ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions

Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorith...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational intelligence Vol. 4; no. 3; p. 10
Main Authors Aggarwal, Kirti, Arora, Anuja
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2730-7794
2730-7808
DOI10.1007/s43674-024-00077-3

Cover

Abstract Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorithm to deal with single and multiple objective problems. This research paper presents a novel population-based, metaheuristic bio-inspired optimization algorithm. The algorithm contrived the propagation concept of antibiotic-resistant bacteria named as antibiotic-resistant bacteria propagation (ARBP) algorithm where properties of bacteria to acquire antibiotic resistance over time are used as a base concept. The optimization algorithm imitates the two prime mechanisms of horizontal gene transfer—Conjugation Gene Transfer Mechanism (CGTM) and Transformation Gene Transfer Mechanism (TGTM) to propagate antibiotic-resistant bacteria. CGTM and TGTM are used to explore the search space to handle single and multiple objective optimization problems. Conjugation mechanism is used for exploration of search space and exploitation concept is driven by transformation mechanism. The efficiency and importance of the ARBP algorithm are validated on varying classical and complex benchmark functions. An extensive comparative study is performed to detail the effectiveness of ARBP over other well-known swarm and evolutionary algorithms. This comparative analysis clearly depicts that the performance of ARBP is superior in terms of finding a better solution with high convergence as compared to other considered algorithms.
AbstractList Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex optimization problems. Literature witnesses the constant effort by researchers to improve existing optimization algorithms or to develop a new algorithm to deal with single and multiple objective problems. This research paper presents a novel population-based, metaheuristic bio-inspired optimization algorithm. The algorithm contrived the propagation concept of antibiotic-resistant bacteria named as antibiotic-resistant bacteria propagation (ARBP) algorithm where properties of bacteria to acquire antibiotic resistance over time are used as a base concept. The optimization algorithm imitates the two prime mechanisms of horizontal gene transfer—Conjugation Gene Transfer Mechanism (CGTM) and Transformation Gene Transfer Mechanism (TGTM) to propagate antibiotic-resistant bacteria. CGTM and TGTM are used to explore the search space to handle single and multiple objective optimization problems. Conjugation mechanism is used for exploration of search space and exploitation concept is driven by transformation mechanism. The efficiency and importance of the ARBP algorithm are validated on varying classical and complex benchmark functions. An extensive comparative study is performed to detail the effectiveness of ARBP over other well-known swarm and evolutionary algorithms. This comparative analysis clearly depicts that the performance of ARBP is superior in terms of finding a better solution with high convergence as compared to other considered algorithms.
ArticleNumber 10
Author Aggarwal, Kirti
Arora, Anuja
Author_xml – sequence: 1
  givenname: Kirti
  surname: Aggarwal
  fullname: Aggarwal, Kirti
  email: aggarwalkirti25@gmail.com
  organization: Department of CSE and IT, Jaypee Institute of Information Technology
– sequence: 2
  givenname: Anuja
  orcidid: 0000-0001-5215-1300
  surname: Arora
  fullname: Arora, Anuja
  organization: Department of CSE and IT, Jaypee Institute of Information Technology
BookMark eNp9kM1OAyEUhYmpiVX7Aq5IXKMXGKDjrjb-JU00RteEYZiW2jJTmC58e6mjceeCwCXfOffknKJRaIND6ILCFQVQ16ngUhUEWD55VoQfoTFTHIiawnT0-1ZlcYImKa0zxBQFxtgY7Wavty832ITeV77tvSXRJZ_6_IErY3sXvcFdbDuzNL1vA84U8SF1Proam82yjb5fbbNBjX2fcOdi08atCdbhA-2CXW1N_MDNPtiDQTpHx43ZJDf5uc_Q-_3d2_yRLJ4fnuazBbGUCk4aUzApypKCqmgJhTJMOseAC6gaBq4xwCRIKxsB3EomWD0tRMVrwYSi0vEzdDn45vS7vUu9Xrf7GPJKzSlQXjJVyEyxgbKxTSm6RnfR58CfmoI-tKuHdnVuV3-3q3kW8UGUMhyWLv5Z_6P6AuIifr0
Cites_doi 10.1080/0951192X.2014.1002810
10.1016/j.swevo.2013.11.003
10.1016/j.swevo.2011.06.001
10.1016/j.swevo.2013.04.001
10.1016/j.swevo.2013.11.001
10.1108/02644401211235834
10.1016/j.swevo.2011.06.003
10.1016/j.eswa.2010.02.009
10.1016/j.swevo.2014.01.003
10.1016/j.rcim.2012.04.006
10.1109/TEVC.2010.2059031
10.1504/ijcse.2011.041221
10.1016/j.ejor.2008.07.025
10.1016/j.ecoinf.2006.07.003
10.1016/j.eswa.2011.04.126
10.1016/j.swevo.2012.12.001
10.1016/j.ins.2012.09.012
10.1016/j.plasmid.2015.01.001
10.1016/j.swevo.2012.11.003
10.1128/mmbr.67.2.277-301.2003
10.1007/s12559-015-9370-8
10.1016/j.asoc.2011.10.015
10.1007/s00521-019-04452-x
10.1016/j.swevo.2013.04.003
10.1007/978-3-540-72950-1_77
10.1016/j.apm.2010.01.002
10.1016/j.swevo.2013.02.003
10.1016/j.swevo.2011.12.002
10.2307/24939139
10.1137/1.9781611975604
10.1023/A:1008202821328
10.1016/j.ins.2009.03.004
10.1016/j.ins.2012.08.023
10.1016/j.swevo.2011.07.001
10.1093/bmb/ldv041
10.1109/MCS.2002.1004010
10.1016/j.apm.2013.05.002
10.1109/4235.585893
10.1109/MCI.2006.329691
10.1016/S0031-3203(01)00136-4
10.1016/j.advengsoft.2016.01.008
10.1109/ICNN.1995.488968
10.1109/TSMCA.2009.2012436
10.1145/2480741.2480752
10.1038/sj.bjp.0707607
10.1016/S0167-8655(98)00025-7
10.1016/j.swevo.2015.05.002
10.1371/journal.pone.0001055
10.1007/s00707-009-0270-4
10.1016/j.swevo.2013.02.002
10.1007/s11831-018-9289-9
10.1016/B978-1-4557-4801-3.00018-7
10.1007/11543138_2
10.1038/s41598-017-09499-1
10.3390/life3040518
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s43674-024-00077-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 2730-7808
ExternalDocumentID 10_1007_s43674_024_00077_3
GroupedDBID 0R~
406
88I
AACDK
AAFHI
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABJNI
ABTEG
ABTKH
ABUWG
ACAOD
ACDTI
ACHSB
ACPIV
ACYDH
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AGMZJ
AGQEE
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DPUIP
DWQXO
EBLON
EBS
FIGPU
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
M2P
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c1153-fa426599107b19047a26ee20350bf20efa02606c6f503c6252d845b3d525716e3
IEDL.DBID 8FG
ISSN 2730-7794
IngestDate Tue Sep 02 03:25:53 EDT 2025
Tue Jul 01 01:37:59 EDT 2025
Fri Feb 21 02:42:11 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Metaheuristic
Optimization algorithm
Antibiotic-resistant bacteria
Evolutionary algorithm
Bio-inspired algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1153-fa426599107b19047a26ee20350bf20efa02606c6f503c6252d845b3d525716e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5215-1300
PQID 3101392746
PQPubID 6623282
ParticipantIDs proquest_journals_3101392746
crossref_primary_10_1007_s43674_024_00077_3
springer_journals_10_1007_s43674_024_00077_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Salerno
PublicationTitle Advances in computational intelligence
PublicationTitleAbbrev Adv. in Comp. Int
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References FisterIYangXSBrestJFisterDA brief review of nature-inspired algorithms for optimizationElektrotehniski Vestnik/electrotechnical Rev2013803116122
TanKCChiamSCMamunAAGohCKBalancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimizationEur J Oper Res2009197270171310.1016/j.ejor.2008.07.025
NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evol Comput20141611810.1016/j.swevo.2013.11.003
GrohmannEMuthGEspinosaMConjugative plasmid transfer in Gram-Positive bacteriaMicrobiol Mol Biol Rev200367227730110.1128/mmbr.67.2.277-301.2003
Griffiths AJF (2000) Tetrad—an introduction to genetic analysis. NCBI Bookshelf, 860. https://www.ncbi.nlm.nih.gov/books/NBK21878/def-item/A5444/. Accessed Mar 2020
Koza JR (1992) Genetic programming: on the programming of computers. Means of natural selection
LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput201524112410.1016/j.swevo.2015.05.002
StornRPriceKDifferential evolution - a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:1008202821328
LiuHCHuangJSPattern recognition using evolution algorithms with fast simulated annealingPattern Recogn Lett1998195–640341310.1016/S0167-8655(98)00025-7
ManikandanPRamyachitraDBacterial foraging optimization–genetic algorithm for multiple sequence alignment with multi-objectivesSci Rep20177111410.1038/s41598-017-09499-1
BeheshtiZShamsuddinSMHA review of population-based meta-heuristic algorithm GPUMLib: deep learning SOM library for surface reconstruction view project web caching view project a review of population-based Meta-Heuristic algorithmInt J Adv Soft Comput Appl201351135
SiddiqueNAdeliHNature inspired computing: an overview and some future directionsCogn Comput20157670671410.1007/s12559-015-9370-8
BinithaSSathyaSSA survey of bio inspired optimization algorithmsInt J Soft Comput Eng (IJSCE)201222137151
DraaABouazizAAn artificial bee colony algorithm for image contrast enhancementSwarm Evol Comput201416698410.1016/j.swevo.2014.01.003
LudwigSAMemetic algorithms applied to the optimization of workflow compositionsSwarm Evol Comput201310314010.1016/j.swevo.2012.12.001
PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200210.1109/MCS.2002.1004010
AhnCWPractical genetic algorithmsStud Comput Intell200610.1007/11543138_2
RashediENezamabadi-PourHSaryazdiSGSA: a gravitational search algorithmInf Sci2009179132232224810.1016/j.ins.2009.03.004
SuganthanPNStructural pattern recognition using genetic algorithmsPattern Recogn20023591883189310.1016/S0031-3203(01)00136-4
SaraswatMAryaKVSharmaHLeukocyte segmentation in tissue images using differential evolution algorithmSwarm Evol Comput201311465410.1016/j.swevo.2013.02.003
GoldansazSMJolaiFZahedi AnarakiAHA hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shopAppl Math Model2013372396039616311748110.1016/j.apm.2013.05.002
YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput (swansea, Wales)201229546448310.1108/02644401211235834
SenthilnathJOmkarSNManiVClustering using firefly algorithm: performance studySwarm Evol Comput20111316417110.1016/j.swevo.2011.06.003
DhalKGRaySDasADasSA survey on nature-inspired optimization algorithms and their application in image enhancement domainArch Comput Methods Eng2019401928910.1007/s11831-018-9289-9
SureshKKumarappanNHybrid improved binary particle swarm optimization approach for generation maintenance scheduling problemSwarm Evol Comput20139698910.1016/j.swevo.2012.11.003
GaraiGChaudhuriiBBA novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognitionInf Sci2013221284810.1016/j.ins.2012.09.012
Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley
SundarSSinghAA swarm intelligence approach to the early/tardy scheduling problemSwarm Evol Comput20124253210.1016/j.swevo.2011.12.002
DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/MCI.2006.329691
Meysam MousaviSTavakkoli-MoghaddamRVahdaniBHashemiHSanjariMJA new support vector model-based imperialist competitive algorithm for time estimation in new product development projectsRobot Comput-Integr Manuf201329115716810.1016/j.rcim.2012.04.006
LayeghJJolaiFA memetic algorithm for minimizing the total weighted completion time on a single machine under linear deteriorationAppl Math Model2010341029102925265161210.1016/j.apm.2010.01.002
SoltaniRJolaiFZandiehMTwo robust meta-heuristics for scheduling multiple job classes on a single machine with multiple criteriaExpert Syst Appl20103785951595910.1016/j.eswa.2010.02.009
DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201015143110.1109/TEVC.2010.2059031
FallSMercierABertollaFCalteauAGueguenLPerrièreGVogelTMSimonetPHorizontal gene transfer regulation in bacteria as a “Spandrel” of DNA repair mechanismsPLoS ONE200710.1371/journal.pone.0001055
AzadehASeifJSheikhalishahiMYazdaniMAn integrated support vector regression-imperialist competitive algorithm for reliability estimation of a shearing machineInt J Comput Integr Manuf2016291162410.1080/0951192X.2014.1002810
Čech M, Lampa M, Vilamová Š (2014) Ecology inspired optimization: Survey on recent and possible applications in metallurgy and proposal of taxonomy revision. METAL 2014 - 23rd international conference on metallurgy and materials, conference proceedings, pp 1635–1639
RechenbergISimulationsmethoden in der Medizin und Biologie1978Berlin, HeidelbergSpringer
ChenJXinBPengZDouLZhangJOptimal contraction theorem for exploration-exploitation tradeoff in search and optimizationIEEE Trans Syst Man Cybern Part A Syst Hum200939368069110.1109/TSMCA.2009.2012436
ArivudainambiDRekhaDMemetic algorithm for minimum energy broadcast problem in wireless ad hoc networksSwarm Evol Comput201312576410.1016/j.swevo.2013.04.001
Gill PE, Murray W, Wright MH (2019) Practical optimization. Society for industrial and applied mathematics. https://epubs.siam.org/doi/abs/10.1137/1.9781611975604.fm
HatamlouABlack hole: a new heuristic optimization approach for data clusteringInf Sci2013222175184299850710.1016/j.ins.2012.08.023
HofmannJLimmerSFeyDPerformance investigations of genetic algorithms on graphics cardsSwarm Evol Comput201312334710.1016/j.swevo.2013.04.003
YangXSNature-inspired optimization algorithms2014AmsterdamElsevier
FornarelliGGiaquintoAAn unsupervised multi-swarm clustering technique for image segmentationSwarm Evol Comput201311314510.1016/j.swevo.2013.02.002
HollandJHGenetic algorithmsJSTOR19922671667310.2307/24939139
ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput Appl201910.1007/s00521-019-04452-x
Yang XS, Deb S (2010) Cuckoo search via levy flights. Ieeexplore. IEEE.Org, 210–214. https://ieeexplore.ieee.org/abstract/document/5393690/. Accessed Mar 2020
Dalwani S, Agarwal A (2018) Review on classification of nature inspired approach. Int J Comput Math Sci
HosseiniHSPrincipal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisationInt J Comput Sci Eng201161/213210.1504/ijcse.2011.041221
MehrabianARLucasCA novel numerical optimization algorithm inspired from weed colonizationEco Inform20061435536610.1016/j.ecoinf.2006.07.003
DasSBiswasADasguptaSAbrahamABacterial foraging optimization algorithm: theoretical foundations, analysis, and applicationsFoundations of computational intelligence2009Berlin, HeidelbergSpringer2355
CrepinsekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv201345313310.1145/2480741.2480752
Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 4529 LNAI, 789–798. https://doi.org/10.1007/978-3-540-72950-1_77
ChangdarCMahapatraGSKumar PalRAn efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzzinessSwarm Evol Comput201415273710.1016/j.swevo.2013.11.001
KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-4
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp 1942–1948). IEEE
BehnamianJFatemi GhomiSMTJolaiFAmirtaheriOMinimizing makespan on a three-machine flowshop batch scheduling problem with transportation using genetic algorithmAppl Soft Comput J201212276877710.1016/j.asoc.2011.10.015
MalviyaRPratiharDKTuning of neural networks using particle swarm optimization to model MIG welding processSwarm Evol Comput20111422323510.1016/j.swevo.2011.07.001
MirjaliliSLewisAThe Whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199710.1109/4235.585893
Opal SM, Pop-Vicas A (2015) Molecular mechanisms of antibiotic resistance in bacteria. In: Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. WB Saunders, pp 235–251
Actor JK (2011) Elsevier’s integrated review. Immunology and microbiology
Brown-JaqueMCalero-CáceresWMuniesaMTransfer of antibiotic-resistance genes via phage-related mobile elementsPlasmid2015791710.1016/j.plasmid.2015.01.001
BennettPMPlasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteriaBr J Pharmacol2008153SUPPL. 1S347S35710.1038/sj.bjp.0707607
Jheeta S (2013) Horizontal gene transfer and its part in the reorganisation of genetics during the LUCA epoch. In Life (Vol. 3, Issue 4,
77_CR40
A Draa (77_CR21) 2014; 16
J Chen (77_CR14) 2009; 39
S Sundar (77_CR64) 2012; 4
AR Mehrabian (77_CR48) 2006; 1
A Azadeh (77_CR5) 2016; 29
KG Dhal (77_CR19) 2019
J Hofmann (77_CR32) 2013; 12
S Mirjalili (77_CR50) 2016; 95
W Zhao (77_CR71) 2019
B Alatas (77_CR3) 2011; 38
S Das (77_CR17) 2010; 15
N Sabtu (77_CR57) 2015; 116
E Rashedi (77_CR55) 2009; 179
D Arivudainambi (77_CR4) 2013; 12
SA Ludwig (77_CR43) 2013; 10
HC Liu (77_CR42) 1998; 19
G Garai (77_CR25) 2013; 221
KC Tan (77_CR66) 2009; 197
XS Yang (77_CR68) 2014
Z Beheshti (77_CR6) 2013; 5
R Storn (77_CR62) 1997; 11
J Layegh (77_CR41) 2010; 34
77_CR37
S Das (77_CR18) 2009
77_CR36
I Fister (77_CR23) 2013; 80
A Hatamlou (77_CR31) 2013; 222
SJ Nanda (77_CR51) 2014; 16
77_CR39
J Senthilnath (77_CR59) 2011; 1
SM Goldansaz (77_CR27) 2013; 37
J Behnamian (77_CR7) 2012; 12
P Manikandan (77_CR47) 2017; 7
R Panda (77_CR53) 2011; 1
M Brown-Jaque (77_CR11) 2015; 79
77_CR1
PN Suganthan (77_CR63) 2002; 35
I Rechenberg (77_CR56) 1978
PM Bennett (77_CR9) 2008; 153
S Binitha (77_CR10) 2012; 2
JH Holland (77_CR33) 1992; 267
M Saraswat (77_CR58) 2013; 11
77_CR26
N Lynn (77_CR44) 2015; 24
77_CR69
K Suresh (77_CR65) 2013; 9
KM Passino (77_CR54) 2002
DH Wolpert (77_CR67) 1997
77_CR29
77_CR28
77_CR52
R Soltani (77_CR61) 2010; 37
77_CR12
HS Hosseini (77_CR34) 2011; 6
R Malviya (77_CR46) 2011; 1
S Meysam Mousavi (77_CR49) 2013; 29
M Dorigo (77_CR20) 2006; 1
G Fornarelli (77_CR24) 2013; 11
M Crepinsek (77_CR15) 2013; 45
N Siddique (77_CR60) 2015; 7
XS Yang (77_CR70) 2012; 29
S Fall (77_CR22) 2007
E Grohmann (77_CR30) 2003; 67
77_CR16
CW Ahn (77_CR2) 2006
C Changdar (77_CR13) 2014; 15
A Kaveh (77_CR38) 2010; 213
References_xml – reference: LudwigSAMemetic algorithms applied to the optimization of workflow compositionsSwarm Evol Comput201310314010.1016/j.swevo.2012.12.001
– reference: Koza JR (1992) Genetic programming: on the programming of computers. Means of natural selection
– reference: BennettPMPlasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteriaBr J Pharmacol2008153SUPPL. 1S347S35710.1038/sj.bjp.0707607
– reference: HatamlouABlack hole: a new heuristic optimization approach for data clusteringInf Sci2013222175184299850710.1016/j.ins.2012.08.023
– reference: HollandJHGenetic algorithmsJSTOR19922671667310.2307/24939139
– reference: HofmannJLimmerSFeyDPerformance investigations of genetic algorithms on graphics cardsSwarm Evol Comput201312334710.1016/j.swevo.2013.04.003
– reference: BehnamianJFatemi GhomiSMTJolaiFAmirtaheriOMinimizing makespan on a three-machine flowshop batch scheduling problem with transportation using genetic algorithmAppl Soft Comput J201212276877710.1016/j.asoc.2011.10.015
– reference: RashediENezamabadi-PourHSaryazdiSGSA: a gravitational search algorithmInf Sci2009179132232224810.1016/j.ins.2009.03.004
– reference: SabtuNEnochDABrownNMAntibiotic resistance: what, why, where, when and how?Br Med Bull2015116110511310.1093/bmb/ldv041
– reference: GrohmannEMuthGEspinosaMConjugative plasmid transfer in Gram-Positive bacteriaMicrobiol Mol Biol Rev200367227730110.1128/mmbr.67.2.277-301.2003
– reference: LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput201524112410.1016/j.swevo.2015.05.002
– reference: Jheeta S (2013) Horizontal gene transfer and its part in the reorganisation of genetics during the LUCA epoch. In Life (Vol. 3, Issue 4, pp 518–523). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/life3040518
– reference: SuganthanPNStructural pattern recognition using genetic algorithmsPattern Recogn20023591883189310.1016/S0031-3203(01)00136-4
– reference: StornRPriceKDifferential evolution - a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:1008202821328
– reference: Brown-JaqueMCalero-CáceresWMuniesaMTransfer of antibiotic-resistance genes via phage-related mobile elementsPlasmid2015791710.1016/j.plasmid.2015.01.001
– reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201015143110.1109/TEVC.2010.2059031
– reference: ChangdarCMahapatraGSKumar PalRAn efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzzinessSwarm Evol Comput201415273710.1016/j.swevo.2013.11.001
– reference: LayeghJJolaiFA memetic algorithm for minimizing the total weighted completion time on a single machine under linear deteriorationAppl Math Model2010341029102925265161210.1016/j.apm.2010.01.002
– reference: MirjaliliSLewisAThe Whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: PandaRNaikMKPanigrahiBKFace recognition using bacterial foraging strategySwarm Evol Comput20111313814610.1016/j.swevo.2011.06.001
– reference: PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200210.1109/MCS.2002.1004010
– reference: BinithaSSathyaSSA survey of bio inspired optimization algorithmsInt J Soft Comput Eng (IJSCE)201222137151
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp 1942–1948). IEEE
– reference: ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput Appl201910.1007/s00521-019-04452-x
– reference: YangXSNature-inspired optimization algorithms2014AmsterdamElsevier
– reference: FallSMercierABertollaFCalteauAGueguenLPerrièreGVogelTMSimonetPHorizontal gene transfer regulation in bacteria as a “Spandrel” of DNA repair mechanismsPLoS ONE200710.1371/journal.pone.0001055
– reference: AzadehASeifJSheikhalishahiMYazdaniMAn integrated support vector regression-imperialist competitive algorithm for reliability estimation of a shearing machineInt J Comput Integr Manuf2016291162410.1080/0951192X.2014.1002810
– reference: Yang XS, Deb S (2010) Cuckoo search via levy flights. Ieeexplore. IEEE.Org, 210–214. https://ieeexplore.ieee.org/abstract/document/5393690/. Accessed Mar 2020
– reference: SiddiqueNAdeliHNature inspired computing: an overview and some future directionsCogn Comput20157670671410.1007/s12559-015-9370-8
– reference: AhnCWPractical genetic algorithmsStud Comput Intell200610.1007/11543138_2
– reference: LiuHCHuangJSPattern recognition using evolution algorithms with fast simulated annealingPattern Recogn Lett1998195–640341310.1016/S0167-8655(98)00025-7
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199710.1109/4235.585893
– reference: TanKCChiamSCMamunAAGohCKBalancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimizationEur J Oper Res2009197270171310.1016/j.ejor.2008.07.025
– reference: ChenJXinBPengZDouLZhangJOptimal contraction theorem for exploration-exploitation tradeoff in search and optimizationIEEE Trans Syst Man Cybern Part A Syst Hum200939368069110.1109/TSMCA.2009.2012436
– reference: FornarelliGGiaquintoAAn unsupervised multi-swarm clustering technique for image segmentationSwarm Evol Comput201311314510.1016/j.swevo.2013.02.002
– reference: Meysam MousaviSTavakkoli-MoghaddamRVahdaniBHashemiHSanjariMJA new support vector model-based imperialist competitive algorithm for time estimation in new product development projectsRobot Comput-Integr Manuf201329115716810.1016/j.rcim.2012.04.006
– reference: Čech M, Lampa M, Vilamová Š (2014) Ecology inspired optimization: Survey on recent and possible applications in metallurgy and proposal of taxonomy revision. METAL 2014 - 23rd international conference on metallurgy and materials, conference proceedings, pp 1635–1639
– reference: GoldansazSMJolaiFZahedi AnarakiAHA hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shopAppl Math Model2013372396039616311748110.1016/j.apm.2013.05.002
– reference: NandaSJPandaGA survey on nature inspired metaheuristic algorithms for partitional clusteringSwarm Evol Comput20141611810.1016/j.swevo.2013.11.003
– reference: BeheshtiZShamsuddinSMHA review of population-based meta-heuristic algorithm GPUMLib: deep learning SOM library for surface reconstruction view project web caching view project a review of population-based Meta-Heuristic algorithmInt J Adv Soft Comput Appl201351135
– reference: MehrabianARLucasCA novel numerical optimization algorithm inspired from weed colonizationEco Inform20061435536610.1016/j.ecoinf.2006.07.003
– reference: SureshKKumarappanNHybrid improved binary particle swarm optimization approach for generation maintenance scheduling problemSwarm Evol Comput20139698910.1016/j.swevo.2012.11.003
– reference: ManikandanPRamyachitraDBacterial foraging optimization–genetic algorithm for multiple sequence alignment with multi-objectivesSci Rep20177111410.1038/s41598-017-09499-1
– reference: Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley
– reference: GaraiGChaudhuriiBBA novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognitionInf Sci2013221284810.1016/j.ins.2012.09.012
– reference: YangXSGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput (swansea, Wales)201229546448310.1108/02644401211235834
– reference: RechenbergISimulationsmethoden in der Medizin und Biologie1978Berlin, HeidelbergSpringer
– reference: SaraswatMAryaKVSharmaHLeukocyte segmentation in tissue images using differential evolution algorithmSwarm Evol Comput201311465410.1016/j.swevo.2013.02.003
– reference: Opal SM, Pop-Vicas A (2015) Molecular mechanisms of antibiotic resistance in bacteria. In: Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. WB Saunders, pp 235–251
– reference: AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126
– reference: Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 4529 LNAI, 789–798. https://doi.org/10.1007/978-3-540-72950-1_77
– reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput Intell Mag200614283910.1109/MCI.2006.329691
– reference: SenthilnathJOmkarSNManiVClustering using firefly algorithm: performance studySwarm Evol Comput20111316417110.1016/j.swevo.2011.06.003
– reference: ArivudainambiDRekhaDMemetic algorithm for minimum energy broadcast problem in wireless ad hoc networksSwarm Evol Comput201312576410.1016/j.swevo.2013.04.001
– reference: DhalKGRaySDasADasSA survey on nature-inspired optimization algorithms and their application in image enhancement domainArch Comput Methods Eng2019401928910.1007/s11831-018-9289-9
– reference: Gill PE, Murray W, Wright MH (2019) Practical optimization. Society for industrial and applied mathematics. https://epubs.siam.org/doi/abs/10.1137/1.9781611975604.fm
– reference: HosseiniHSPrincipal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisationInt J Comput Sci Eng201161/213210.1504/ijcse.2011.041221
– reference: FisterIYangXSBrestJFisterDA brief review of nature-inspired algorithms for optimizationElektrotehniski Vestnik/electrotechnical Rev2013803116122
– reference: Griffiths AJF (2000) Tetrad—an introduction to genetic analysis. NCBI Bookshelf, 860. https://www.ncbi.nlm.nih.gov/books/NBK21878/def-item/A5444/. Accessed Mar 2020
– reference: MalviyaRPratiharDKTuning of neural networks using particle swarm optimization to model MIG welding processSwarm Evol Comput20111422323510.1016/j.swevo.2011.07.001
– reference: Dalwani S, Agarwal A (2018) Review on classification of nature inspired approach. Int J Comput Math Sci
– reference: SundarSSinghAA swarm intelligence approach to the early/tardy scheduling problemSwarm Evol Comput20124253210.1016/j.swevo.2011.12.002
– reference: CrepinsekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv201345313310.1145/2480741.2480752
– reference: DraaABouazizAAn artificial bee colony algorithm for image contrast enhancementSwarm Evol Comput201416698410.1016/j.swevo.2014.01.003
– reference: Actor JK (2011) Elsevier’s integrated review. Immunology and microbiology
– reference: SoltaniRJolaiFZandiehMTwo robust meta-heuristics for scheduling multiple job classes on a single machine with multiple criteriaExpert Syst Appl20103785951595910.1016/j.eswa.2010.02.009
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-4
– reference: DasSBiswasADasguptaSAbrahamABacterial foraging optimization algorithm: theoretical foundations, analysis, and applicationsFoundations of computational intelligence2009Berlin, HeidelbergSpringer2355
– volume: 29
  start-page: 16
  issue: 1
  year: 2016
  ident: 77_CR5
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2014.1002810
– volume: 16
  start-page: 1
  year: 2014
  ident: 77_CR51
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.11.003
– volume: 1
  start-page: 138
  issue: 3
  year: 2011
  ident: 77_CR53
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.06.001
– volume: 12
  start-page: 57
  year: 2013
  ident: 77_CR4
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.04.001
– volume: 15
  start-page: 27
  year: 2014
  ident: 77_CR13
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.11.001
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: 77_CR70
  publication-title: Eng Comput (swansea, Wales)
  doi: 10.1108/02644401211235834
– volume: 1
  start-page: 164
  issue: 3
  year: 2011
  ident: 77_CR59
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.06.003
– ident: 77_CR40
– volume: 37
  start-page: 5951
  issue: 8
  year: 2010
  ident: 77_CR61
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.02.009
– ident: 77_CR29
– volume: 16
  start-page: 69
  year: 2014
  ident: 77_CR21
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2014.01.003
– volume: 29
  start-page: 157
  issue: 1
  year: 2013
  ident: 77_CR49
  publication-title: Robot Comput-Integr Manuf
  doi: 10.1016/j.rcim.2012.04.006
– volume: 15
  start-page: 4
  issue: 1
  year: 2010
  ident: 77_CR17
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2010.2059031
– ident: 77_CR1
– ident: 77_CR16
– volume: 6
  start-page: 132
  issue: 1/2
  year: 2011
  ident: 77_CR34
  publication-title: Int J Comput Sci Eng
  doi: 10.1504/ijcse.2011.041221
– volume: 2
  start-page: 137
  issue: 2
  year: 2012
  ident: 77_CR10
  publication-title: Int J Soft Comput Eng (IJSCE)
– volume: 197
  start-page: 701
  issue: 2
  year: 2009
  ident: 77_CR66
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2008.07.025
– ident: 77_CR12
– volume: 1
  start-page: 355
  issue: 4
  year: 2006
  ident: 77_CR48
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2006.07.003
– volume: 38
  start-page: 13170
  issue: 10
  year: 2011
  ident: 77_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.126
– volume: 10
  start-page: 31
  year: 2013
  ident: 77_CR43
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.12.001
– volume: 221
  start-page: 28
  year: 2013
  ident: 77_CR25
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.09.012
– volume: 79
  start-page: 1
  year: 2015
  ident: 77_CR11
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2015.01.001
– volume: 9
  start-page: 69
  year: 2013
  ident: 77_CR65
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2012.11.003
– volume: 67
  start-page: 277
  issue: 2
  year: 2003
  ident: 77_CR30
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/mmbr.67.2.277-301.2003
– volume: 7
  start-page: 706
  issue: 6
  year: 2015
  ident: 77_CR60
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9370-8
– volume: 12
  start-page: 768
  issue: 2
  year: 2012
  ident: 77_CR7
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2011.10.015
– year: 2019
  ident: 77_CR71
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04452-x
– volume: 12
  start-page: 33
  year: 2013
  ident: 77_CR32
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.04.003
– ident: 77_CR37
  doi: 10.1007/978-3-540-72950-1_77
– volume: 34
  start-page: 2910
  issue: 10
  year: 2010
  ident: 77_CR41
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2010.01.002
– volume: 11
  start-page: 46
  year: 2013
  ident: 77_CR58
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.02.003
– volume: 4
  start-page: 25
  year: 2012
  ident: 77_CR64
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.12.002
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 77_CR33
  publication-title: JSTOR
  doi: 10.2307/24939139
– start-page: 23
  volume-title: Foundations of computational intelligence
  year: 2009
  ident: 77_CR18
– ident: 77_CR26
  doi: 10.1137/1.9781611975604
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 77_CR62
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 77_CR55
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume-title: Nature-inspired optimization algorithms
  year: 2014
  ident: 77_CR68
– volume: 222
  start-page: 175
  year: 2013
  ident: 77_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.08.023
– volume: 1
  start-page: 223
  issue: 4
  year: 2011
  ident: 77_CR46
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.07.001
– volume: 116
  start-page: 105
  issue: 1
  year: 2015
  ident: 77_CR57
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldv041
– year: 2002
  ident: 77_CR54
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2002.1004010
– ident: 77_CR69
– volume: 37
  start-page: 9603
  issue: 23
  year: 2013
  ident: 77_CR27
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.05.002
– year: 1997
  ident: 77_CR67
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 77_CR20
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329691
– volume: 35
  start-page: 1883
  issue: 9
  year: 2002
  ident: 77_CR63
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00136-4
– volume: 95
  start-page: 51
  year: 2016
  ident: 77_CR50
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 77_CR39
  doi: 10.1109/ICNN.1995.488968
– volume: 39
  start-page: 680
  issue: 3
  year: 2009
  ident: 77_CR14
  publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum
  doi: 10.1109/TSMCA.2009.2012436
– volume: 5
  start-page: 1
  issue: 1
  year: 2013
  ident: 77_CR6
  publication-title: Int J Adv Soft Comput Appl
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 77_CR15
  publication-title: ACM Comput Surv
  doi: 10.1145/2480741.2480752
– volume: 153
  start-page: S347
  issue: SUPPL. 1
  year: 2008
  ident: 77_CR9
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0707607
– volume: 19
  start-page: 403
  issue: 5–6
  year: 1998
  ident: 77_CR42
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(98)00025-7
– volume: 24
  start-page: 11
  year: 2015
  ident: 77_CR44
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.05.002
– year: 2007
  ident: 77_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001055
– volume: 213
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 77_CR38
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 11
  start-page: 31
  year: 2013
  ident: 77_CR24
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.02.002
– year: 2019
  ident: 77_CR19
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-018-9289-9
– ident: 77_CR52
  doi: 10.1016/B978-1-4557-4801-3.00018-7
– year: 2006
  ident: 77_CR2
  publication-title: Stud Comput Intell
  doi: 10.1007/11543138_2
– volume-title: Simulationsmethoden in der Medizin und Biologie
  year: 1978
  ident: 77_CR56
– ident: 77_CR28
– volume: 80
  start-page: 116
  issue: 3
  year: 2013
  ident: 77_CR23
  publication-title: Elektrotehniski Vestnik/electrotechnical Rev
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 77_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09499-1
– ident: 77_CR36
  doi: 10.3390/life3040518
SSID ssj0002710222
Score 2.2704144
Snippet Optimization algorithms are continuously evolving and considered as an active multidiscipline research area to design scalable solutions for complex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10
SubjectTerms Antibiotics
Artificial Intelligence
Bacteria
Benchmarks
Chemistry
Comparative studies
Computational Intelligence
Conjugation
Design optimization
Drug resistance
Engineering
Evolutionary algorithms
Exploitation
Foraging behavior
Genetic algorithms
Heuristic methods
Machine Learning
Multiple objective analysis
Optimization algorithms
Original Article
Physics
Propagation
Title ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions
URI https://link.springer.com/article/10.1007/s43674-024-00077-3
https://www.proquest.com/docview/3101392746
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2730-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710222
  issn: 2730-7794
  databaseCode: AFBBN
  dateStart: 20210522
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-7808
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0002710222
  issn: 2730-7794
  databaseCode: BENPR
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_RF_MTplDz4psEtTdPNF9HhHIJDhoO9lXzqULvp6v_vJWs3FPS5IW3vLrnffQOcJkZyhrCCMh0xylVbUyWRIS2HtoCxbZ0Eh9tDX_SG_H4UjwqH26xIqyzvxHBRm4n2PvILhCEIVtCGElfTD-qnRvnoajFCYxWqTYaS5CvFu3cLHwtLgj3j58uhICOQbPOibiZUz_FI4EeikvKl1QmetZ-6aQk4f8VIg-rpbsFmgRnJ9ZzJ27Bisx1Y75Sj2nZgLeRx6tkufFwPbh4vCZJrrMYTXE_RnPYQMcuJmjdmlgRfiddIYAnBVXSc-XC7NUS-PeMv5y_vuIEh43xGpsu6AuJXo0y_vMvPV-L1YRDZPRh2b586PVpMVaAa0V9EHTJHxAgLG4lCNMATyYS1zEcYlWMN66RvMya0cHEj0mgeMdPisYqM75vaFDbah0o2yewBEBe3bNN3CNMK7TSnvKHtmsZy7qRSRtXgrKRnOp03z0gXbZID9VOkfhqon0Y1qJckT4uDNEuXbK_BecmG5eO_dzv8f7cj2GCB8z5brA6V_PPLHiO8yNVJkKETqN7c9h8H3-rYzGM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9AiYEXgwihCroP-qQb2t29u9aEGERqKx8xBhLejtsvaKDXQs8Y_in_Rme2d71Igm88d7PXzMfO77ezMwPwLrGZEggruDBScKW7husMFdLxyAWs65okXLgdn8T9M_X9PDpfgD9VLQw9q6zOxHBQ27GhO_IdhCEIVpBDxZ8nt5ymRlF2tRqhMTOLQ3f_GynbdHfwFfX7Xojewel-n5dTBbhB9CO5xz8XRwiLWonGaKiSTMTOCcqwaS9azmfUZis2sY9a0iA9ELajIi0t9Q1tx07ivouwpKSU1Ku_0_s2v9MRSeBPNM8OHQeBa1eVdTqhWk_JGIWCQZFKuRP07X9jYQ1wH-RkQ6jrrcLzEqOyvZlRvYAFl6_B8n41Gm4NnoV3o2b6Em73fn758YmheoZ6OMb1HOk7QdK8YHrWCDpj-Ek8toIJMFzFhzml951l2c0liri4GuEGlg2LKZvUdQyMVqMPXY2yu2tG8Te4yDqcPYm8N6CRj3O3CcxHHdemjmRGIy_0moi9b1unlM-0troJHyp5ppNZs4503pY5SD9F6adB-qlswlYl8rR03Glam1kTPlZqqH9-fLdX_9_tLSz3T4-P0qPByeFrWBHBCuil2hY0irtfbhuhTaHfBHticPHUBvwX51QEiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARBP%3A+antibiotic-resistant+bacteria+propagation+bio-inspired+algorithm+and+its+performance+on+benchmark+functions&rft.jtitle=Advances+in+computational+intelligence&rft.au=Aggarwal%2C+Kirti&rft.au=Arora%2C+Anuja&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=3&rft.spage=10&rft_id=info:doi/10.1007%2Fs43674-024-00077-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon