJLimmerSFeyDPerformance investigations of genetic algorithms on graphics cardsSwarm Evol Comput201312334710.1016/j.swevo.2013.04.003 – reference: BehnamianJFatemi GhomiSMTJolaiFAmirtaheriOMinimizing makespan on a three-machine flowshop batch scheduling problem with transportation using genetic algorithmAppl Soft Comput J201212276877710.1016/j.asoc.2011.10.015 – reference: RashediENezamabadi-PourHSaryazdiSGSA: a gravitational search algorithmInf Sci2009179132232224810.1016/j.ins.2009.03.004 – reference: SabtuNEnochDABrownNMAntibiotic resistance: what, why, where, when and how?Br Med Bull2015116110511310.1093/bmb/ldv041 – reference: GrohmannEMuthGEspinosaMConjugative plasmid transfer in Gram-Positive bacteriaMicrobiol Mol Biol Rev200367227730110.1128/mmbr.67.2.277-301.2003 – reference: LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput201524112410.1016/j.swevo.2015.05.002 – reference: Jheeta S (2013) Horizontal gene transfer and its part in the reorganisation of genetics during the LUCA epoch. In Life (Vol. 3, Issue 4, pp 518–523). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/life3040518 – reference: SuganthanPNStructural pattern recognition using genetic algorithmsPattern Recogn20023591883189310.1016/S0031-3203(01)00136-4 – reference: StornRPriceKDifferential evolution - a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:1008202821328 – reference: Brown-JaqueMCalero-CáceresWMuniesaMTransfer of antibiotic-resistance genes via phage-related mobile elementsPlasmid2015791710.1016/j.plasmid.2015.01.001 – reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201015143110.1109/TEVC.2010.2059031 – reference: ChangdarCMahapatraGSKumar PalRAn efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzzinessSwarm Evol Comput201415273710.1016/j.swevo.2013.11.001 – reference: LayeghJJolaiFA memetic algorithm for minimizing the total weighted completion time on a single machine under linear deteriorationAppl Math Model2010341029102925265161210.1016/j.apm.2010.01.002 – reference: MirjaliliSLewisAThe Whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 – reference: PandaRNaikMKPanigrahiBKFace recognition using bacterial foraging strategySwarm Evol Comput20111313814610.1016/j.swevo.2011.06.001 – reference: PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200210.1109/MCS.2002.1004010 – reference: BinithaSSathyaSSA survey of bio inspired optimization algorithmsInt J Soft Comput Eng (IJSCE)201222137151 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp 1942–1948). IEEE – reference: ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput Appl201910.1007/s00521-019-04452-x – reference: YangXSNature-inspired optimization algorithms2014AmsterdamElsevier – reference: FallSMercierABertollaFCalteauAGueguenLPerrièreGVogelTMSimonetPHorizontal gene transfer regulation in bacteria as a “Spandrel” of DNA repair mechanismsPLoS ONE200710.1371/journal.pone.0001055 – reference: AzadehASeifJSheikhalishahiMYazdaniMAn integrated support vector regression-imperialist competitive algorithm for reliability estimation of a shearing machineInt J Comput Integr Manuf2016291162410.1080/0951192X.2014.1002810 – reference: Yang XS, Deb S (2010) Cuckoo search via levy flights. Ieeexplore. IEEE.Org, 210–214. https://ieeexplore.ieee.org/abstract/document/5393690/. Accessed Mar 2020 – reference: SiddiqueNAdeliHNature inspired computing: an overview and some future directionsCogn Comput20157670671410.1007/s12559-015-9370-8 – reference: AhnCWPractical genetic algorithmsStud Comput Intell200610.1007/11543138_2 – reference: LiuHCHuangJSPattern recognition using evolution algorithms with fast simulated annealingPattern Recogn Lett1998195–640341310.1016/S0167-8655(98)00025-7 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199710.1109/4235.585893 – reference: TanKCChiamSCMamunAAGohCKBalancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimizationEur J Oper Res2009197270171310.1016/j.ejor.2008.07.025 – reference: ChenJXinBPengZDouLZhangJOptimal contraction theorem for exploration-exploitation tradeoff in search and optimizationIEEE Trans Syst Man Cybern Part A Syst Hum200939368069110.1109/TSMCA.2009.2012436 – reference: FornarelliGGiaquintoAAn unsupervised multi-swarm clustering technique for image segmentationSwarm Evol Comput201311314510.1016/j.swevo.2013.02.002 – reference: Meysam MousaviSTavakkoli-MoghaddamRVahdaniBHashemiHSanjariMJA new support vector model-based imperialist competitive algorithm for time estimation in new product development projectsRobot Comput-Integr Manuf201329115716810.1016/j.rcim.2012.04.006 – reference: Čech M, Lampa M, Vilamová Š (2014) Ecology inspired optimization: Survey on recent and possible applications in metallurgy and proposal of taxonomy revision. METAL 2014 - 23rd international conference on metallurgy and materials, conference proceedings, pp 1635–1639 – reference: GoldansazSMJolaiFZahedi AnarakiAHA hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shopAppl Math Model2013372396039616311748110.1016/j.apm.2013.05.002 – reference: NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evol Comput20141611810.1016/j.swevo.2013.11.003 – reference: BeheshtiZShamsuddinSMHA review of population-based meta-heuristic algorithm GPUMLib: deep learning SOM library for surface reconstruction view project web caching view project a review of population-based Meta-Heuristic algorithmInt J Adv Soft Comput Appl201351135 – reference: MehrabianARLucasCA novel numerical optimization algorithm inspired from weed colonizationEco Inform20061435536610.1016/j.ecoinf.2006.07.003 – reference: SureshKKumarappanNHybrid improved binary particle swarm optimization approach for generation maintenance scheduling problemSwarm Evol Comput20139698910.1016/j.swevo.2012.11.003 – reference: ManikandanPRamyachitraDBacterial foraging optimization–genetic algorithm for multiple sequence alignment with multi-objectivesSci Rep20177111410.1038/s41598-017-09499-1 – reference: Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley – reference: GaraiGChaudhuriiBBA novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognitionInf Sci2013221284810.1016/j.ins.2012.09.012 – reference: YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput (swansea, Wales)201229546448310.1108/02644401211235834 – reference: RechenbergISimulationsmethoden in der Medizin und Biologie1978Berlin, HeidelbergSpringer – reference: SaraswatMAryaKVSharmaHLeukocyte segmentation in tissue images using differential evolution algorithmSwarm Evol Comput201311465410.1016/j.swevo.2013.02.003 – reference: Opal SM, Pop-Vicas A (2015) Molecular mechanisms of antibiotic resistance in bacteria. In: Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. WB Saunders, pp 235–251 – reference: AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126 – reference: Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 4529 LNAI, 789–798. https://doi.org/10.1007/978-3-540-72950-1_77 – reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/MCI.2006.329691 – reference: SenthilnathJOmkarSNManiVClustering using firefly algorithm: performance studySwarm Evol Comput20111316417110.1016/j.swevo.2011.06.003 – reference: ArivudainambiDRekhaDMemetic algorithm for minimum energy broadcast problem in wireless ad hoc networksSwarm Evol Comput201312576410.1016/j.swevo.2013.04.001 – reference: DhalKGRaySDasADasSA survey on nature-inspired optimization algorithms and their application in image enhancement domainArch Comput Methods Eng2019401928910.1007/s11831-018-9289-9 – reference: Gill PE, Murray W, Wright MH (2019) Practical optimization. Society for industrial and applied mathematics. https://epubs.siam.org/doi/abs/10.1137/1.9781611975604.fm – reference: HosseiniHSPrincipal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisationInt J Comput Sci Eng201161/213210.1504/ijcse.2011.041221 – reference: FisterIYangXSBrestJFisterDA brief review of nature-inspired algorithms for optimizationElektrotehniski Vestnik/electrotechnical Rev2013803116122 – reference: Griffiths AJF (2000) Tetrad—an introduction to genetic analysis. NCBI Bookshelf, 860. https://www.ncbi.nlm.nih.gov/books/NBK21878/def-item/A5444/. Accessed Mar 2020 – reference: MalviyaRPratiharDKTuning of neural networks using particle swarm optimization to model MIG welding processSwarm Evol Comput20111422323510.1016/j.swevo.2011.07.001 – reference: Dalwani S, Agarwal A (2018) Review on classification of nature inspired approach. Int J Comput Math Sci – reference: SundarSSinghAA swarm intelligence approach to the early/tardy scheduling problemSwarm Evol Comput20124253210.1016/j.swevo.2011.12.002 – reference: CrepinsekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv201345313310.1145/2480741.2480752 – reference: DraaABouazizAAn artificial bee colony algorithm for image contrast enhancementSwarm Evol Comput201416698410.1016/j.swevo.2014.01.003 – reference: Actor JK (2011) Elsevier’s integrated review. Immunology and microbiology – reference: SoltaniRJolaiFZandiehMTwo robust meta-heuristics for scheduling multiple job classes on a single machine with multiple criteriaExpert Syst Appl20103785951595910.1016/j.eswa.2010.02.009 – reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-4 – reference: DasSBiswasADasguptaSAbrahamABacterial foraging optimization algorithm: theoretical foundations, analysis, and applicationsFoundations of computational intelligence2009Berlin, HeidelbergSpringer2355 – volume: 29 start-page: 16 issue: 1 year: 2016 ident: 77_CR5 publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2014.1002810 – volume: 16 start-page: 1 year: 2014 ident: 77_CR51 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.11.003 – volume: 1 start-page: 138 issue: 3 year: 2011 ident: 77_CR53 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.06.001 – volume: 12 start-page: 57 year: 2013 ident: 77_CR4 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.04.001 – volume: 15 start-page: 27 year: 2014 ident: 77_CR13 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.11.001 – volume: 29 start-page: 464 issue: 5 year: 2012 ident: 77_CR70 publication-title: Eng Comput (swansea, Wales) doi: 10.1108/02644401211235834 – volume: 1 start-page: 164 issue: 3 year: 2011 ident: 77_CR59 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.06.003 – ident: 77_CR40 – volume: 37 start-page: 5951 issue: 8 year: 2010 ident: 77_CR61 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.02.009 – ident: 77_CR29 – volume: 16 start-page: 69 year: 2014 ident: 77_CR21 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2014.01.003 – volume: 29 start-page: 157 issue: 1 year: 2013 ident: 77_CR49 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2012.04.006 – volume: 15 start-page: 4 issue: 1 year: 2010 ident: 77_CR17 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2010.2059031 – ident: 77_CR1 – ident: 77_CR16 – volume: 6 start-page: 132 issue: 1/2 year: 2011 ident: 77_CR34 publication-title: Int J Comput Sci Eng doi: 10.1504/ijcse.2011.041221 – volume: 2 start-page: 137 issue: 2 year: 2012 ident: 77_CR10 publication-title: Int J Soft Comput Eng (IJSCE) – volume: 197 start-page: 701 issue: 2 year: 2009 ident: 77_CR66 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2008.07.025 – ident: 77_CR12 – volume: 1 start-page: 355 issue: 4 year: 2006 ident: 77_CR48 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2006.07.003 – volume: 38 start-page: 13170 issue: 10 year: 2011 ident: 77_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.126 – volume: 10 start-page: 31 year: 2013 ident: 77_CR43 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.12.001 – volume: 221 start-page: 28 year: 2013 ident: 77_CR25 publication-title: Inf Sci doi: 10.1016/j.ins.2012.09.012 – volume: 79 start-page: 1 year: 2015 ident: 77_CR11 publication-title: Plasmid doi: 10.1016/j.plasmid.2015.01.001 – volume: 9 start-page: 69 year: 2013 ident: 77_CR65 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2012.11.003 – volume: 67 start-page: 277 issue: 2 year: 2003 ident: 77_CR30 publication-title: Microbiol Mol Biol Rev doi: 10.1128/mmbr.67.2.277-301.2003 – volume: 7 start-page: 706 issue: 6 year: 2015 ident: 77_CR60 publication-title: Cogn Comput doi: 10.1007/s12559-015-9370-8 – volume: 12 start-page: 768 issue: 2 year: 2012 ident: 77_CR7 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2011.10.015 – year: 2019 ident: 77_CR71 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04452-x – volume: 12 start-page: 33 year: 2013 ident: 77_CR32 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.04.003 – ident: 77_CR37 doi: 10.1007/978-3-540-72950-1_77 – volume: 34 start-page: 2910 issue: 10 year: 2010 ident: 77_CR41 publication-title: Appl Math Model doi: 10.1016/j.apm.2010.01.002 – volume: 11 start-page: 46 year: 2013 ident: 77_CR58 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.02.003 – volume: 4 start-page: 25 year: 2012 ident: 77_CR64 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.12.002 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 77_CR33 publication-title: JSTOR doi: 10.2307/24939139 – start-page: 23 volume-title: Foundations of computational intelligence year: 2009 ident: 77_CR18 – ident: 77_CR26 doi: 10.1137/1.9781611975604 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 77_CR62 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 77_CR55 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume-title: Nature-inspired optimization algorithms year: 2014 ident: 77_CR68 – volume: 222 start-page: 175 year: 2013 ident: 77_CR31 publication-title: Inf Sci doi: 10.1016/j.ins.2012.08.023 – volume: 1 start-page: 223 issue: 4 year: 2011 ident: 77_CR46 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.07.001 – volume: 116 start-page: 105 issue: 1 year: 2015 ident: 77_CR57 publication-title: Br Med Bull doi: 10.1093/bmb/ldv041 – year: 2002 ident: 77_CR54 publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2002.1004010 – ident: 77_CR69 – volume: 37 start-page: 9603 issue: 23 year: 2013 ident: 77_CR27 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.05.002 – year: 1997 ident: 77_CR67 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 77_CR20 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – volume: 35 start-page: 1883 issue: 9 year: 2002 ident: 77_CR63 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00136-4 – volume: 95 start-page: 51 year: 2016 ident: 77_CR50 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 77_CR39 doi: 10.1109/ICNN.1995.488968 – volume: 39 start-page: 680 issue: 3 year: 2009 ident: 77_CR14 publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum doi: 10.1109/TSMCA.2009.2012436 – volume: 5 start-page: 1 issue: 1 year: 2013 ident: 77_CR6 publication-title: Int J Adv Soft Comput Appl – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 77_CR15 publication-title: ACM Comput Surv doi: 10.1145/2480741.2480752 – volume: 153 start-page: S347 issue: SUPPL. 1 year: 2008 ident: 77_CR9 publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0707607 – volume: 19 start-page: 403 issue: 5–6 year: 1998 ident: 77_CR42 publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(98)00025-7 – volume: 24 start-page: 11 year: 2015 ident: 77_CR44 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2015.05.002 – year: 2007 ident: 77_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0001055 – volume: 213 start-page: 267 issue: 3–4 year: 2010 ident: 77_CR38 publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume: 11 start-page: 31 year: 2013 ident: 77_CR24 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.02.002 – year: 2019 ident: 77_CR19 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-018-9289-9 – ident: 77_CR52 doi: 10.1016/B978-1-4557-4801-3.00018-7 – year: 2006 ident: 77_CR2 publication-title: Stud Comput Intell doi: 10.1007/11543138_2 – volume-title: Simulationsmethoden in der Medizin und Biologie year: 1978 ident: 77_CR56 – ident: 77_CR28 – volume: 80 start-page: 116 issue: 3 year: 2013 ident: 77_CR23 publication-title: Elektrotehniski Vestnik/electrotechnical Rev – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 77_CR47 publication-title: Sci Rep doi: 10.1038/s41598-017-09499-1 – ident: 77_CR36 doi: 10.3390/life3040518 |
SSID | ssj0002710222 |
Score | 2.2704144 |
Snippet | Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10 |
SubjectTerms | Antibiotics Artificial Intelligence Bacteria Benchmarks Chemistry Comparative studies Computational Intelligence Conjugation Design optimization Drug resistance Engineering Evolutionary algorithms Exploitation Foraging behavior Genetic algorithms Heuristic methods Machine Learning Multiple objective analysis Optimization algorithms Original Article Physics Propagation |
Title | ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions |
URI | https://link.springer.com/article/10.1007/s43674-024-00077-3 https://www.proquest.com/docview/3101392746 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2730-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710222 issn: 2730-7794 databaseCode: AFBBN dateStart: 20210522 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-7808 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0002710222 issn: 2730-7794 databaseCode: BENPR dateStart: 20210901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_RF_MTplDz4psEtTdPNF9HhHIJDhoO9lXzqULvp6v_vJWs3FPS5IW3vLrnffQOcJkZyhrCCMh0xylVbUyWRIS2HtoCxbZ0Eh9tDX_SG_H4UjwqH26xIqyzvxHBRm4n2PvILhCEIVtCGElfTD-qnRvnoajFCYxWqTYaS5CvFu3cLHwtLgj3j58uhICOQbPOibiZUz_FI4EeikvKl1QmetZ-6aQk4f8VIg-rpbsFmgRnJ9ZzJ27Bisx1Y75Sj2nZgLeRx6tkufFwPbh4vCZJrrMYTXE_RnPYQMcuJmjdmlgRfiddIYAnBVXSc-XC7NUS-PeMv5y_vuIEh43xGpsu6AuJXo0y_vMvPV-L1YRDZPRh2b586PVpMVaAa0V9EHTJHxAgLG4lCNMATyYS1zEcYlWMN66RvMya0cHEj0mgeMdPisYqM75vaFDbah0o2yewBEBe3bNN3CNMK7TSnvKHtmsZy7qRSRtXgrKRnOp03z0gXbZID9VOkfhqon0Y1qJckT4uDNEuXbK_BecmG5eO_dzv8f7cj2GCB8z5brA6V_PPLHiO8yNVJkKETqN7c9h8H3-rYzGM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9AiYEXgwihCroP-qQb2t29u9aEGERqKx8xBhLejtsvaKDXQs8Y_in_Rme2d71Igm88d7PXzMfO77ezMwPwLrGZEggruDBScKW7husMFdLxyAWs65okXLgdn8T9M_X9PDpfgD9VLQw9q6zOxHBQ27GhO_IdhCEIVpBDxZ8nt5ymRlF2tRqhMTOLQ3f_GynbdHfwFfX7Xojewel-n5dTBbhB9CO5xz8XRwiLWonGaKiSTMTOCcqwaS9azmfUZis2sY9a0iA9ELajIi0t9Q1tx07ivouwpKSU1Ku_0_s2v9MRSeBPNM8OHQeBa1eVdTqhWk_JGIWCQZFKuRP07X9jYQ1wH-RkQ6jrrcLzEqOyvZlRvYAFl6_B8n41Gm4NnoV3o2b6Em73fn758YmheoZ6OMb1HOk7QdK8YHrWCDpj-Ek8toIJMFzFhzml951l2c0liri4GuEGlg2LKZvUdQyMVqMPXY2yu2tG8Te4yDqcPYm8N6CRj3O3CcxHHdemjmRGIy_0moi9b1unlM-0troJHyp5ppNZs4503pY5SD9F6adB-qlswlYl8rR03Glam1kTPlZqqH9-fLdX_9_tLSz3T4-P0qPByeFrWBHBCuil2hY0irtfbhuhTaHfBHticPHUBvwX51QEiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARBP%3A+antibiotic-resistant+bacteria+propagation+bio-inspired+algorithm+and+its+performance+on+benchmark+functions&rft.jtitle=Advances+in+computational+intelligence&rft.au=Aggarwal%2C+Kirti&rft.au=Arora%2C+Anuja&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=3&rft.spage=10&rft_id=info:doi/10.1007%2Fs43674-024-00077-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon |