A novel approach to enhance feature selection using linearity assessment with ordinary least squares regression for Alzheimer’s Disease stage classification

Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insigh...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 38; pp. 86059 - 86078
Main Authors Mabrouk, Besma, Bouattour, Nadia, Mabrouki, Noura, Sellami, Lamia, Ben Hamida, Ahmed, for the Alzheimer’s Disease Neuroimaging Initiative
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-20254-3

Cover

Abstract Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of 66 % ± 0.06 . In binary classification, the results were equally impressive, with an area under the curve of 0.68 ± 0.10 % for CN vs. EMCI discrimination, 99 ± 0.02 % for distinguishing LMCI from adjacent classes CN and EMCI, and 0.79 % ± 0.08 for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere.
AbstractList Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of 66%±0.06. In binary classification, the results were equally impressive, with an area under the curve of 0.68±0.10% for CN vs. EMCI discrimination, 99±0.02%for distinguishing LMCI from adjacent classes CN and EMCI, and 0.79%±0.08 for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere.
Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of 66 % ± 0.06 . In binary classification, the results were equally impressive, with an area under the curve of 0.68 ± 0.10 % for CN vs. EMCI discrimination, 99 ± 0.02 % for distinguishing LMCI from adjacent classes CN and EMCI, and 0.79 % ± 0.08 for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere.
Author Mabrouk, Besma
Bouattour, Nadia
Sellami, Lamia
Ben Hamida, Ahmed
for the Alzheimer’s Disease Neuroimaging Initiative
Mabrouki, Noura
Author_xml – sequence: 1
  givenname: Besma
  orcidid: 0000-0002-2378-6320
  surname: Mabrouk
  fullname: Mabrouk, Besma
  email: mabroukbesma@ymail.com
  organization: Advanced Technologies for Medicine and Signals ATMS,Department of Electrical and Computer Engineering, National Engineers School
– sequence: 2
  givenname: Nadia
  surname: Bouattour
  fullname: Bouattour, Nadia
  organization: Department of Neurology, University Hospital Habib Bourguiba
– sequence: 3
  givenname: Noura
  surname: Mabrouki
  fullname: Mabrouki, Noura
  organization: Department of Psychiatry, University Hospital Taher Sfar
– sequence: 4
  givenname: Lamia
  surname: Sellami
  fullname: Sellami, Lamia
  organization: Advanced Technologies for Medicine and Signals ATMS,Department of Electrical and Computer Engineering, National Engineers School
– sequence: 5
  givenname: Ahmed
  surname: Ben Hamida
  fullname: Ben Hamida, Ahmed
  organization: Department IS, College of Computer Science, King Khaled Universiy
– sequence: 6
  surname: for the Alzheimer’s Disease Neuroimaging Initiative
  fullname: for the Alzheimer’s Disease Neuroimaging Initiative
BookMark eNp9kb1uFDEQxy2USOSDF6AaiXqJP9a36_IUIEGKRAO15fXO3jnasy8eLyhUeQ0aHo4nwZdDgopqpvh_aOZ3zk5iisjYa8HfCs67KxKCt7Lhsm0kl7pt1At2JnSnmq6T4uSf_SU7J7rnXKy0bM_YzzXE9BVncPt9Ts5voSTAuHXRI0zoypIRCGf0JaQIC4W4gTlEdDmUR3BESLTDWOBbKFtIeQzR5UeY0VEBelhcRoKMmzrokDClDOv5-xbDDvOvpx8E7wJVcW0pboPg55oZpuDdofCSnU5uJnz1Z16wLx_ef76-be4-3Xy8Xt81Xgitml6ZdlLcayVcP_J-EHqQg-cr42Sn9TgZ9EPrlVnpbhyk6EfsvTOj6VfctLxTF-zNMbc-4WFBKvY-LTnWSquENFxrI2VVyaPK50SUcbL7HHb1XCu4PXCwRw62crDPHKyqJnU0URXHDea_0f9x_QZAV5Fj
Cites_doi 10.1007/s11042-023-16928-z
10.1089/brain.2018.0578
10.3390/s22124609
10.1016/j.crad.2016.11.002
10.1586/14737175.8.11.1691
10.1007/s40846-023-00775-2
10.1016/j.jneumeth.2018.03.008
10.1016/j.neuroimage.2019.116459
10.1109/ATSIP55956.2022.9805914
10.1016/j.nicl.2014.04.009
10.1002/hbm.24056
10.1093/cercor/10.2.127
10.1016/j.nicl.2014.11.001
10.1007/s11042-024-19677-9
10.3233/JAD-2011-110290
10.1212/WNL.0b013e3181b16431
10.3389/fnagi.2016.00145
10.1001/archneurol.2011.167
10.1016/j.neurobiolaging.2009.08.007
10.1212/WNL.0b013e31823efc6c
10.1016/j.neurobiolaging.2010.04.029
10.3389/fnagi.2021.639795
10.3389/fnins.2018.00716
10.1109/TBME.2014.2372011
10.1155/2018/1247430
10.1038/s41598-020-67873-y
10.23943/princeton/9780691149783.001.0001
10.1007/s11042-023-14951-8
10.21037/apm-21-2013
10.3233/JAD-2011-102154
10.1038/s41598-021-89797-x
10.1007/s11682-020-00427-y
10.3233/JAD-121879
10.1016/j.aca.2005.07.043
10.1007/s11042-022-14203-1
10.1016/j.neulet.2005.03.038
10.1007/978-3-030-59277-6_8
10.1016/j.neuroimage.2012.01.021
10.1007/s11042-023-16413-7
10.3390/electronics11050721
10.1007/s11042-023-16026-0
10.14336/AD.2018.1129
10.1007/s00221-022-06543-z
10.1016/j.nicl.2019.101767
10.1002/ana.72
10.21203/rs.3.rs-3020768/v1
10.1016/j.jns.2020.117213
10.25080/Majora-92bf1922-011
10.1016/j.compbiomed.2021.104478
10.1073/pnas.1107214108
10.1007/s11042-023-16519-y
10.1016/j.neulet.2011.07.049
10.1007/s11042-021-10928-7
10.1007/s11042-021-11279-z
10.1016/j.neuroimage.2003.07.005
10.32604/cmc.2022.020866
10.1109/ATSIP62566.2024.10639018
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-20254-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 86078
ExternalDocumentID 10_1007_s11042_024_20254_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1153-8394f30c531a8d08b15b2bc069a2755df9ecb4c39657db218de8ca9d986094073
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Sat Jul 26 00:03:52 EDT 2025
Wed Oct 01 04:56:29 EDT 2025
Fri Feb 21 02:40:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Alzheimer’s disease
Brain connectivity maps
Ordinary Least Squares (OLS)
Linearity assessment
Logistic regression model
White matter fiber disruption
Diffusion Weighted Imaging (DWI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1153-8394f30c531a8d08b15b2bc069a2755df9ecb4c39657db218de8ca9d986094073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2378-6320
PQID 3129055922
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_3129055922
crossref_primary_10_1007_s11042_024_20254_3
springer_journals_10_1007_s11042_024_20254_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References de SouzaSVJunqueiraRGA procedure to assess linearity by ordinary least squares methodAnal Chim Acta20055521–2253510.1016/j.aca.2005.07.043
LiuSLiuSCaiWCheHPujolSKikinisRFengDFulhamMJMultimodal neuroimaging feature learning for multiclass diagnosis of alzheimer’s diseaseIEEE Trans Biomed Eng20146241132114010.1109/TBME.2014.2372011
MabroukBJazzarNSallemiLHamidaABA comparative study of pca and lda for dimensionality reduction in a 4-way classification frameworkJ App Mat Sci & Engg Res20248116
GrambaiteRSelnesPReinvangIAarslandDHessenEGjerstadLFladbyTExecutive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tractsJ Alzheimers Dis201127245346210.3233/JAD-2011-110290
Mabrouk B, Hamida AB, Mabrouki N, Bouzidi N, Mhiri C (2024) A novel approach to perform linear discriminant analyses for a 4-way alzheimer’s disease diagnosis based on an integration of pearson’s correlation coefficients and empirical cumulative distribution function. Multimed Tools Appl, pp 1–17
BusattoGFDinizBSZanettiMVVoxel-based morphometry in alzheimer’s diseaseExpert review of neurotherapeutics20088111691170210.1586/14737175.8.11.1691
ParkerTDSlatteryCFZhangJNicholasJMPatersonRWFoulkesAJMaloneIBThomasDLModatMCashDMCortical microstructure in young onset alzheimer’s disease using neurite orientation dispersion and density imagingHum Brain Mapp20183973005301710.1002/hbm.24056
Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS,et al (2019) Quantification of white matter cellularity and damage in preclinical and early symptomatic alzheimer’s disease. NeuroImage: Clinical 22:101767
Van den StockJTamiettoMSorgerBPichonSGrézesJde GelderBCortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (v1)Proc Natl Acad Sci201110839161881619310.1073/pnas.1107214108
Mabrouk B, Bouzidi N, Mhiri C, Hamida AB (2022) Combination of volumetric and topologic brain characteristics towards a diagnosis of alzheimer’s disease in his earlier stage. In: 2022 6th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–4. IEEE
Ruiz J, Mahmud M, Modasshir M, Shamim Kaiser M, Alzheimer’s Disease Neuroimaging Initiative f.t 3d densenet ensemble in 4-way classification of alzheimer’s disease. In: Brain informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020, Proceedings 13, pp 85–96 (2020). Springer
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselODuchesnayÉScikit-learn: Machine learning in pythonJ Mach Learn Res201112282528302854348
Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A, Granziera C, Klöppel S, Maeder P et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer’s disease. NeuroImage: Clinical 7:7–17
Jazzar N, Mabrouk B, Douik A (2024) Cnl-resunet: A novel deep learning architecture for stroke image segmentation. In: 2024 IEEE 7th international conference on advanced technologies, signal and image processing (ATSIP), vol 1, pp 99–104. IEEE
Skipper Seabold, Josef Perktold (2010) Statsmodels: Econometric and Statistical Modeling with Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th python in science conference, pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830
Pei Z, Gou Y, Ma M, Guo M, Leng C, Chen Y, Li J (2022) Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network. Multimed Tools Appl, pp 1–16
LinWGaoQDuMChenWTongTMulticlass diagnosis of stages of alzheimer’s disease using linear discriminant analysis scoring for multimodal dataComput Biol Med202113410447810.1016/j.compbiomed.2021.104478
FischlBFreesurfer. Neuroimage201262277478110.1016/j.neuroimage.2012.01.021
GrañaMTermenonMSavioAGonzalez-PintoAEchevesteJPérezJBesgaAComputer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlationNeurosci Lett2011502322522910.1016/j.neulet.2011.07.049
ChangY-THuangC-WChenN-CLinK-JHuangS-HChangW-NHsuS-WHsuC-WChenH-HChangC-CHippocampal amyloid burden with downstream fusiform gyrus atrophy correlate with face matching task scores in early stage alzheimer’s diseaseFront Aging Neurosci2016814510.3389/fnagi.2016.00145
RaghavaiahPVaradarajanSA cad system design to diagnosize alzheimers disease from mri brain images using optimal deep neural networkMultimed Tools Appl20218017264112642810.1007/s11042-021-10928-7
DickersonBCWolk DA Mri cortical thickness biomarker predicts ad-like csf and cognitive decline in normal adultsNeurology2012782849010.1212/WNL.0b013e31823efc6c
ParkSKimSYA comparison between av45 and fdg-pet in alzheimer’s disease diagnosisInt J Biome Imaging20182018124743010.1155/2018/1247430
JijiGWBiomarker to find neurodegenerative diseases using the structural changes in brain using computer visionMultimed Tools Appl20238222349813499310.1007/s11042-023-14951-8
BiswasRGiniJRMulti-class classification of alzheimer’s disease detection from 3d mri image using ml techniques and its performance analysisMultimed Tools Appl20248311335273355410.1007/s11042-023-16519-y
LiALiFElahifasaeeFLiuMZhangLHippocampal shape and asymmetry analysis by cascaded convolutional neural networks for alzheimer’s disease diagnosisBrain Imaging Behav20211552330233910.1007/s11682-020-00427-y
SongS-KSunS-WJuW-KLinS-JCrossAHNeufeldAHDiffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemiaNeuroimage20032031714172210.1016/j.neuroimage.2003.07.005
den HaanJVerbraakFDVisserPJBouwmanFHRetinal thickness in alzheimer’s disease: a systematic review and meta-analysisAlzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring20176162170
MabroukBBenHamidaADrissiNBouzidiNMhiri C Contribution of brain regions asymmetry scores combined with random forest classifier in the diagnosis of alzheimer’s disease in his earlier stageJ Med Biol Eng2023431748210.1007/s40846-023-00775-2
WuZGaoYPotterTBenoitJShenJSchulzPEZhangYInitiativeADNInteractions between aging and alzheimer’s disease on structural brain networksFront Aging Neurosci20211363979510.3389/fnagi.2021.639795
ZhuDCMajumdarSKorolevIOBergerKLBozokiACAlzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging studyJ Alzheimers Dis201334496998410.3233/JAD-121879
SabuncuMRDesikanRSSepulcreJYeoBTTLiuHSchmanskyNJReuterMWeinerMWBucknerRLSperlingRAThe dynamics of cortical and hippocampal atrophy in alzheimer diseaseArch Neurol20116881040104810.1001/archneurol.2011.167
SpornsOTononiGEdelmanGMTheoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matricesCereb Cortex200010212714110.1093/cercor/10.2.127
BartzokisGAlzheimer’s disease as homeostatic responses to age-related myelin breakdownNeurobiol Aging20113281341137110.1016/j.neurobiolaging.2009.08.007
La RoccaMAmorosoNMonacoABellottiRTangaroSInitiativeADNA novel approach to brain connectivity reveals early structural changes in alzheimer’s diseasePhysiol Genomics2018397074005
Suchitra S, Krishnasamy L, Poovaraghan R (2024) A deep learning-based early alzheimer’s disease detection using magnetic resonance images. Multimed Tools Appl, pp 1–22
Lisowska A, Rekik I, AbbVie AA, Foundation ADD, Biotech A, Bio-Clinica I, Biogen Company B-MS, CereSpir I, Cogstate et al (2019) Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connectivity 9(1):22–36
RisacherSLShenLWestJDKimSMcDonaldBCBeckettLAHarveyDJJackCRJrWeinerMWSaykinAJLongitudinal mri atrophy biomarkers: relationship to conversion in the adni cohortNeurobiol Aging20103181401141810.1016/j.neurobiolaging.2010.04.029
FengCWangHLuNChenTHeHLuYTuXLog-transformation and its implications for data analysisShanghai Arch Psychiatry201426105109
GhazalTMIssaGAlzheimer disease detection empowered with transfer learningComputers, Materials & Continua20227035005501910.32604/cmc.2022.020866
UysalGOzturkMComparative analysis of different brain regions using machine learning for prediction of emci and lmci stages of alzheimer’s diseaseMultimed Tools Appl2024837214552147010.1007/s11042-023-16413-7
ShahwarTZafarJAlmogrenAZafarHRehmanAUShafiqMHamamHAutomated detection of alzheimer’s via hybrid classical quantum neural networksElectronics202211572110.3390/electronics11050721
KimG-WKimB-CParkKSJeongG-WA pilot study of brain morphometry following donepezil treatment in mild cognitive impairment: volume changes of cortical/subcortical regions and hippocampal subfieldsSci Rep20201011091210.1038/s41598-020-67873-y
JahanshahiARNaghdi SadehRKhezerlooDAtrophy asymmetry in hippocampal subfields in patients with alzheimer’s disease and mild cognitive impairmentExp Brain Res2023241249550410.1007/s00221-022-06543-z
HirataYMatsudaHNemotoKOhnishiTHiraoKYamashitaFAsadaTIwabuchiSSamejimaHVoxel-based morphometry to discriminate early alzheimer’s disease from controlsNeurosci Lett2005382326927410.1016/j.neulet.2005.03.038
McDonaldCMcEvoyLGharapetianLFennema-NotestineCHaglerDHollandDKoyamaABrewerJDaleARegional rates of neocortical atrophy from normal aging to early alzheimer diseaseNeurology200973645746510.1212/WNL.0b013e3181b16431
Ravi V, EA G, KP S et al (2024) Deep learning-based approach for multi-stage diagnosis of alzheimer’s disease. Multimed Tools Appl 83(6):16799–16822
Graham RL (1994) Concrete Mathematics: a Foundation for Computer Science. Pearson Education India, ???
TakahashiHIshiiKKashiwagiNWatanabeYTanakaHMurakamiTTomiyamaNClinical applica
B Mabrouk (20254_CR3) 2023; 43
M Kim (20254_CR10) 2021; 11
W Lin (20254_CR46) 2021; 134
C McDonald (20254_CR66) 2009; 73
BC Dickerson (20254_CR4) 2012; 78
20254_CR27
MR Sabuncu (20254_CR6) 2011; 68
20254_CR32
S Liu (20254_CR44) 2014; 62
20254_CR33
J Van den Stock (20254_CR59) 2011; 108
Y Hirata (20254_CR12) 2005; 382
X Tang (20254_CR49) 2021; 10
J den Haan (20254_CR62) 2017; 6
TD Parker (20254_CR65) 2018; 39
R Biswas (20254_CR20) 2024; 83
20254_CR16
AB Tufail (20254_CR19) 2022; 22
P Raghavaiah (20254_CR51) 2021; 80
SL Risacher (20254_CR5) 2010; 31
K Aditya Shastry (20254_CR15) 2024; 83
HM Ahmed (20254_CR52) 2023; 82
GW Jiji (20254_CR2) 2023; 82
20254_CR1
20254_CR21
20254_CR22
20254_CR23
M La Rocca (20254_CR31) 2018; 39
DC Zhu (20254_CR54) 2013; 34
M Liu (20254_CR17) 2020; 208
TM Ghazal (20254_CR48) 2022; 70
T Shahwar (20254_CR18) 2022; 11
B Mabrouk (20254_CR24) 2024; 8
G Bartzokis (20254_CR28) 2011; 32
M Graña (20254_CR30) 2011; 502
20254_CR60
AJ Mejia-Vergara (20254_CR61) 2021; 420
O Sporns (20254_CR34) 2000; 10
SV de Souza (20254_CR42) 2005; 552
X-a Bi (20254_CR55) 2018; 12
G-W Kim (20254_CR9) 2020; 10
G Uysal (20254_CR11) 2024; 83
AR Jahanshahi (20254_CR7) 2023; 241
20254_CR53
20254_CR14
N Amoroso (20254_CR37) 2017; 1
R Rouw (20254_CR58) 2010; 30
Z Wu (20254_CR35) 2021; 13
Y-T Chang (20254_CR56) 2016; 8
F Pedregosa (20254_CR38) 2011; 12
S-K Song (20254_CR26) 2003; 20
C Feng (20254_CR39) 2014; 26
D Yao (20254_CR45) 2018; 302
GF Busatto (20254_CR13) 2008; 8
B Fischl (20254_CR36) 2012; 62
20254_CR41
S Park (20254_CR50) 2018; 2018
20254_CR43
20254_CR47
A Li (20254_CR8) 2021; 15
S Tekin (20254_CR57) 2001; 49
H Takahashi (20254_CR25) 2017; 72
S Neufang (20254_CR63) 2011; 25
Y Xue (20254_CR29) 2019; 10
R Grambaite (20254_CR64) 2011; 27
20254_CR40
References_xml – reference: den HaanJVerbraakFDVisserPJBouwmanFHRetinal thickness in alzheimer’s disease: a systematic review and meta-analysisAlzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring20176162170
– reference: AmorosoNMonacoATangaroSNeuroimaging Initiative AD (2017) Topological measurements of dwi tractography for alzheimer’s disease detectionComput Math Methods Med201715271627
– reference: AhmedHMElsharkawyZFElkoranyASAlzheimer disease diagnosis for magnetic resonance brain images using deep learning neural networksMultimed Tools Appl20238212179631797710.1007/s11042-022-14203-1
– reference: TangXLiuJComparing different algorithms for the course of alzheimer’s disease using machine learningAnn Palliat Med20211099715724971972410.21037/apm-21-2013
– reference: UysalGOzturkMComparative analysis of different brain regions using machine learning for prediction of emci and lmci stages of alzheimer’s diseaseMultimed Tools Appl2024837214552147010.1007/s11042-023-16413-7
– reference: SabuncuMRDesikanRSSepulcreJYeoBTTLiuHSchmanskyNJReuterMWeinerMWBucknerRLSperlingRAThe dynamics of cortical and hippocampal atrophy in alzheimer diseaseArch Neurol20116881040104810.1001/archneurol.2011.167
– reference: LiuMLiFYanHWangKMaYShenLXuMInitiativeADNA multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in alzheimer’s diseaseNeuroimage202020810.1016/j.neuroimage.2019.116459
– reference: Mabrouk B, Bouzidi N, Mhiri C, Hamida AB (2022) Combination of volumetric and topologic brain characteristics towards a diagnosis of alzheimer’s disease in his earlier stage. In: 2022 6th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–4. IEEE
– reference: FengCWangHLuNChenTHeHLuYTuXLog-transformation and its implications for data analysisShanghai Arch Psychiatry201426105109
– reference: RisacherSLShenLWestJDKimSMcDonaldBCBeckettLAHarveyDJJackCRJrWeinerMWSaykinAJLongitudinal mri atrophy biomarkers: relationship to conversion in the adni cohortNeurobiol Aging20103181401141810.1016/j.neurobiolaging.2010.04.029
– reference: YaoDCalhounVDFuZDuYSuiJAn ensemble learning system for a 4-way classification of alzheimer’s disease and mild cognitive impairmentJ Neurosci Methods2018302758110.1016/j.jneumeth.2018.03.008
– reference: DickersonBCWolk DA Mri cortical thickness biomarker predicts ad-like csf and cognitive decline in normal adultsNeurology2012782849010.1212/WNL.0b013e31823efc6c
– reference: BiX-aXuQLuoXSunQWangZAnalysis of progression toward alzheimer’s disease based on evolutionary weighted random support vector machine clusterFront Neurol20181271610.3389/fnins.2018.00716
– reference: GhazalTMIssaGAlzheimer disease detection empowered with transfer learningComputers, Materials & Continua20227035005501910.32604/cmc.2022.020866
– reference: KimG-WKimB-CParkKSJeongG-WA pilot study of brain morphometry following donepezil treatment in mild cognitive impairment: volume changes of cortical/subcortical regions and hippocampal subfieldsSci Rep20201011091210.1038/s41598-020-67873-y
– reference: TufailABAnwarNOthmanMTBUllahIKhanRAMaY-KAdhikariDRehmanAUShafiqMHamamHEarly-stage alzheimer’s disease categorization using pet neuroimaging modality and convolutional neural networks in the 2d and 3d domainsSensors20222212460910.3390/s22124609
– reference: Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830
– reference: La RoccaMAmorosoNMonacoABellottiRTangaroSInitiativeADNA novel approach to brain connectivity reveals early structural changes in alzheimer’s diseasePhysiol Genomics2018397074005
– reference: HirataYMatsudaHNemotoKOhnishiTHiraoKYamashitaFAsadaTIwabuchiSSamejimaHVoxel-based morphometry to discriminate early alzheimer’s disease from controlsNeurosci Lett2005382326927410.1016/j.neulet.2005.03.038
– reference: RaghavaiahPVaradarajanSA cad system design to diagnosize alzheimers disease from mri brain images using optimal deep neural networkMultimed Tools Appl20218017264112642810.1007/s11042-021-10928-7
– reference: Mejia-VergaraAJKaranjiaRSadunAAOct parameters of the optic nerve head and the retina as surrogate markers of brain volume in a normal population, a pilot studyJ Neurol Sci202142011721310.1016/j.jns.2020.117213
– reference: MabroukBBenHamidaADrissiNBouzidiNMhiri C Contribution of brain regions asymmetry scores combined with random forest classifier in the diagnosis of alzheimer’s disease in his earlier stageJ Med Biol Eng2023431748210.1007/s40846-023-00775-2
– reference: BusattoGFDinizBSZanettiMVVoxel-based morphometry in alzheimer’s diseaseExpert review of neurotherapeutics20088111691170210.1586/14737175.8.11.1691
– reference: NeufangSAkhrifARiedlVFörstlHKurzAZimmerCSorgCWohlschlägerAMDisconnection of frontal and parietal areas contributes to impaired attention in very early alzheimer’s diseaseJ Alzheimers Dis201125230932110.3233/JAD-2011-102154
– reference: Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A, Granziera C, Klöppel S, Maeder P et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer’s disease. NeuroImage: Clinical 7:7–17
– reference: Lisowska A, Rekik I, AbbVie AA, Foundation ADD, Biotech A, Bio-Clinica I, Biogen Company B-MS, CereSpir I, Cogstate et al (2019) Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connectivity 9(1):22–36
– reference: ChangY-THuangC-WChenN-CLinK-JHuangS-HChangW-NHsuS-WHsuC-WChenH-HChangC-CHippocampal amyloid burden with downstream fusiform gyrus atrophy correlate with face matching task scores in early stage alzheimer’s diseaseFront Aging Neurosci2016814510.3389/fnagi.2016.00145
– reference: BartzokisGAlzheimer’s disease as homeostatic responses to age-related myelin breakdownNeurobiol Aging20113281341137110.1016/j.neurobiolaging.2009.08.007
– reference: MabroukBJazzarNSallemiLHamidaABA comparative study of pca and lda for dimensionality reduction in a 4-way classification frameworkJ App Mat Sci & Engg Res20248116
– reference: Jazzar N, Mabrouk B, Douik A (2024) Cnl-resunet: A novel deep learning architecture for stroke image segmentation. In: 2024 IEEE 7th international conference on advanced technologies, signal and image processing (ATSIP), vol 1, pp 99–104. IEEE
– reference: Suchitra S, Krishnasamy L, Poovaraghan R (2024) A deep learning-based early alzheimer’s disease detection using magnetic resonance images. Multimed Tools Appl, pp 1–22
– reference: LiALiFElahifasaeeFLiuMZhangLHippocampal shape and asymmetry analysis by cascaded convolutional neural networks for alzheimer’s disease diagnosisBrain Imaging Behav20211552330233910.1007/s11682-020-00427-y
– reference: Lock M (2013) The alzheimer conundrum. In: The Alzheimer Conundrum. Princeton University Press, ???
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselODuchesnayÉScikit-learn: Machine learning in pythonJ Mach Learn Res201112282528302854348
– reference: Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS,et al (2019) Quantification of white matter cellularity and damage in preclinical and early symptomatic alzheimer’s disease. NeuroImage: Clinical 22:101767
– reference: ParkerTDSlatteryCFZhangJNicholasJMPatersonRWFoulkesAJMaloneIBThomasDLModatMCashDMCortical microstructure in young onset alzheimer’s disease using neurite orientation dispersion and density imagingHum Brain Mapp20183973005301710.1002/hbm.24056
– reference: Pei Z, Gou Y, Ma M, Guo M, Leng C, Chen Y, Li J (2022) Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network. Multimed Tools Appl, pp 1–16
– reference: XueYZhangZWenCLiuHWangSLiJZhugeQChenWYeQCharacterization of alzheimer’s disease using ultra-high b-values apparent diffusion coefficient and diffusion kurtosis imagingAging Dis2019105102610.14336/AD.2018.1129
– reference: Ruiz J, Mahmud M, Modasshir M, Shamim Kaiser M, Alzheimer’s Disease Neuroimaging Initiative f.t 3d densenet ensemble in 4-way classification of alzheimer’s disease. In: Brain informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020, Proceedings 13, pp 85–96 (2020). Springer
– reference: KimMKimSJParkJEYunJShimWHOhJSOhMRohJHSeoSWOhSJCombination of automated brain volumetry on mri and quantitative tau deposition on thk-5351 pet to support diagnosis of alzheimer’s diseaseSci Rep20211111034310.1038/s41598-021-89797-x
– reference: GrañaMTermenonMSavioAGonzalez-PintoAEchevesteJPérezJBesgaAComputer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlationNeurosci Lett2011502322522910.1016/j.neulet.2011.07.049
– reference: Skipper Seabold, Josef Perktold (2010) Statsmodels: Econometric and Statistical Modeling with Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th python in science conference, pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011
– reference: ShahwarTZafarJAlmogrenAZafarHRehmanAUShafiqMHamamHAutomated detection of alzheimer’s via hybrid classical quantum neural networksElectronics202211572110.3390/electronics11050721
– reference: JijiGWBiomarker to find neurodegenerative diseases using the structural changes in brain using computer visionMultimed Tools Appl20238222349813499310.1007/s11042-023-14951-8
– reference: Van den StockJTamiettoMSorgerBPichonSGrézesJde GelderBCortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (v1)Proc Natl Acad Sci201110839161881619310.1073/pnas.1107214108
– reference: GrambaiteRSelnesPReinvangIAarslandDHessenEGjerstadLFladbyTExecutive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tractsJ Alzheimers Dis201127245346210.3233/JAD-2011-110290
– reference: TekinSMegaMSMastermanDMChowTGarakianJVintersHVCummingsJLOrbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in alzheimer diseaseAnn Neurol200149335536110.1002/ana.72
– reference: McDonaldCMcEvoyLGharapetianLFennema-NotestineCHaglerDHollandDKoyamaABrewerJDaleARegional rates of neocortical atrophy from normal aging to early alzheimer diseaseNeurology200973645746510.1212/WNL.0b013e3181b16431
– reference: JahanshahiARNaghdi SadehRKhezerlooDAtrophy asymmetry in hippocampal subfields in patients with alzheimer’s disease and mild cognitive impairmentExp Brain Res2023241249550410.1007/s00221-022-06543-z
– reference: TakahashiHIshiiKKashiwagiNWatanabeYTanakaHMurakamiTTomiyamaNClinical application of apparent diffusion coefficient mapping in voxel-based morphometry in the diagnosis of alzheimer’s diseaseClin Radiol201772210811510.1016/j.crad.2016.11.002
– reference: Mabrouk B, Hamida AB, Mabrouki N, Bouzidi N, Mhiri C (2024) A novel approach to perform linear discriminant analyses for a 4-way alzheimer’s disease diagnosis based on an integration of pearson’s correlation coefficients and empirical cumulative distribution function. Multimed Tools Appl, pp 1–17
– reference: ZhuDCMajumdarSKorolevIOBergerKLBozokiACAlzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging studyJ Alzheimers Dis201334496998410.3233/JAD-121879
– reference: LiuSLiuSCaiWCheHPujolSKikinisRFengDFulhamMJMultimodal neuroimaging feature learning for multiclass diagnosis of alzheimer’s diseaseIEEE Trans Biomed Eng20146241132114010.1109/TBME.2014.2372011
– reference: FischlBFreesurfer. Neuroimage201262277478110.1016/j.neuroimage.2012.01.021
– reference: Graham RL (1994) Concrete Mathematics: a Foundation for Computer Science. Pearson Education India, ???
– reference: BiswasRGiniJRMulti-class classification of alzheimer’s disease detection from 3d mri image using ml techniques and its performance analysisMultimed Tools Appl20248311335273355410.1007/s11042-023-16519-y
– reference: RouwRScholteHSNeural basis of individual differences in synesthetic experiencesJ Neurol2010301862056213
– reference: Aditya ShastryKSanjayHArtificial intelligence techniques for the effective diagnosis of alzheimer’s disease: a reviewMultimed Tools Appl20248313400574009210.1007/s11042-023-16928-z
– reference: SongS-KSunS-WJuW-KLinS-JCrossAHNeufeldAHDiffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemiaNeuroimage20032031714172210.1016/j.neuroimage.2003.07.005
– reference: LinWGaoQDuMChenWTongTMulticlass diagnosis of stages of alzheimer’s disease using linear discriminant analysis scoring for multimodal dataComput Biol Med202113410447810.1016/j.compbiomed.2021.104478
– reference: de SouzaSVJunqueiraRGA procedure to assess linearity by ordinary least squares methodAnal Chim Acta20055521–2253510.1016/j.aca.2005.07.043
– reference: Younes L, Albert M, Miller MI, Team BR,et al (2014) Inferring changepoint times of medial temporal lobe morphometric change in preclinical alzheimer’s disease. NeuroImage: Clinical 5:178–187
– reference: WuZGaoYPotterTBenoitJShenJSchulzPEZhangYInitiativeADNInteractions between aging and alzheimer’s disease on structural brain networksFront Aging Neurosci20211363979510.3389/fnagi.2021.639795
– reference: ParkSKimSYA comparison between av45 and fdg-pet in alzheimer’s disease diagnosisInt J Biome Imaging20182018124743010.1155/2018/1247430
– reference: Ravi V, EA G, KP S et al (2024) Deep learning-based approach for multi-stage diagnosis of alzheimer’s disease. Multimed Tools Appl 83(6):16799–16822
– reference: SpornsOTononiGEdelmanGMTheoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matricesCereb Cortex200010212714110.1093/cercor/10.2.127
– volume: 83
  start-page: 40057
  issue: 13
  year: 2024
  ident: 20254_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16928-z
– ident: 20254_CR60
  doi: 10.1089/brain.2018.0578
– volume: 22
  start-page: 4609
  issue: 12
  year: 2022
  ident: 20254_CR19
  publication-title: Sensors
  doi: 10.3390/s22124609
– volume: 72
  start-page: 108
  issue: 2
  year: 2017
  ident: 20254_CR25
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2016.11.002
– volume: 6
  start-page: 162
  year: 2017
  ident: 20254_CR62
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 8
  start-page: 1691
  issue: 11
  year: 2008
  ident: 20254_CR13
  publication-title: Expert review of neurotherapeutics
  doi: 10.1586/14737175.8.11.1691
– volume: 43
  start-page: 74
  issue: 1
  year: 2023
  ident: 20254_CR3
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-023-00775-2
– volume: 302
  start-page: 75
  year: 2018
  ident: 20254_CR45
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2018.03.008
– volume: 208
  year: 2020
  ident: 20254_CR17
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– ident: 20254_CR32
  doi: 10.1109/ATSIP55956.2022.9805914
– ident: 20254_CR53
  doi: 10.1016/j.nicl.2014.04.009
– volume: 39
  start-page: 3005
  issue: 7
  year: 2018
  ident: 20254_CR65
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24056
– volume: 10
  start-page: 127
  issue: 2
  year: 2000
  ident: 20254_CR34
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/10.2.127
– volume: 12
  start-page: 2825
  year: 2011
  ident: 20254_CR38
  publication-title: J Mach Learn Res
– ident: 20254_CR14
  doi: 10.1016/j.nicl.2014.11.001
– ident: 20254_CR22
  doi: 10.1007/s11042-024-19677-9
– volume: 27
  start-page: 453
  issue: 2
  year: 2011
  ident: 20254_CR64
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-110290
– volume: 73
  start-page: 457
  issue: 6
  year: 2009
  ident: 20254_CR66
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181b16431
– volume: 8
  start-page: 145
  year: 2016
  ident: 20254_CR56
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2016.00145
– ident: 20254_CR43
– volume: 68
  start-page: 1040
  issue: 8
  year: 2011
  ident: 20254_CR6
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2011.167
– volume: 32
  start-page: 1341
  issue: 8
  year: 2011
  ident: 20254_CR28
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.08.007
– volume: 39
  start-page: 074005
  issue: 7
  year: 2018
  ident: 20254_CR31
  publication-title: Physiol Genomics
– volume: 78
  start-page: 84
  issue: 2
  year: 2012
  ident: 20254_CR4
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823efc6c
– volume: 31
  start-page: 1401
  issue: 8
  year: 2010
  ident: 20254_CR5
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.029
– volume: 13
  start-page: 639795
  year: 2021
  ident: 20254_CR35
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2021.639795
– volume: 1
  start-page: 5271627
  year: 2017
  ident: 20254_CR37
  publication-title: Comput Math Methods Med
– volume: 12
  start-page: 716
  year: 2018
  ident: 20254_CR55
  publication-title: Front Neurol
  doi: 10.3389/fnins.2018.00716
– volume: 8
  start-page: 1
  issue: 1
  year: 2024
  ident: 20254_CR24
  publication-title: J App Mat Sci & Engg Res
– volume: 30
  start-page: 6205
  issue: 18
  year: 2010
  ident: 20254_CR58
  publication-title: J Neurol
– volume: 62
  start-page: 1132
  issue: 4
  year: 2014
  ident: 20254_CR44
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 2018
  start-page: 1247430
  year: 2018
  ident: 20254_CR50
  publication-title: Int J Biome Imaging
  doi: 10.1155/2018/1247430
– volume: 10
  start-page: 10912
  issue: 1
  year: 2020
  ident: 20254_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67873-y
– ident: 20254_CR1
  doi: 10.23943/princeton/9780691149783.001.0001
– volume: 82
  start-page: 34981
  issue: 22
  year: 2023
  ident: 20254_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-14951-8
– volume: 10
  start-page: 9715724
  issue: 9
  year: 2021
  ident: 20254_CR49
  publication-title: Ann Palliat Med
  doi: 10.21037/apm-21-2013
– volume: 25
  start-page: 309
  issue: 2
  year: 2011
  ident: 20254_CR63
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-102154
– volume: 11
  start-page: 10343
  issue: 1
  year: 2021
  ident: 20254_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89797-x
– volume: 15
  start-page: 2330
  issue: 5
  year: 2021
  ident: 20254_CR8
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-020-00427-y
– volume: 34
  start-page: 969
  issue: 4
  year: 2013
  ident: 20254_CR54
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-121879
– ident: 20254_CR40
– volume: 552
  start-page: 25
  issue: 1–2
  year: 2005
  ident: 20254_CR42
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2005.07.043
– volume: 82
  start-page: 17963
  issue: 12
  year: 2023
  ident: 20254_CR52
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-14203-1
– volume: 382
  start-page: 269
  issue: 3
  year: 2005
  ident: 20254_CR12
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.03.038
– ident: 20254_CR47
  doi: 10.1007/978-3-030-59277-6_8
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 20254_CR36
  publication-title: Freesurfer. Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 26
  start-page: 105
  year: 2014
  ident: 20254_CR39
  publication-title: Shanghai Arch Psychiatry
– volume: 83
  start-page: 21455
  issue: 7
  year: 2024
  ident: 20254_CR11
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16413-7
– volume: 11
  start-page: 721
  issue: 5
  year: 2022
  ident: 20254_CR18
  publication-title: Electronics
  doi: 10.3390/electronics11050721
– ident: 20254_CR23
  doi: 10.1007/s11042-023-16026-0
– volume: 10
  start-page: 1026
  issue: 5
  year: 2019
  ident: 20254_CR29
  publication-title: Aging Dis
  doi: 10.14336/AD.2018.1129
– volume: 241
  start-page: 495
  issue: 2
  year: 2023
  ident: 20254_CR7
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-022-06543-z
– ident: 20254_CR27
  doi: 10.1016/j.nicl.2019.101767
– volume: 49
  start-page: 355
  issue: 3
  year: 2001
  ident: 20254_CR57
  publication-title: Ann Neurol
  doi: 10.1002/ana.72
– ident: 20254_CR33
  doi: 10.21203/rs.3.rs-3020768/v1
– volume: 420
  start-page: 117213
  year: 2021
  ident: 20254_CR61
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2020.117213
– ident: 20254_CR41
  doi: 10.25080/Majora-92bf1922-011
– volume: 134
  start-page: 104478
  year: 2021
  ident: 20254_CR46
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104478
– volume: 108
  start-page: 16188
  issue: 39
  year: 2011
  ident: 20254_CR59
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1107214108
– volume: 83
  start-page: 33527
  issue: 11
  year: 2024
  ident: 20254_CR20
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16519-y
– volume: 502
  start-page: 225
  issue: 3
  year: 2011
  ident: 20254_CR30
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2011.07.049
– volume: 80
  start-page: 26411
  issue: 17
  year: 2021
  ident: 20254_CR51
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10928-7
– ident: 20254_CR21
  doi: 10.1007/s11042-021-11279-z
– volume: 20
  start-page: 1714
  issue: 3
  year: 2003
  ident: 20254_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.07.005
– volume: 70
  start-page: 5005
  issue: 3
  year: 2022
  ident: 20254_CR48
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.020866
– ident: 20254_CR16
  doi: 10.1109/ATSIP62566.2024.10639018
SSID ssj0016524
Score 2.3671935
Snippet Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 86059
SubjectTerms Alzheimer's disease
Brain
Classification
Cognitive ability
Computer Communication Networks
Computer Science
Correlation coefficients
Data Structures and Information Theory
Disease control
Impairment
Least squares method
Linearity
Magnetic resonance
Medical imaging
Multimedia Information Systems
Regression models
Special Purpose and Application-Based Systems
Tensors
Track 8: Medical Imaging
Title A novel approach to enhance feature selection using linearity assessment with ordinary least squares regression for Alzheimer’s Disease stage classification
URI https://link.springer.com/article/10.1007/s11042-024-20254-3
https://www.proquest.com/docview/3129055922
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB314wIHSguooSWaQ29gKVnv2uujC0krUCuEiFRO1n6mSMEpccqhp_6NXvhx_BJmN3YDCA6cfLC9l7cfb3bmvQE4Sm3hmfQ8YUJqClDsMClymyVWUUDkjVUuXuifnWenE_72Qly0orCmq3bvUpJxp16L3YZBSkJnCiFLYU2SbsK2CHZeNIsnrLzPHWSC8VYe8_f_fj-C1rzyj1RoPGHGj-FRSw2xXGG5Cxuu3oOdru0CtqtwDx7-4iH4BL6XWM-_uRl27uC4nKOrLwOa6F307cQmdrshCDDUuU8xcEsV2tahunfmxHAlixSLRoUuzkJTH2y-XgeBEi7cdFUwWyOxXCxnN5fu8xe3-HF71-CbVZIHiWhOHZrAx0MBUsT8KUzGo4-vT5O26UJiiBymCREm7tOBobWppB1IPRSaaTPICsVyIawvnNHcpEUmcquJIFgnjSpsIbNgxZenz2CrntduH1DkynguneXS0Jheacu594Y54fjA6B687HCorlbeGtXaRTmgVhFqVUStSntw2EFVteusqdJwjUZBEWM9eNXBt37979Ge_9_nB_CAhRkURYiHsLVcXLsXxEaWug-bcnzSh-3y5NO7ET2PR-fvP_TjlPwJrN3haw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07c9NAEN4hTpGkICTAYAhki3RBGft0p0fpgQSTVxXPhEpzTyeDkYNlU6Tib9Dw4_gl7J2kGDJQpJZ0czO7q_v2dr9vAfZikzuWOR4xkSlKUEw_ylOTREZSQuS0kTZc6J-dJ8MRP74Ulw0prGq73duSZPhTL8lufU8loTOFLEtpTRSvwCqnBIV1YHXw4dPJ4V31IBGMNwSZf3_59yG0RJb3iqHhjDnahFG7u7q15PPBYq4O9O094caHbv8JPG5AJw5qL9mCR7bchs12oAM28b0NG3-oEz6FnwMsp9_sBFvdcZxP0ZZX3k_Q2aAIilWYo0PGRd9BP0aPWqUfiIfyTvMT_WUvUpYbuL848eOCsPq68NQnnNlx3YpbIuFnHExur-z1Fzv79f1Hhe_r8hEShB1b1B7p-9am4E3PYHR0ePFuGDXjHCJNsDOOCIpxF_c0Rb3MTC9TfaGY0r0klywVwrjcasV1nCciNYqgh7GZlrnJs8SL_KXxc-iU09K-ABSp1I5n1vBM05pOKsO5c5pZYXlPqy7st_YtbmrVjmKpz-wNUZAhimCIIu7CTusCRRPBVRH7CzpKtxjrwtvWosvH_1_t5cNe34W14cXZaXH68fzkFawz7yCB6rgDnflsYV8T5pmrN42L_wbGLf0p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09TxtBEB0FR0JJQQIE4eCEKdLBCXtv9z5KK8SCBFAKLNGd9tNGMmdimxSp8jdo8uPyS5jdu8OAkoL69rZ5u5o3O_PeAHyKTe5Y5njERKYoQTG9KE9NEhlJCZHTRtrwoH96lhwN-dcLcfFAxR-63ZuSZKVp8C5N5eLg2riDpfCt52UlFF8IZUpxongFXnJvlEAnesj693WERDBeS2X-_d_jcLTkmE_KoiHaDN7CWk0TsV_hug4vbLkBb5oRDFjfyA14_cBPcBP-9LGc_rQTbJzCcTFFW449suhs8PDEeZh8Q3Cg73kfoeeZ0o-wQ3nv0on-eRYpLw1qXZz4AT84_3HjxUo4s6OqebZEYrzYn_wa28srO_v7-3aOh1XBB4l0jixqz819M1LA_x0MB1_OPx9F9QCGSBNRjCMiT9zFXU33VGamm6meUEzpbpJLlgphXG614jrOE5EaRWTB2EzL3ORZ4m350ngLWuW0tNuAIpXa8cwanmna00llOHdOMyss72rVhr0Gh-K68tkolo7KHrWCUCsCakXchk4DVVHfuXkR-yc1SpAYa8N-A9_y8_93e_-85buw-v1wUJwcn33bgVfMH6agTexAazG7sR-IpCzUx3AO7wClqeR_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+to+enhance+feature+selection+using+linearity+assessment+with+ordinary+least+squares+regression+for+Alzheimer%E2%80%99s+Disease+stage+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Mabrouk%2C+Besma&rft.au=Bouattour%2C+Nadia&rft.au=Mabrouki%2C+Noura&rft.au=Sellami%2C+Lamia&rft.date=2024-11-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=38&rft.spage=86059&rft.epage=86078&rft_id=info:doi/10.1007%2Fs11042-024-20254-3&rft.externalDocID=10_1007_s11042_024_20254_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon