A novel approach to enhance feature selection using linearity assessment with ordinary least squares regression for Alzheimer’s Disease stage classification
Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insigh...
Saved in:
| Published in | Multimedia tools and applications Vol. 83; no. 38; pp. 86059 - 86078 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-024-20254-3 |
Cover
| Abstract | Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of
66
%
±
0.06
. In binary classification, the results were equally impressive, with an area under the curve of
0.68
±
0.10
%
for CN vs. EMCI discrimination,
99
±
0.02
%
for distinguishing LMCI from adjacent classes CN and EMCI, and
0.79
%
±
0.08
for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere. |
|---|---|
| AbstractList | Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of 66%±0.06. In binary classification, the results were equally impressive, with an area under the curve of 0.68±0.10% for CN vs. EMCI discrimination, 99±0.02%for distinguishing LMCI from adjacent classes CN and EMCI, and 0.79%±0.08 for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere. Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known Mild Cognitive Impairment (MCI) cohort are estimated to progress to AD, and the factors influencing conversion remain unknown. Gaining insights into the disease evolution can enhance support strategies and potentially slow down the pathology. Utilizing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, our objective is to construct a framework for distinguishing between Normal Controls (NC) and different stages of Alzheimer’s Disease (AD), encompassing Earlier Mild Cognitive Impairment (EMCI), Later Mild Cognitive Impairment (LMCI), and AD patients. In pursuit of this objective, we preprocessed Diffusion Tensor and Magnetic Resonance brain images from 237 subjects, generating corresponding brain connectivity maps. Notably, we introduce an innovative linearity assessment method that utilizes the Ordinary Least Squares (OLS) linear regression model to identify and select relevant features for classification. This approach effectively identifies features with strong linear relationships to the target variable. Our method’s superiority is demonstrated through a comparative analysis with the traditional SelectKBest approach. By integrating this feature selection strategy with a Logistic Regression model, our study achieves both efficient and highly accurate classification outcomes, highlighting the effectiveness of the proposed method. In a four-class classification scenario, the model attained an accuracy of 66 % ± 0.06 . In binary classification, the results were equally impressive, with an area under the curve of 0.68 ± 0.10 % for CN vs. EMCI discrimination, 99 ± 0.02 % for distinguishing LMCI from adjacent classes CN and EMCI, and 0.79 % ± 0.08 for discriminating AD from healthy subjects. Additionally, the calculation of Pearson’s correlation coefficient has been employed to identify cortical regions affected by changes, explore the nature of fiber disconnection propagation from one stage to another, and establish the traceability of the interference origin between stages. The summarized results reveal an apparent flow of white matter disruption from the right to the left hemisphere. |
| Author | Mabrouk, Besma Bouattour, Nadia Sellami, Lamia Ben Hamida, Ahmed for the Alzheimer’s Disease Neuroimaging Initiative Mabrouki, Noura |
| Author_xml | – sequence: 1 givenname: Besma orcidid: 0000-0002-2378-6320 surname: Mabrouk fullname: Mabrouk, Besma email: mabroukbesma@ymail.com organization: Advanced Technologies for Medicine and Signals ATMS,Department of Electrical and Computer Engineering, National Engineers School – sequence: 2 givenname: Nadia surname: Bouattour fullname: Bouattour, Nadia organization: Department of Neurology, University Hospital Habib Bourguiba – sequence: 3 givenname: Noura surname: Mabrouki fullname: Mabrouki, Noura organization: Department of Psychiatry, University Hospital Taher Sfar – sequence: 4 givenname: Lamia surname: Sellami fullname: Sellami, Lamia organization: Advanced Technologies for Medicine and Signals ATMS,Department of Electrical and Computer Engineering, National Engineers School – sequence: 5 givenname: Ahmed surname: Ben Hamida fullname: Ben Hamida, Ahmed organization: Department IS, College of Computer Science, King Khaled Universiy – sequence: 6 surname: for the Alzheimer’s Disease Neuroimaging Initiative fullname: for the Alzheimer’s Disease Neuroimaging Initiative |
| BookMark | eNp9kb1uFDEQxy2USOSDF6AaiXqJP9a36_IUIEGKRAO15fXO3jnasy8eLyhUeQ0aHo4nwZdDgopqpvh_aOZ3zk5iisjYa8HfCs67KxKCt7Lhsm0kl7pt1At2JnSnmq6T4uSf_SU7J7rnXKy0bM_YzzXE9BVncPt9Ts5voSTAuHXRI0zoypIRCGf0JaQIC4W4gTlEdDmUR3BESLTDWOBbKFtIeQzR5UeY0VEBelhcRoKMmzrokDClDOv5-xbDDvOvpx8E7wJVcW0pboPg55oZpuDdofCSnU5uJnz1Z16wLx_ef76-be4-3Xy8Xt81Xgitml6ZdlLcayVcP_J-EHqQg-cr42Sn9TgZ9EPrlVnpbhyk6EfsvTOj6VfctLxTF-zNMbc-4WFBKvY-LTnWSquENFxrI2VVyaPK50SUcbL7HHb1XCu4PXCwRw62crDPHKyqJnU0URXHDea_0f9x_QZAV5Fj |
| Cites_doi | 10.1007/s11042-023-16928-z 10.1089/brain.2018.0578 10.3390/s22124609 10.1016/j.crad.2016.11.002 10.1586/14737175.8.11.1691 10.1007/s40846-023-00775-2 10.1016/j.jneumeth.2018.03.008 10.1016/j.neuroimage.2019.116459 10.1109/ATSIP55956.2022.9805914 10.1016/j.nicl.2014.04.009 10.1002/hbm.24056 10.1093/cercor/10.2.127 10.1016/j.nicl.2014.11.001 10.1007/s11042-024-19677-9 10.3233/JAD-2011-110290 10.1212/WNL.0b013e3181b16431 10.3389/fnagi.2016.00145 10.1001/archneurol.2011.167 10.1016/j.neurobiolaging.2009.08.007 10.1212/WNL.0b013e31823efc6c 10.1016/j.neurobiolaging.2010.04.029 10.3389/fnagi.2021.639795 10.3389/fnins.2018.00716 10.1109/TBME.2014.2372011 10.1155/2018/1247430 10.1038/s41598-020-67873-y 10.23943/princeton/9780691149783.001.0001 10.1007/s11042-023-14951-8 10.21037/apm-21-2013 10.3233/JAD-2011-102154 10.1038/s41598-021-89797-x 10.1007/s11682-020-00427-y 10.3233/JAD-121879 10.1016/j.aca.2005.07.043 10.1007/s11042-022-14203-1 10.1016/j.neulet.2005.03.038 10.1007/978-3-030-59277-6_8 10.1016/j.neuroimage.2012.01.021 10.1007/s11042-023-16413-7 10.3390/electronics11050721 10.1007/s11042-023-16026-0 10.14336/AD.2018.1129 10.1007/s00221-022-06543-z 10.1016/j.nicl.2019.101767 10.1002/ana.72 10.21203/rs.3.rs-3020768/v1 10.1016/j.jns.2020.117213 10.25080/Majora-92bf1922-011 10.1016/j.compbiomed.2021.104478 10.1073/pnas.1107214108 10.1007/s11042-023-16519-y 10.1016/j.neulet.2011.07.049 10.1007/s11042-021-10928-7 10.1007/s11042-021-11279-z 10.1016/j.neuroimage.2003.07.005 10.32604/cmc.2022.020866 10.1109/ATSIP62566.2024.10639018 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-20254-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 86078 |
| ExternalDocumentID | 10_1007_s11042_024_20254_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c1153-8394f30c531a8d08b15b2bc069a2755df9ecb4c39657db218de8ca9d986094073 |
| IEDL.DBID | U2A |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Sat Jul 26 00:03:52 EDT 2025 Wed Oct 01 04:56:29 EDT 2025 Fri Feb 21 02:40:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 38 |
| Keywords | Alzheimer’s disease Brain connectivity maps Ordinary Least Squares (OLS) Linearity assessment Logistic regression model White matter fiber disruption Diffusion Weighted Imaging (DWI) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1153-8394f30c531a8d08b15b2bc069a2755df9ecb4c39657db218de8ca9d986094073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2378-6320 |
| PQID | 3129055922 |
| PQPubID | 54626 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3129055922 crossref_primary_10_1007_s11042_024_20254_3 springer_journals_10_1007_s11042_024_20254_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241100 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | de SouzaSVJunqueiraRGA procedure to assess linearity by ordinary least squares methodAnal Chim Acta20055521–2253510.1016/j.aca.2005.07.043 LiuSLiuSCaiWCheHPujolSKikinisRFengDFulhamMJMultimodal neuroimaging feature learning for multiclass diagnosis of alzheimer’s diseaseIEEE Trans Biomed Eng20146241132114010.1109/TBME.2014.2372011 MabroukBJazzarNSallemiLHamidaABA comparative study of pca and lda for dimensionality reduction in a 4-way classification frameworkJ App Mat Sci & Engg Res20248116 GrambaiteRSelnesPReinvangIAarslandDHessenEGjerstadLFladbyTExecutive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tractsJ Alzheimers Dis201127245346210.3233/JAD-2011-110290 Mabrouk B, Hamida AB, Mabrouki N, Bouzidi N, Mhiri C (2024) A novel approach to perform linear discriminant analyses for a 4-way alzheimer’s disease diagnosis based on an integration of pearson’s correlation coefficients and empirical cumulative distribution function. Multimed Tools Appl, pp 1–17 BusattoGFDinizBSZanettiMVVoxel-based morphometry in alzheimer’s diseaseExpert review of neurotherapeutics20088111691170210.1586/14737175.8.11.1691 ParkerTDSlatteryCFZhangJNicholasJMPatersonRWFoulkesAJMaloneIBThomasDLModatMCashDMCortical microstructure in young onset alzheimer’s disease using neurite orientation dispersion and density imagingHum Brain Mapp20183973005301710.1002/hbm.24056 Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS,et al (2019) Quantification of white matter cellularity and damage in preclinical and early symptomatic alzheimer’s disease. NeuroImage: Clinical 22:101767 Van den StockJTamiettoMSorgerBPichonSGrézesJde GelderBCortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (v1)Proc Natl Acad Sci201110839161881619310.1073/pnas.1107214108 Mabrouk B, Bouzidi N, Mhiri C, Hamida AB (2022) Combination of volumetric and topologic brain characteristics towards a diagnosis of alzheimer’s disease in his earlier stage. In: 2022 6th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–4. IEEE Ruiz J, Mahmud M, Modasshir M, Shamim Kaiser M, Alzheimer’s Disease Neuroimaging Initiative f.t 3d densenet ensemble in 4-way classification of alzheimer’s disease. In: Brain informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020, Proceedings 13, pp 85–96 (2020). Springer PedregosaFVaroquauxGGramfortAMichelVThirionBGriselODuchesnayÉScikit-learn: Machine learning in pythonJ Mach Learn Res201112282528302854348 Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A, Granziera C, Klöppel S, Maeder P et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer’s disease. NeuroImage: Clinical 7:7–17 Jazzar N, Mabrouk B, Douik A (2024) Cnl-resunet: A novel deep learning architecture for stroke image segmentation. In: 2024 IEEE 7th international conference on advanced technologies, signal and image processing (ATSIP), vol 1, pp 99–104. IEEE Skipper Seabold, Josef Perktold (2010) Statsmodels: Econometric and Statistical Modeling with Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th python in science conference, pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830 Pei Z, Gou Y, Ma M, Guo M, Leng C, Chen Y, Li J (2022) Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network. Multimed Tools Appl, pp 1–16 LinWGaoQDuMChenWTongTMulticlass diagnosis of stages of alzheimer’s disease using linear discriminant analysis scoring for multimodal dataComput Biol Med202113410447810.1016/j.compbiomed.2021.104478 FischlBFreesurfer. Neuroimage201262277478110.1016/j.neuroimage.2012.01.021 GrañaMTermenonMSavioAGonzalez-PintoAEchevesteJPérezJBesgaAComputer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlationNeurosci Lett2011502322522910.1016/j.neulet.2011.07.049 ChangY-THuangC-WChenN-CLinK-JHuangS-HChangW-NHsuS-WHsuC-WChenH-HChangC-CHippocampal amyloid burden with downstream fusiform gyrus atrophy correlate with face matching task scores in early stage alzheimer’s diseaseFront Aging Neurosci2016814510.3389/fnagi.2016.00145 RaghavaiahPVaradarajanSA cad system design to diagnosize alzheimers disease from mri brain images using optimal deep neural networkMultimed Tools Appl20218017264112642810.1007/s11042-021-10928-7 DickersonBCWolk DA Mri cortical thickness biomarker predicts ad-like csf and cognitive decline in normal adultsNeurology2012782849010.1212/WNL.0b013e31823efc6c ParkSKimSYA comparison between av45 and fdg-pet in alzheimer’s disease diagnosisInt J Biome Imaging20182018124743010.1155/2018/1247430 JijiGWBiomarker to find neurodegenerative diseases using the structural changes in brain using computer visionMultimed Tools Appl20238222349813499310.1007/s11042-023-14951-8 BiswasRGiniJRMulti-class classification of alzheimer’s disease detection from 3d mri image using ml techniques and its performance analysisMultimed Tools Appl20248311335273355410.1007/s11042-023-16519-y LiALiFElahifasaeeFLiuMZhangLHippocampal shape and asymmetry analysis by cascaded convolutional neural networks for alzheimer’s disease diagnosisBrain Imaging Behav20211552330233910.1007/s11682-020-00427-y SongS-KSunS-WJuW-KLinS-JCrossAHNeufeldAHDiffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemiaNeuroimage20032031714172210.1016/j.neuroimage.2003.07.005 den HaanJVerbraakFDVisserPJBouwmanFHRetinal thickness in alzheimer’s disease: a systematic review and meta-analysisAlzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring20176162170 MabroukBBenHamidaADrissiNBouzidiNMhiri C Contribution of brain regions asymmetry scores combined with random forest classifier in the diagnosis of alzheimer’s disease in his earlier stageJ Med Biol Eng2023431748210.1007/s40846-023-00775-2 WuZGaoYPotterTBenoitJShenJSchulzPEZhangYInitiativeADNInteractions between aging and alzheimer’s disease on structural brain networksFront Aging Neurosci20211363979510.3389/fnagi.2021.639795 ZhuDCMajumdarSKorolevIOBergerKLBozokiACAlzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging studyJ Alzheimers Dis201334496998410.3233/JAD-121879 SabuncuMRDesikanRSSepulcreJYeoBTTLiuHSchmanskyNJReuterMWeinerMWBucknerRLSperlingRAThe dynamics of cortical and hippocampal atrophy in alzheimer diseaseArch Neurol20116881040104810.1001/archneurol.2011.167 SpornsOTononiGEdelmanGMTheoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matricesCereb Cortex200010212714110.1093/cercor/10.2.127 BartzokisGAlzheimer’s disease as homeostatic responses to age-related myelin breakdownNeurobiol Aging20113281341137110.1016/j.neurobiolaging.2009.08.007 La RoccaMAmorosoNMonacoABellottiRTangaroSInitiativeADNA novel approach to brain connectivity reveals early structural changes in alzheimer’s diseasePhysiol Genomics2018397074005 Suchitra S, Krishnasamy L, Poovaraghan R (2024) A deep learning-based early alzheimer’s disease detection using magnetic resonance images. Multimed Tools Appl, pp 1–22 Lisowska A, Rekik I, AbbVie AA, Foundation ADD, Biotech A, Bio-Clinica I, Biogen Company B-MS, CereSpir I, Cogstate et al (2019) Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connectivity 9(1):22–36 RisacherSLShenLWestJDKimSMcDonaldBCBeckettLAHarveyDJJackCRJrWeinerMWSaykinAJLongitudinal mri atrophy biomarkers: relationship to conversion in the adni cohortNeurobiol Aging20103181401141810.1016/j.neurobiolaging.2010.04.029 FengCWangHLuNChenTHeHLuYTuXLog-transformation and its implications for data analysisShanghai Arch Psychiatry201426105109 GhazalTMIssaGAlzheimer disease detection empowered with transfer learningComputers, Materials & Continua20227035005501910.32604/cmc.2022.020866 UysalGOzturkMComparative analysis of different brain regions using machine learning for prediction of emci and lmci stages of alzheimer’s diseaseMultimed Tools Appl2024837214552147010.1007/s11042-023-16413-7 ShahwarTZafarJAlmogrenAZafarHRehmanAUShafiqMHamamHAutomated detection of alzheimer’s via hybrid classical quantum neural networksElectronics202211572110.3390/electronics11050721 KimG-WKimB-CParkKSJeongG-WA pilot study of brain morphometry following donepezil treatment in mild cognitive impairment: volume changes of cortical/subcortical regions and hippocampal subfieldsSci Rep20201011091210.1038/s41598-020-67873-y JahanshahiARNaghdi SadehRKhezerlooDAtrophy asymmetry in hippocampal subfields in patients with alzheimer’s disease and mild cognitive impairmentExp Brain Res2023241249550410.1007/s00221-022-06543-z HirataYMatsudaHNemotoKOhnishiTHiraoKYamashitaFAsadaTIwabuchiSSamejimaHVoxel-based morphometry to discriminate early alzheimer’s disease from controlsNeurosci Lett2005382326927410.1016/j.neulet.2005.03.038 McDonaldCMcEvoyLGharapetianLFennema-NotestineCHaglerDHollandDKoyamaABrewerJDaleARegional rates of neocortical atrophy from normal aging to early alzheimer diseaseNeurology200973645746510.1212/WNL.0b013e3181b16431 Ravi V, EA G, KP S et al (2024) Deep learning-based approach for multi-stage diagnosis of alzheimer’s disease. Multimed Tools Appl 83(6):16799–16822 Graham RL (1994) Concrete Mathematics: a Foundation for Computer Science. Pearson Education India, ??? TakahashiHIshiiKKashiwagiNWatanabeYTanakaHMurakamiTTomiyamaNClinical applica B Mabrouk (20254_CR3) 2023; 43 M Kim (20254_CR10) 2021; 11 W Lin (20254_CR46) 2021; 134 C McDonald (20254_CR66) 2009; 73 BC Dickerson (20254_CR4) 2012; 78 20254_CR27 MR Sabuncu (20254_CR6) 2011; 68 20254_CR32 S Liu (20254_CR44) 2014; 62 20254_CR33 J Van den Stock (20254_CR59) 2011; 108 Y Hirata (20254_CR12) 2005; 382 X Tang (20254_CR49) 2021; 10 J den Haan (20254_CR62) 2017; 6 TD Parker (20254_CR65) 2018; 39 R Biswas (20254_CR20) 2024; 83 20254_CR16 AB Tufail (20254_CR19) 2022; 22 P Raghavaiah (20254_CR51) 2021; 80 SL Risacher (20254_CR5) 2010; 31 K Aditya Shastry (20254_CR15) 2024; 83 HM Ahmed (20254_CR52) 2023; 82 GW Jiji (20254_CR2) 2023; 82 20254_CR1 20254_CR21 20254_CR22 20254_CR23 M La Rocca (20254_CR31) 2018; 39 DC Zhu (20254_CR54) 2013; 34 M Liu (20254_CR17) 2020; 208 TM Ghazal (20254_CR48) 2022; 70 T Shahwar (20254_CR18) 2022; 11 B Mabrouk (20254_CR24) 2024; 8 G Bartzokis (20254_CR28) 2011; 32 M Graña (20254_CR30) 2011; 502 20254_CR60 AJ Mejia-Vergara (20254_CR61) 2021; 420 O Sporns (20254_CR34) 2000; 10 SV de Souza (20254_CR42) 2005; 552 X-a Bi (20254_CR55) 2018; 12 G-W Kim (20254_CR9) 2020; 10 G Uysal (20254_CR11) 2024; 83 AR Jahanshahi (20254_CR7) 2023; 241 20254_CR53 20254_CR14 N Amoroso (20254_CR37) 2017; 1 R Rouw (20254_CR58) 2010; 30 Z Wu (20254_CR35) 2021; 13 Y-T Chang (20254_CR56) 2016; 8 F Pedregosa (20254_CR38) 2011; 12 S-K Song (20254_CR26) 2003; 20 C Feng (20254_CR39) 2014; 26 D Yao (20254_CR45) 2018; 302 GF Busatto (20254_CR13) 2008; 8 B Fischl (20254_CR36) 2012; 62 20254_CR41 S Park (20254_CR50) 2018; 2018 20254_CR43 20254_CR47 A Li (20254_CR8) 2021; 15 S Tekin (20254_CR57) 2001; 49 H Takahashi (20254_CR25) 2017; 72 S Neufang (20254_CR63) 2011; 25 Y Xue (20254_CR29) 2019; 10 R Grambaite (20254_CR64) 2011; 27 20254_CR40 |
| References_xml | – reference: den HaanJVerbraakFDVisserPJBouwmanFHRetinal thickness in alzheimer’s disease: a systematic review and meta-analysisAlzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring20176162170 – reference: AmorosoNMonacoATangaroSNeuroimaging Initiative AD (2017) Topological measurements of dwi tractography for alzheimer’s disease detectionComput Math Methods Med201715271627 – reference: AhmedHMElsharkawyZFElkoranyASAlzheimer disease diagnosis for magnetic resonance brain images using deep learning neural networksMultimed Tools Appl20238212179631797710.1007/s11042-022-14203-1 – reference: TangXLiuJComparing different algorithms for the course of alzheimer’s disease using machine learningAnn Palliat Med20211099715724971972410.21037/apm-21-2013 – reference: UysalGOzturkMComparative analysis of different brain regions using machine learning for prediction of emci and lmci stages of alzheimer’s diseaseMultimed Tools Appl2024837214552147010.1007/s11042-023-16413-7 – reference: SabuncuMRDesikanRSSepulcreJYeoBTTLiuHSchmanskyNJReuterMWeinerMWBucknerRLSperlingRAThe dynamics of cortical and hippocampal atrophy in alzheimer diseaseArch Neurol20116881040104810.1001/archneurol.2011.167 – reference: LiuMLiFYanHWangKMaYShenLXuMInitiativeADNA multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in alzheimer’s diseaseNeuroimage202020810.1016/j.neuroimage.2019.116459 – reference: Mabrouk B, Bouzidi N, Mhiri C, Hamida AB (2022) Combination of volumetric and topologic brain characteristics towards a diagnosis of alzheimer’s disease in his earlier stage. In: 2022 6th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–4. IEEE – reference: FengCWangHLuNChenTHeHLuYTuXLog-transformation and its implications for data analysisShanghai Arch Psychiatry201426105109 – reference: RisacherSLShenLWestJDKimSMcDonaldBCBeckettLAHarveyDJJackCRJrWeinerMWSaykinAJLongitudinal mri atrophy biomarkers: relationship to conversion in the adni cohortNeurobiol Aging20103181401141810.1016/j.neurobiolaging.2010.04.029 – reference: YaoDCalhounVDFuZDuYSuiJAn ensemble learning system for a 4-way classification of alzheimer’s disease and mild cognitive impairmentJ Neurosci Methods2018302758110.1016/j.jneumeth.2018.03.008 – reference: DickersonBCWolk DA Mri cortical thickness biomarker predicts ad-like csf and cognitive decline in normal adultsNeurology2012782849010.1212/WNL.0b013e31823efc6c – reference: BiX-aXuQLuoXSunQWangZAnalysis of progression toward alzheimer’s disease based on evolutionary weighted random support vector machine clusterFront Neurol20181271610.3389/fnins.2018.00716 – reference: GhazalTMIssaGAlzheimer disease detection empowered with transfer learningComputers, Materials & Continua20227035005501910.32604/cmc.2022.020866 – reference: KimG-WKimB-CParkKSJeongG-WA pilot study of brain morphometry following donepezil treatment in mild cognitive impairment: volume changes of cortical/subcortical regions and hippocampal subfieldsSci Rep20201011091210.1038/s41598-020-67873-y – reference: TufailABAnwarNOthmanMTBUllahIKhanRAMaY-KAdhikariDRehmanAUShafiqMHamamHEarly-stage alzheimer’s disease categorization using pet neuroimaging modality and convolutional neural networks in the 2d and 3d domainsSensors20222212460910.3390/s22124609 – reference: Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830 – reference: La RoccaMAmorosoNMonacoABellottiRTangaroSInitiativeADNA novel approach to brain connectivity reveals early structural changes in alzheimer’s diseasePhysiol Genomics2018397074005 – reference: HirataYMatsudaHNemotoKOhnishiTHiraoKYamashitaFAsadaTIwabuchiSSamejimaHVoxel-based morphometry to discriminate early alzheimer’s disease from controlsNeurosci Lett2005382326927410.1016/j.neulet.2005.03.038 – reference: RaghavaiahPVaradarajanSA cad system design to diagnosize alzheimers disease from mri brain images using optimal deep neural networkMultimed Tools Appl20218017264112642810.1007/s11042-021-10928-7 – reference: Mejia-VergaraAJKaranjiaRSadunAAOct parameters of the optic nerve head and the retina as surrogate markers of brain volume in a normal population, a pilot studyJ Neurol Sci202142011721310.1016/j.jns.2020.117213 – reference: MabroukBBenHamidaADrissiNBouzidiNMhiri C Contribution of brain regions asymmetry scores combined with random forest classifier in the diagnosis of alzheimer’s disease in his earlier stageJ Med Biol Eng2023431748210.1007/s40846-023-00775-2 – reference: BusattoGFDinizBSZanettiMVVoxel-based morphometry in alzheimer’s diseaseExpert review of neurotherapeutics20088111691170210.1586/14737175.8.11.1691 – reference: NeufangSAkhrifARiedlVFörstlHKurzAZimmerCSorgCWohlschlägerAMDisconnection of frontal and parietal areas contributes to impaired attention in very early alzheimer’s diseaseJ Alzheimers Dis201125230932110.3233/JAD-2011-102154 – reference: Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A, Granziera C, Klöppel S, Maeder P et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer’s disease. NeuroImage: Clinical 7:7–17 – reference: Lisowska A, Rekik I, AbbVie AA, Foundation ADD, Biotech A, Bio-Clinica I, Biogen Company B-MS, CereSpir I, Cogstate et al (2019) Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connectivity 9(1):22–36 – reference: ChangY-THuangC-WChenN-CLinK-JHuangS-HChangW-NHsuS-WHsuC-WChenH-HChangC-CHippocampal amyloid burden with downstream fusiform gyrus atrophy correlate with face matching task scores in early stage alzheimer’s diseaseFront Aging Neurosci2016814510.3389/fnagi.2016.00145 – reference: BartzokisGAlzheimer’s disease as homeostatic responses to age-related myelin breakdownNeurobiol Aging20113281341137110.1016/j.neurobiolaging.2009.08.007 – reference: MabroukBJazzarNSallemiLHamidaABA comparative study of pca and lda for dimensionality reduction in a 4-way classification frameworkJ App Mat Sci & Engg Res20248116 – reference: Jazzar N, Mabrouk B, Douik A (2024) Cnl-resunet: A novel deep learning architecture for stroke image segmentation. In: 2024 IEEE 7th international conference on advanced technologies, signal and image processing (ATSIP), vol 1, pp 99–104. IEEE – reference: Suchitra S, Krishnasamy L, Poovaraghan R (2024) A deep learning-based early alzheimer’s disease detection using magnetic resonance images. Multimed Tools Appl, pp 1–22 – reference: LiALiFElahifasaeeFLiuMZhangLHippocampal shape and asymmetry analysis by cascaded convolutional neural networks for alzheimer’s disease diagnosisBrain Imaging Behav20211552330233910.1007/s11682-020-00427-y – reference: Lock M (2013) The alzheimer conundrum. In: The Alzheimer Conundrum. Princeton University Press, ??? – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselODuchesnayÉScikit-learn: Machine learning in pythonJ Mach Learn Res201112282528302854348 – reference: Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS,et al (2019) Quantification of white matter cellularity and damage in preclinical and early symptomatic alzheimer’s disease. NeuroImage: Clinical 22:101767 – reference: ParkerTDSlatteryCFZhangJNicholasJMPatersonRWFoulkesAJMaloneIBThomasDLModatMCashDMCortical microstructure in young onset alzheimer’s disease using neurite orientation dispersion and density imagingHum Brain Mapp20183973005301710.1002/hbm.24056 – reference: Pei Z, Gou Y, Ma M, Guo M, Leng C, Chen Y, Li J (2022) Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network. Multimed Tools Appl, pp 1–16 – reference: XueYZhangZWenCLiuHWangSLiJZhugeQChenWYeQCharacterization of alzheimer’s disease using ultra-high b-values apparent diffusion coefficient and diffusion kurtosis imagingAging Dis2019105102610.14336/AD.2018.1129 – reference: Ruiz J, Mahmud M, Modasshir M, Shamim Kaiser M, Alzheimer’s Disease Neuroimaging Initiative f.t 3d densenet ensemble in 4-way classification of alzheimer’s disease. In: Brain informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020, Proceedings 13, pp 85–96 (2020). Springer – reference: KimMKimSJParkJEYunJShimWHOhJSOhMRohJHSeoSWOhSJCombination of automated brain volumetry on mri and quantitative tau deposition on thk-5351 pet to support diagnosis of alzheimer’s diseaseSci Rep20211111034310.1038/s41598-021-89797-x – reference: GrañaMTermenonMSavioAGonzalez-PintoAEchevesteJPérezJBesgaAComputer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlationNeurosci Lett2011502322522910.1016/j.neulet.2011.07.049 – reference: Skipper Seabold, Josef Perktold (2010) Statsmodels: Econometric and Statistical Modeling with Python. In: Stéfan van der Walt, Jarrod Millman (eds.) Proceedings of the 9th python in science conference, pp 92–96. https://doi.org/10.25080/Majora-92bf1922-011 – reference: ShahwarTZafarJAlmogrenAZafarHRehmanAUShafiqMHamamHAutomated detection of alzheimer’s via hybrid classical quantum neural networksElectronics202211572110.3390/electronics11050721 – reference: JijiGWBiomarker to find neurodegenerative diseases using the structural changes in brain using computer visionMultimed Tools Appl20238222349813499310.1007/s11042-023-14951-8 – reference: Van den StockJTamiettoMSorgerBPichonSGrézesJde GelderBCortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (v1)Proc Natl Acad Sci201110839161881619310.1073/pnas.1107214108 – reference: GrambaiteRSelnesPReinvangIAarslandDHessenEGjerstadLFladbyTExecutive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tractsJ Alzheimers Dis201127245346210.3233/JAD-2011-110290 – reference: TekinSMegaMSMastermanDMChowTGarakianJVintersHVCummingsJLOrbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in alzheimer diseaseAnn Neurol200149335536110.1002/ana.72 – reference: McDonaldCMcEvoyLGharapetianLFennema-NotestineCHaglerDHollandDKoyamaABrewerJDaleARegional rates of neocortical atrophy from normal aging to early alzheimer diseaseNeurology200973645746510.1212/WNL.0b013e3181b16431 – reference: JahanshahiARNaghdi SadehRKhezerlooDAtrophy asymmetry in hippocampal subfields in patients with alzheimer’s disease and mild cognitive impairmentExp Brain Res2023241249550410.1007/s00221-022-06543-z – reference: TakahashiHIshiiKKashiwagiNWatanabeYTanakaHMurakamiTTomiyamaNClinical application of apparent diffusion coefficient mapping in voxel-based morphometry in the diagnosis of alzheimer’s diseaseClin Radiol201772210811510.1016/j.crad.2016.11.002 – reference: Mabrouk B, Hamida AB, Mabrouki N, Bouzidi N, Mhiri C (2024) A novel approach to perform linear discriminant analyses for a 4-way alzheimer’s disease diagnosis based on an integration of pearson’s correlation coefficients and empirical cumulative distribution function. Multimed Tools Appl, pp 1–17 – reference: ZhuDCMajumdarSKorolevIOBergerKLBozokiACAlzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging studyJ Alzheimers Dis201334496998410.3233/JAD-121879 – reference: LiuSLiuSCaiWCheHPujolSKikinisRFengDFulhamMJMultimodal neuroimaging feature learning for multiclass diagnosis of alzheimer’s diseaseIEEE Trans Biomed Eng20146241132114010.1109/TBME.2014.2372011 – reference: FischlBFreesurfer. Neuroimage201262277478110.1016/j.neuroimage.2012.01.021 – reference: Graham RL (1994) Concrete Mathematics: a Foundation for Computer Science. Pearson Education India, ??? – reference: BiswasRGiniJRMulti-class classification of alzheimer’s disease detection from 3d mri image using ml techniques and its performance analysisMultimed Tools Appl20248311335273355410.1007/s11042-023-16519-y – reference: RouwRScholteHSNeural basis of individual differences in synesthetic experiencesJ Neurol2010301862056213 – reference: Aditya ShastryKSanjayHArtificial intelligence techniques for the effective diagnosis of alzheimer’s disease: a reviewMultimed Tools Appl20248313400574009210.1007/s11042-023-16928-z – reference: SongS-KSunS-WJuW-KLinS-JCrossAHNeufeldAHDiffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemiaNeuroimage20032031714172210.1016/j.neuroimage.2003.07.005 – reference: LinWGaoQDuMChenWTongTMulticlass diagnosis of stages of alzheimer’s disease using linear discriminant analysis scoring for multimodal dataComput Biol Med202113410447810.1016/j.compbiomed.2021.104478 – reference: de SouzaSVJunqueiraRGA procedure to assess linearity by ordinary least squares methodAnal Chim Acta20055521–2253510.1016/j.aca.2005.07.043 – reference: Younes L, Albert M, Miller MI, Team BR,et al (2014) Inferring changepoint times of medial temporal lobe morphometric change in preclinical alzheimer’s disease. NeuroImage: Clinical 5:178–187 – reference: WuZGaoYPotterTBenoitJShenJSchulzPEZhangYInitiativeADNInteractions between aging and alzheimer’s disease on structural brain networksFront Aging Neurosci20211363979510.3389/fnagi.2021.639795 – reference: ParkSKimSYA comparison between av45 and fdg-pet in alzheimer’s disease diagnosisInt J Biome Imaging20182018124743010.1155/2018/1247430 – reference: Ravi V, EA G, KP S et al (2024) Deep learning-based approach for multi-stage diagnosis of alzheimer’s disease. Multimed Tools Appl 83(6):16799–16822 – reference: SpornsOTononiGEdelmanGMTheoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matricesCereb Cortex200010212714110.1093/cercor/10.2.127 – volume: 83 start-page: 40057 issue: 13 year: 2024 ident: 20254_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16928-z – ident: 20254_CR60 doi: 10.1089/brain.2018.0578 – volume: 22 start-page: 4609 issue: 12 year: 2022 ident: 20254_CR19 publication-title: Sensors doi: 10.3390/s22124609 – volume: 72 start-page: 108 issue: 2 year: 2017 ident: 20254_CR25 publication-title: Clin Radiol doi: 10.1016/j.crad.2016.11.002 – volume: 6 start-page: 162 year: 2017 ident: 20254_CR62 publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 8 start-page: 1691 issue: 11 year: 2008 ident: 20254_CR13 publication-title: Expert review of neurotherapeutics doi: 10.1586/14737175.8.11.1691 – volume: 43 start-page: 74 issue: 1 year: 2023 ident: 20254_CR3 publication-title: J Med Biol Eng doi: 10.1007/s40846-023-00775-2 – volume: 302 start-page: 75 year: 2018 ident: 20254_CR45 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2018.03.008 – volume: 208 year: 2020 ident: 20254_CR17 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116459 – ident: 20254_CR32 doi: 10.1109/ATSIP55956.2022.9805914 – ident: 20254_CR53 doi: 10.1016/j.nicl.2014.04.009 – volume: 39 start-page: 3005 issue: 7 year: 2018 ident: 20254_CR65 publication-title: Hum Brain Mapp doi: 10.1002/hbm.24056 – volume: 10 start-page: 127 issue: 2 year: 2000 ident: 20254_CR34 publication-title: Cereb Cortex doi: 10.1093/cercor/10.2.127 – volume: 12 start-page: 2825 year: 2011 ident: 20254_CR38 publication-title: J Mach Learn Res – ident: 20254_CR14 doi: 10.1016/j.nicl.2014.11.001 – ident: 20254_CR22 doi: 10.1007/s11042-024-19677-9 – volume: 27 start-page: 453 issue: 2 year: 2011 ident: 20254_CR64 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-110290 – volume: 73 start-page: 457 issue: 6 year: 2009 ident: 20254_CR66 publication-title: Neurology doi: 10.1212/WNL.0b013e3181b16431 – volume: 8 start-page: 145 year: 2016 ident: 20254_CR56 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2016.00145 – ident: 20254_CR43 – volume: 68 start-page: 1040 issue: 8 year: 2011 ident: 20254_CR6 publication-title: Arch Neurol doi: 10.1001/archneurol.2011.167 – volume: 32 start-page: 1341 issue: 8 year: 2011 ident: 20254_CR28 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.08.007 – volume: 39 start-page: 074005 issue: 7 year: 2018 ident: 20254_CR31 publication-title: Physiol Genomics – volume: 78 start-page: 84 issue: 2 year: 2012 ident: 20254_CR4 publication-title: Neurology doi: 10.1212/WNL.0b013e31823efc6c – volume: 31 start-page: 1401 issue: 8 year: 2010 ident: 20254_CR5 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.04.029 – volume: 13 start-page: 639795 year: 2021 ident: 20254_CR35 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.639795 – volume: 1 start-page: 5271627 year: 2017 ident: 20254_CR37 publication-title: Comput Math Methods Med – volume: 12 start-page: 716 year: 2018 ident: 20254_CR55 publication-title: Front Neurol doi: 10.3389/fnins.2018.00716 – volume: 8 start-page: 1 issue: 1 year: 2024 ident: 20254_CR24 publication-title: J App Mat Sci & Engg Res – volume: 30 start-page: 6205 issue: 18 year: 2010 ident: 20254_CR58 publication-title: J Neurol – volume: 62 start-page: 1132 issue: 4 year: 2014 ident: 20254_CR44 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 2018 start-page: 1247430 year: 2018 ident: 20254_CR50 publication-title: Int J Biome Imaging doi: 10.1155/2018/1247430 – volume: 10 start-page: 10912 issue: 1 year: 2020 ident: 20254_CR9 publication-title: Sci Rep doi: 10.1038/s41598-020-67873-y – ident: 20254_CR1 doi: 10.23943/princeton/9780691149783.001.0001 – volume: 82 start-page: 34981 issue: 22 year: 2023 ident: 20254_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-14951-8 – volume: 10 start-page: 9715724 issue: 9 year: 2021 ident: 20254_CR49 publication-title: Ann Palliat Med doi: 10.21037/apm-21-2013 – volume: 25 start-page: 309 issue: 2 year: 2011 ident: 20254_CR63 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-102154 – volume: 11 start-page: 10343 issue: 1 year: 2021 ident: 20254_CR10 publication-title: Sci Rep doi: 10.1038/s41598-021-89797-x – volume: 15 start-page: 2330 issue: 5 year: 2021 ident: 20254_CR8 publication-title: Brain Imaging Behav doi: 10.1007/s11682-020-00427-y – volume: 34 start-page: 969 issue: 4 year: 2013 ident: 20254_CR54 publication-title: J Alzheimers Dis doi: 10.3233/JAD-121879 – ident: 20254_CR40 – volume: 552 start-page: 25 issue: 1–2 year: 2005 ident: 20254_CR42 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2005.07.043 – volume: 82 start-page: 17963 issue: 12 year: 2023 ident: 20254_CR52 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-14203-1 – volume: 382 start-page: 269 issue: 3 year: 2005 ident: 20254_CR12 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2005.03.038 – ident: 20254_CR47 doi: 10.1007/978-3-030-59277-6_8 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 20254_CR36 publication-title: Freesurfer. Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 26 start-page: 105 year: 2014 ident: 20254_CR39 publication-title: Shanghai Arch Psychiatry – volume: 83 start-page: 21455 issue: 7 year: 2024 ident: 20254_CR11 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16413-7 – volume: 11 start-page: 721 issue: 5 year: 2022 ident: 20254_CR18 publication-title: Electronics doi: 10.3390/electronics11050721 – ident: 20254_CR23 doi: 10.1007/s11042-023-16026-0 – volume: 10 start-page: 1026 issue: 5 year: 2019 ident: 20254_CR29 publication-title: Aging Dis doi: 10.14336/AD.2018.1129 – volume: 241 start-page: 495 issue: 2 year: 2023 ident: 20254_CR7 publication-title: Exp Brain Res doi: 10.1007/s00221-022-06543-z – ident: 20254_CR27 doi: 10.1016/j.nicl.2019.101767 – volume: 49 start-page: 355 issue: 3 year: 2001 ident: 20254_CR57 publication-title: Ann Neurol doi: 10.1002/ana.72 – ident: 20254_CR33 doi: 10.21203/rs.3.rs-3020768/v1 – volume: 420 start-page: 117213 year: 2021 ident: 20254_CR61 publication-title: J Neurol Sci doi: 10.1016/j.jns.2020.117213 – ident: 20254_CR41 doi: 10.25080/Majora-92bf1922-011 – volume: 134 start-page: 104478 year: 2021 ident: 20254_CR46 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104478 – volume: 108 start-page: 16188 issue: 39 year: 2011 ident: 20254_CR59 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1107214108 – volume: 83 start-page: 33527 issue: 11 year: 2024 ident: 20254_CR20 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16519-y – volume: 502 start-page: 225 issue: 3 year: 2011 ident: 20254_CR30 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2011.07.049 – volume: 80 start-page: 26411 issue: 17 year: 2021 ident: 20254_CR51 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10928-7 – ident: 20254_CR21 doi: 10.1007/s11042-021-11279-z – volume: 20 start-page: 1714 issue: 3 year: 2003 ident: 20254_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.07.005 – volume: 70 start-page: 5005 issue: 3 year: 2022 ident: 20254_CR48 publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.020866 – ident: 20254_CR16 doi: 10.1109/ATSIP62566.2024.10639018 |
| SSID | ssj0016524 |
| Score | 2.3671935 |
| Snippet | Diagnosing Alzheimer’s disease (AD) in its prodromal stage is a significantly crucial area of research. Approximately 50% of individuals within the well-known... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 86059 |
| SubjectTerms | Alzheimer's disease Brain Classification Cognitive ability Computer Communication Networks Computer Science Correlation coefficients Data Structures and Information Theory Disease control Impairment Least squares method Linearity Magnetic resonance Medical imaging Multimedia Information Systems Regression models Special Purpose and Application-Based Systems Tensors Track 8: Medical Imaging |
| Title | A novel approach to enhance feature selection using linearity assessment with ordinary least squares regression for Alzheimer’s Disease stage classification |
| URI | https://link.springer.com/article/10.1007/s11042-024-20254-3 https://www.proquest.com/docview/3129055922 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB314wIHSguooSWaQ29gKVnv2uujC0krUCuEiFRO1n6mSMEpccqhp_6NXvhx_BJmN3YDCA6cfLC9l7cfb3bmvQE4Sm3hmfQ8YUJqClDsMClymyVWUUDkjVUuXuifnWenE_72Qly0orCmq3bvUpJxp16L3YZBSkJnCiFLYU2SbsK2CHZeNIsnrLzPHWSC8VYe8_f_fj-C1rzyj1RoPGHGj-FRSw2xXGG5Cxuu3oOdru0CtqtwDx7-4iH4BL6XWM-_uRl27uC4nKOrLwOa6F307cQmdrshCDDUuU8xcEsV2tahunfmxHAlixSLRoUuzkJTH2y-XgeBEi7cdFUwWyOxXCxnN5fu8xe3-HF71-CbVZIHiWhOHZrAx0MBUsT8KUzGo4-vT5O26UJiiBymCREm7tOBobWppB1IPRSaaTPICsVyIawvnNHcpEUmcquJIFgnjSpsIbNgxZenz2CrntduH1DkynguneXS0Jheacu594Y54fjA6B687HCorlbeGtXaRTmgVhFqVUStSntw2EFVteusqdJwjUZBEWM9eNXBt37979Ge_9_nB_CAhRkURYiHsLVcXLsXxEaWug-bcnzSh-3y5NO7ET2PR-fvP_TjlPwJrN3haw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07c9NAEN4hTpGkICTAYAhki3RBGft0p0fpgQSTVxXPhEpzTyeDkYNlU6Tib9Dw4_gl7J2kGDJQpJZ0czO7q_v2dr9vAfZikzuWOR4xkSlKUEw_ylOTREZSQuS0kTZc6J-dJ8MRP74Ulw0prGq73duSZPhTL8lufU8loTOFLEtpTRSvwCqnBIV1YHXw4dPJ4V31IBGMNwSZf3_59yG0RJb3iqHhjDnahFG7u7q15PPBYq4O9O094caHbv8JPG5AJw5qL9mCR7bchs12oAM28b0NG3-oEz6FnwMsp9_sBFvdcZxP0ZZX3k_Q2aAIilWYo0PGRd9BP0aPWqUfiIfyTvMT_WUvUpYbuL848eOCsPq68NQnnNlx3YpbIuFnHExur-z1Fzv79f1Hhe_r8hEShB1b1B7p-9am4E3PYHR0ePFuGDXjHCJNsDOOCIpxF_c0Rb3MTC9TfaGY0r0klywVwrjcasV1nCciNYqgh7GZlrnJs8SL_KXxc-iU09K-ABSp1I5n1vBM05pOKsO5c5pZYXlPqy7st_YtbmrVjmKpz-wNUZAhimCIIu7CTusCRRPBVRH7CzpKtxjrwtvWosvH_1_t5cNe34W14cXZaXH68fzkFawz7yCB6rgDnflsYV8T5pmrN42L_wbGLf0p |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09TxtBEB0FR0JJQQIE4eCEKdLBCXtv9z5KK8SCBFAKLNGd9tNGMmdimxSp8jdo8uPyS5jdu8OAkoL69rZ5u5o3O_PeAHyKTe5Y5njERKYoQTG9KE9NEhlJCZHTRtrwoH96lhwN-dcLcfFAxR-63ZuSZKVp8C5N5eLg2riDpfCt52UlFF8IZUpxongFXnJvlEAnesj693WERDBeS2X-_d_jcLTkmE_KoiHaDN7CWk0TsV_hug4vbLkBb5oRDFjfyA14_cBPcBP-9LGc_rQTbJzCcTFFW449suhs8PDEeZh8Q3Cg73kfoeeZ0o-wQ3nv0on-eRYpLw1qXZz4AT84_3HjxUo4s6OqebZEYrzYn_wa28srO_v7-3aOh1XBB4l0jixqz819M1LA_x0MB1_OPx9F9QCGSBNRjCMiT9zFXU33VGamm6meUEzpbpJLlgphXG614jrOE5EaRWTB2EzL3ORZ4m350ngLWuW0tNuAIpXa8cwanmna00llOHdOMyss72rVhr0Gh-K68tkolo7KHrWCUCsCakXchk4DVVHfuXkR-yc1SpAYa8N-A9_y8_93e_-85buw-v1wUJwcn33bgVfMH6agTexAazG7sR-IpCzUx3AO7wClqeR_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+to+enhance+feature+selection+using+linearity+assessment+with+ordinary+least+squares+regression+for+Alzheimer%E2%80%99s+Disease+stage+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Mabrouk%2C+Besma&rft.au=Bouattour%2C+Nadia&rft.au=Mabrouki%2C+Noura&rft.au=Sellami%2C+Lamia&rft.date=2024-11-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=38&rft.spage=86059&rft.epage=86078&rft_id=info:doi/10.1007%2Fs11042-024-20254-3&rft.externalDocID=10_1007_s11042_024_20254_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |